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0.1 Knots and Links

Definition 0.1.1. knot [3, 2]

A subset K of a (topological) space X is a knot if K is homeomorphic with a sphere SP .

Definition 0.1.2. topology [1, 76]

A topology on a set X is a collection T of subsets of X having the following properties:
(1) ∅ and X are in T .
(2) The union of the elements of any subcollection of T is in T .
(3) The intersection of the elements of any finite subcollection of T is in T .

Definition 0.1.3. topological space [1, 76]

A topological space is an ordered pair (X, T ) consisting of a set X and a topology T on X .

Definition 0.1.4. homeomorphism [1, 105]

Let X and Y be topological spaces and f : X → Y be a bijection. If both the function f and
the inverse function f−1 : Y → X are continuous, then f is called a homeomorphism.

Definition 0.1.5. unit sphere [1, 156]

Define the unit sphere Sn−1 in Rn by the equation Sn−1 = {x |∥ x ∥= 1}.

Definition 0.1.6. link [3, 2]

A subset K of a (topological) space X is a link if K is homeomorphic with a disjoint union
SP1 ∪ · · · ∪ SPr of one or more spheres.

Definition 0.1.7. equivalent [3, 2]

Two linksK andK ′ are equivalent if there is a homeomorphism h : X → X s.t. h(K) = K ′.
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Remark 0.1.1. [3, 2]

Unless otherwise stated, we shall always take X to be Rn or Sn.

Remark 0.1.2. [3, 3]

These definitions are not universally accepted.
Knots can be considered as embeddings K : SP → Sn, i.e., K : SP ↪→ Sn.

Proof 0.1.1.

⇒:
K ⊆ Sn is homeomorphic with a sphere SP , i.e., ∃ a homeomorphism h : SP → K.
We need to construct an embedding f : SP → Sn s.t. f(SP ) = K.
Define the inclusion map i : K → Sn, x 7→ x.
Let f = ih.
h, i are continuous. ⇒ f is continuous.
h, i are injective. ⇒ f is injective.
f(SP ) = K.
h, i have their continuous inverses. ⇒ f has its continuous inverse.
Therefore f is an embedding from SP to Sn s.t. f(SP ) = K.
⇐:
Assume we have a knot that is an embedding f : SP → Sn.
Let K = f(SP ).
K ⊆ Sn, f : SP → K is a homeomorphism.
Therefore K is homeomorphic with SP .
□

Remark 0.1.3. [3, 3]

There are also other (stronger) notions of equivalence.
(1) Map equivalence: K and K ′ considered as maps and require h ◦K = K ′.
(2) Oriented equivalence: All spaces are endowed with orientations, all of which h is required
to preserve, i.e., h is orientation-preserving.
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Definition 0.1.8. orientation [1, 447]

Given a line segment L in R2, an orientation of L is simply an ordering of its end points.
The first, say a, is called the initial point, and the second, say b, is called the final point, of
the oriented line segment.

Definition 0.1.9. ambient isotopy [3, 3]

A homotopy ht : X → X is called an ambient isotopy if h0 is the identity and each ht is a
homeomorphism.
Note: ht(x) = h(x, t), h : X × I → X .

Definition 0.1.10. join [3, 6]

If X,Y are topological spaces, then their join is the factor space X ⋆ Y = (X × Y × I)/ ∼,

where ∼ is the equivalence relation: (x, y, t) ∼ (x′, y′, t′). ⇐⇒


t = t′ = 0 and x = x′.

or
t = t′ = 1 and y = y′.

Example 0.1.1. [3, 6]

If Y is a point, we have the cone C(X) = X ⋆ {pt}.

