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Part I

Introduction to Higgs bundles through the
lens of moduli spaces
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Part II

Physical aspects of Hitchin moduli space:
classical and quantum
Higgs bundles

1 Classical Integrable systems

1.1 Prelude: symplectic and Poisson geometry

A symplectic structure on a manifold M is a two-form ω which is closed and non-degenerate.
By Darboux theorem, on any symplectic manifold (M,ω) there exists local coordinates
(pi ,xi) such that ω =

∑
dpj ∧dxj . This means that there is no local invariant in symplectic

geometry. Note that this is not the case for Riemannian geometry where the curvature is
a local invariant. Then we can define so-called Hamiltonian flow Xf of a function f to be
a vector field such that ω(Xf ,Y ) = df (Y ) for all Y ∈ Γ (TM). While the usual gradient of a
function f points in the direction of biggest change of f , the Hamiltonian flow points in
the direction where f stays constant (the level set). For example, S2 with the area form
and h : S2→ R the height function. Then the Hamiltonian flow is the rotation around the
z-axis.

It turns out The 1-parameter group of diffeomorphisms of M, obtained by integrat-
ing the Hamiltonian flow of a function, preserve the symplectic structure φ∗tω = ω (by
Cartan magic formula). A diffeomorphism f of M preserving its symplectic structure (i.e.
φ∗tω = ω) is called a symplectomorphism. The special case coming from the time flow
of a symplectic gradient is called a Hamiltonian diffeomorphism. Not all symplectomor-
phisms are Hamiltonian. A vector field X is called symplectic if ω(X, .) is a closed 1-form,
Hamiltonian if ω(X, .) is exact. A vector field associated to a symplectomorphism (resp.
hamiltonian diffeomorphism) is symplectic (resp. hamiltonian).

The space of smooth functions C∞(M) comes with an extra structure: a Poisson bracket.
Concretely, the symplectic form ω allows to associate to two functions f ,g ∈ C∞(M) a
function denoted by {f ,g} defined by {f ,g} = ω(Xf ,Xg ). ḟ = {H,f }

Poisson manifold is the disjoint union of symplectic manifolds (in a unique way),
called symplectic leaves.

Example 1.1.1 (Coadjoint orbits). g = so(3),g∗ = (R3,×)

⟨g · ξ,a⟩ =
〈
ξ,adg−1(a)

〉
The action is called symplectic if all g ∈ G act by symplectomorphisms, The infinites-
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imal action of an element a ∈ g gives a vector field Xa.

Xa(x) =
d
dt

∣∣∣∣
t=0

exp(ta) · x

1.1.1 Hamiltonian action

The action is called weakly Hamiltonian if each g ∈ G acts by a Hamiltonian diffeomor-
phism. A weakly Hamiltonian action of G on M is called Hamiltonian if there is a Lie
algebra homomorphism φ : g→ C∞(M) such that Xφ(a) = Xa. This is a bit abstract, let’s
see the algebraic definition.

We can always transform a weakly Hamiltonian action into a Hamiltonian one by
replacing the group G by a central extension.

1.2 Hamiltonian reduction and symplectic quotient

1.2.1 Moment map

1.2.2 Symplectic topology of Hitchin moduli and Atiyah Bott reduction

1.2.3 Equivalence to GIT quotient

1.3 Classical mechanics: from Newton to Hamilton

1.3.1 Lagrangian mechanics and Riemannian geometry

Example 1.3.1 (Euler top). As Lagrangian system and Arnold’s generalization to arbitrary
simple Lie algebras

1.3.2 Hamiltonian mechanics

The basic setting of Hamiltonian classical mechanics is as follows. The phase space of
a mechanical system is a symplectic manifold M of dimension 2n. The dynamics of the
system is defined by its Hamiltonian H ∈ C∞(M). Namely, the Hamiltonian flow attached
to H is the flow corresponding to the vector field XH . If yi are coordinates on M, then the
differential equations defining the flow (Hamiltonian equations) are written as

dyi
dt

= {H,yi}

By Darboux theorem we can locally choose (so-called canonical) coordinates xj , pj on M
such that the symplectic form is ω =

∑
dpj ∧ dxj . In canonical coordinates Hamiltonian

equations are written as

dxi
dt

=
∂H
∂pi

,
dpi
dt

=
∂H
∂xi
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In the presence of symmetries, we can utilize them to reduce our complicated differ-
ential equations to easier ones, even trivial ones if the symmetries are “large” enough. The
mathematical underpinning is the aforementioned Hamiltonian reduction. Namely, let G
be an Hamiltonian action on M. Let µ : M→ g∗ be the moment map. to add Hamiltonian
reduction Heruistics This triggers the definition of an integrable system.

Definition 1.3.2. An integrable system on a symplectic manifold M of dimension 2n is
a collection of smooth functions F1, , . . . ,Fn on M such that they are in involution (i.e.,
{Fi ,Fj} = 0), and the differentials dFi are linearly independent on a dense open set in M.

Remark 1.3.3. The condition that dFi are linearly independent on a dense open set in
M is equivalent to the requirement that Fi are functionally independent, i.e. there does
not exist a nonempty open set U ⊆ M such that the points (F1(u), ...,Fn(u)),u ∈ U , are
contained in a smooth hypersurface in Rn.

The word “integrable” suggests that the system can be integrated by quadratures, is
indeed the case as we will see:

Theorem 1.3.4 (Arnold-Liouville). Let the Hamiltonian be H = F1. For any given v ∈ Rn, we
define the fiber Mv be the set of points x ∈M such that Hi(x) = vi .

• The fiber Mv is a smooth manifold.

• If Mv is compact and connected, it is diffeomorphic to Tn with coordinates θ1, . . .θn. In fact,
Mv is a half-dimensional torus on which ω|TMv

= 0, sometimes called a Lagrangian torus.

• There is an open neighborhood U of v, and