Definition 0.1.11. elementary knot move [2, 7]

On a given knot K we may perform the following four operations.
(1) We may divide an edge, AB, in space of K into two edges, AC,CB, by placing a point
C on the edge AB.
(1)’ [The converse of (1)] If AC and CB are two adjacent edges of K s.t. if C is erased AB

becomes a straight line, then we may remove the point C.
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(2) Suppose C is a point in space that does not lie on K. If the triangle ABC, formed by
AB and C, does not intersect K, with the exception of the edge AB, then we may remove
AB and add the two edges AC and CB.
(2)’ [The converse of (2)] If there exists in space a triangle ABC that contains two adjacent
edges AC and CB of K, and this triangle does not intersect K, except at the edges AC and
CB, then we may delete the two edges AC, CB and add the edge AB.

These four operations (1), (1)’, (2) and (2)’ are called the elementary knot moves.

Definition 0.1.12. equivalent, equal [2, 8]

A knot K is said to be equivalent (or equal) to a knot K ′ if we can obtain K ′ from K by
applying the elementary knot moves a finite number of times.

Example 0.1.2. Perko’s pair [2, 8]

It is possible to change the knot K1 into the knot K2 by performing the elementary knot
moves a significant number of times. This was only shown in 1970 by the American lawyer
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K. A. Perko.

Remark 0.1.4. [2, 8]

The elementary knot move (2) allows us to replace an edge AB with the edges AC and CB.
Since the points within the triangle ABC do not intersect with the knot itself, intuitively we
may rephrase the definition of equivalent:
Two knots are equivalent if in space we can alter one continuously, without causing any
self-intersections, until it becomes transformed into the other knot.

Remark 0.1.5. [2, 8]

A knot has no starting point and no endpoint, i.e., it is a simple closed curve (to be precise a
closed polygonal curve). Therefore, we can assign an orientation to the curve.
Any knot has two possible orientations.

Definition 0.1.13. equivalent with orientation [2, 9]

If two oriented knots K and K ′ can be altered with respect to each other by means of oriented
elementary knot moves, then we say K and K ′ are equivalent with orientation preserved (or,
for brevity, with orientation), and we write K ∼= K ′.
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Remark 0.1.6. [2, 9]

Two knots that are equivalent without an orientation assigned are not necessarily equivalent
with orientation when we assign an orientation to the knots.

Example 0.1.3. [2, 10]

Example 0.1.4. [2, 12]

Consider φ(x, y, z) = (−x,−y, z), which is an orientation-preserving auto-
homeomorphism.
Since φ maps the oriented left-hand trefoil knot K to K ′, these two knots are equivalent with
orientation. K ′ is the knot with the “reverse” orientation to K.
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Definition 0.1.14. oriented left-hand knot

If you use your left thumb to trace the direction of the knot, the natural bending direction of
your other fingers will be consistent with the twisting direction of the knot, then the knot is
an oriented left-hand knot.

Definition 0.1.15. oriented right-hand knot

If you use your right thumb to trace the direction of the knot, the natural bending direction
of your other fingers will be consistent with the twisting direction of the knot, then the knot
is an oriented right-hand knot.

Definition 0.1.16. link [2, 15]

A link is a finite, ordered collection of knots that do not intersect each other.

Definition 0.1.17. component [2, 15]

Each knot Ki is said to be a component of the link.

Definition 0.1.18. equivalent [2, 15]

Two links L = {K1,K2, · · · ,Km} and L′ = {K ′
1,K

′
2, · · · ,K ′

n} are equivalent (or equal)
if the following two conditions hold:
(1) m = n, that is, L and L′ each have the same number of components.
(2) We can change L into L′ by performing the elementary knot moves a finite number of
times. To be exact, using the elementary knot moves we can change K1 to K ′

1, K2 to K ′
2,

· · · , Km to K ′
n (m = n). (We should emphasize that the triangle of a given elementary knot

move does not intersect with any of the other components.)
We may replace (2) by the following (2)’:
(2)’ There exists an auto-homeomorphism φ that preserves the orientation of R3 and maps
φ(K1) = K ′

1, φ(K2) = K ′
2, · · · , φ(Km) = K ′

n.
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Remark 0.1.7. [2, 15]

We may suitably reorder the components.
Usually, therefore, (2)’ is replaced by the following (2A):
(2A) There exists an auto-homeomorphism that preserves the orientation of R3 and maps the
collection K1 ∪ · · · ∪Km to the collection K ′

1 ∪ · · · ∪K ′
n.

Example 0.1.5. Whitehead link [2, 17]

Example 0.1.6. Borromean rings [2, 17]

Theorem 0.1.1. [2, 14]

If two knots K1 and K2 that lie in S3 are equivalent, then their complements S3 −K1 and
S3 −K2 are homeomorphic.

Proof 0.1.2.

K1 and K2 are equivalent, i.e., ∃ a homeomorphism f : S3 → S3 s.t. f(K1) = K2.
Consider the restriction f |S3\K1

: S3 \K1 → S3.
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∀ x ∈ S3 \K1, if f |S3\K1
(x) = f(x) ∈ K2.

f(K1) = K2. ⇒ ∃ y ∈ K1 s.t. f(y) = f(x).
f is a homeomorphism. ⇒ x = y, which is contradicting.
We have that f |S3\K1

(S3 \K1) ⊆ S3 \K2.
∀ y ∈ S3 \K2, f is a homeomorphism. ⇒ ∃ x ∈ S3 s.t. f(x) = y.
If x ∈ K1. ⇒ f(x) = y ∈ K2, which is contradicting. ⇒ x ∈ S3 \K1.
Then f |S3\K1

is surjective.
f is a homeomorphism. ⇒ f is injective. ⇒ f |S3\K1

is injective.
f is continuous. ⇒ f |S3\K1

is continuous.
f is a homeomorphism. ⇒ f−1 is continuous. ⇒ f−1 |S3\K2

is continuous.
Similarly, f−1 |S3\K2

(S3 \K2) ⊆ S3 \K1.
Therefore, f |S3\K1

is a homeomorphism from S3 \K1 to S3 \K2.
□

Example 0.1.7. [3, 49]

Example 0.1.8. [3, 49]
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Proposition 0.1.1. [3, 50]

The integral homology and cohomology groups of the complement of a link in Rn or Sn are
independent of the particular embedding.

Example 0.1.9. [3, 50]

With a knot KP ⊆ Sn, H ⋆ (Sn −KP ) ∼= H ⋆ Sn−P−1.
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0.2 Knot Group

Definition 0.2.1. group [3, 51]

If Kn−2 is a knot (link) in Rn, the fundamental group π1(Rn − K) of the complement is
called, simply, the group of K.

Remark 0.2.1. [3, 51]

The group is the same, up to isomorphism, if we consider the knot in Sn rather than Rn.

Proposition 0.2.1. [3, 51]

If B is any bounded subset of Rn s.t. Rn−B is path-connected and n ≥ 3, then the inclusion
induces an isomorphism π1(Rn −B) →

i∗
π1(S

n−1 −B).

Example 0.2.1. [3, 51]

The naturally included Sn−2 ⊆ Rn−1 ⊆ Rn ⊆ Rn +∞ = Sn is the trivial knot or unknot of
codimension two.

Proposition 0.2.2. [3, 51]

The unknot has group π1(S
n − Sn−2) ∼= Z.

Example 0.2.2. trefoil [3, 51]
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This knot has been drawn on the surface of a “standardly embedded” torus T 2 to employ
Van Kampen’s theorem.

Definition 0.2.2. lens space [3, 234]

Choosing fixed longitude and meridian generators l1 and m1 for π1(∂V1), we may write
h∗(m2) = pl1 + qm1 where p and q are coprime integers. The resulting M3 is called the
lens space of type (p, q) and denoted traditionally by M3 = L(p, q).
In other words, a 3-manifold is a lens space if and only if it contains a solid torus, the closure
of whose complement is also a solid torus.

Lemma 0.2.1. [3, 52]

The trefoil is not of trivial knot type.
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Proof 0.2.1. [3, 52]

Let X1 and X2 denote the closed solid tori, as shown, bounded by T 2 with K removed.
Then we have presentation π1(X1) = ⟨x | −⟩, π1(X2) = ⟨y | −⟩.
Let X0 = X1 ∩X2 = T2 −K.
We have π1(X0) ∼= Z, whose generator z equals x2 in π1(X1) and y3 in π1(X2).
Thus by Van Kampen, we get that π1(S

3 − trefoil) = ⟨x, y | x2 = y3⟩, which is nonabelian.
Therefore the trefoil is not of trivial knot type.
□

Definition 0.2.3. torus knot [3, 53]

Choosing integers p, q which are relatively prime, the torus knot Tp,q of type p, q is the knot
which wraps around the standard solid torus T in the longitudinal direction p times and in
the meridinal direction q times.

Example 0.2.3. [3, 53]

The trefoil is T2,3.

Example 0.2.4. [3, 53]

T2,5, T5,6 and T3,2.

Remark 0.2.2. [3, 53]

(1) T±1,q and Tp,±1 are of trivial type.
(2) The type of Tp,q is unchanged by changing the sign of p or q, or by interchanging p and q.
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Theorem 0.2.1. [3, 54]

If 1 < p < q, then the group Gp,q determines the pair p, q.

Remark 0.2.3. the Wirtinger presentation [3, 56]

It is a presentation of the group of a knot K in R3, given a “picture” of the knot.
By a picture is a finite number of arcs α1, · · · , αn in a plane P (say, the x− y plane). Each
αi is assumed connected to αi−1 and αi+1 (mod n) by undercrossing arcs exactly as pictured
below. The union of these is the knot K.

Example 0.2.5. [3, 57]

Theorem 0.2.2. [3, 57]

The group π1(R3−K) is generated by the (homotopy classes of the) xi and has presentation
π1(R3 −K) = ⟨x1, · · · , xn | r1, · · · , rn⟩.
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Moreover, any one of the ri may be omitted and the above remains true.

Example 0.2.6. [3, 58]

For the knot K below, we have a presentation with generators x1, x2, x3, x4 and relations
(1) x1x3 = x3x2.
(2) x4x2 = x3x4.
(3) x3x1 = x1x4.

In other words, π1(R3 −K) ∼= ⟨x1, x3 | x−1
1 x3x1x

−1
3 x1x3 = x3x

−1
1 x3x1⟩.

Example 0.2.7. [3, 60]

We recompute the group of the trefoil using the Wirtinger method.
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We have generators x, y, z and relations
(1) xz = zy.
(2) yx = xz.
Thus we have another presentation for the trefoil group G2,3 = ⟨x, y | xyx = yxy⟩.

Example 0.2.8. [3, 61]

This is the square knot.

Decompose K into two parts.
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The complements of them have the homotopy type of the complement of the trefoil.
The union of these complements gives the complement of the square knot.
Using Van Kampen’s theorem, we see that
G = ⟨x, y, w, z | xyx = yxy,wzw = zwz, x = w⟩ = ⟨x, y, z | xyx = yxy, xzx = zxz⟩.

Definition 0.2.4. regular [3, 63]

Let K be a polygonal knot in R3. Let P be any plane and p : R3 → P the orthogonal
projection. Say that P is regular for K provided that every p−1(x), x ∈ P , intersects K in
0, 1 or 2 points and, if 2, neither of them is a vertex of K.

Definition 0.2.5. deficiency [3, 64]

The deficiency of a group presentation equals the number of generators minus the number of
relations.
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Corollary 0.2.1. [3, 64]

Every tame knot group has a finite presentation of deficiency one.
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0.3 Knot Decomposition and the Semi-group of a Knot

Example 0.3.1. [2, 18]

Consider a sphereS inS3 (orR3) and the ball that is bounded byS,B3, i.e., the 3-dimensional
ball whose boundary is S.
In the interior of B3, take a simple curved line α (in fact, a polygonal line) whose endpoints
A,B are on the surface S.
If this curve α intersects S only at the points A and B, it is called a (1, 1)-tangle.

(a), (b) are trivial (1, 1)-tangles, while (c) is a nontrivial (1, 1)-tangle.

Example 0.3.2. [2, 18]

Suppose K is a knot (or link) in S3 and there exists a 2-dimensional sphere
∑

that intersects
(at right angles) K at exactly 2 points A and B.

Since K lies in S3, K is divided by
∑

into two (1, 1)-tangles α and β, one of which lies
within

∑
and the other without.

This gluing process is more easily visualized if we drop down a dimension. For if we take
two disks and glue them along their boundaries, in this case a circle, we obtain the
2-dimensional sphere.
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Remark 0.3.1. [2, 19]

What we have shown is that a knot K can be decomposed into two knots K1 and K2.
The choice of s is arbitrary.
Because if we connect A to B by means of some other simple polygonal line that lies on∑

, s′ for example, we shall once again decompose K into two knots say K ′
1 and K ′

2, are
equivalent (since we may apply the elementary knot moves to s on

∑
to change it into s′).

Remark 0.3.2. [2, 19]

If one of α or β, say, β, is the trivial (1, 1)-tangle, then K ′
2 is the trivial knot.

In such cases, K1 and K2 are not, strictly speaking, a “true” decomposition of K.

In fact, K and K1 are equivalent, and so we do not think of K as being decomposed into
simpler knots.

Definition 0.3.1. prime knot [2, 19]

When a true (non-trivial) decomposition cannot be found for K, we say that K is a prime
knot.

Theorem 0.3.1. [2, 20]

(The uniqueness and existence of a decomposition of knots)
(1) Any knot can be decomposed into a finite number of prime knots.
(2) This decomposition, excluding the order, is unique. That is to say, suppose we can
decompose K in two ways: K1,K2, · · · ,Km and K ′

1,K
′
2, · · · ,K ′

n. Then m = n and if
we suitably choose the subscript numbering of K1,K2, · · · ,Km, K1

∼= K ′
1, K2

∼= K ′
2, · · · ,

Km
∼= K ′

n.
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A proof of this theorem can be found in Schubert (not the one who write art songs).

Example 0.3.3. [2, 20]

Suppose P is a point on an (oriented) knot K in S3. We may think of P as the centre of a
ball, B3, with a very small radius.
(1) K intersects (at right angles) exactly two points on the surface of boundary sphere of B3.
(2) In the interior of B3, the (1, 1)-tangle, α, that is obtained from K is a trivial tangle.
Similarly, to some other knot K ′ in another 3-dimensional sphere S3, we may choose a
point P ′ and, as above, obtain from K ′ a trivial (1, 1)-tangle, β, in some other ball B′3.
If we now glue these two balls along this sphere, applying a homeomorphism that reverses
throughout the orientation of the sphere of oe of these balls, we obtain a 3-dimensional
sphere, S3. In gluing process the end (initial) point of α and the initial (end) point of β are
joined.
Therefore, in this 3-dimensional sphere, S3, a new, single, oriented knot, K̂ is formed.

Definition 0.3.2. sum [2, 21]

The knot K̂ that is formed in the above process is said to be the sum of K and K ′ (or the
connected sum), and is denoted by K#K ′.

Remark 0.3.3. [2, 21]

This knot K#K ′ is idependent of the points P and P ′ that were originally chosen. We can
therefore say that K#K ′ is uniquely determined by K and K ′.
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Proposition 0.3.1. [2, 22]

The sum of two knots is commutative, i.e., K1#K2
∼= K2#K1.

More concretely, K1#K2 and K2#K1 are equivalent with orientation.
Also, the associative law holds, K1#(K2#K3) ∼= (K1#K2)#K3.

Remark 0.3.4. [2, 22]

The above definition of the sum of knots is defined on the set of all (oriented) knots, A.
However, this definition does not make A a group.
In fact, A does not possess inverse elements.
For example, supposeK is the trefoil knot, forK it is impossible to find aK ′ s.t. K#K ′ ∼= O,
the trivial knot.
Therefore A is only a semi-group. This semi-group is called the semi-group formed under
the operation of the sum of knots.

Example 0.3.4. [2, 22]

Example 0.3.5. [2, 22]
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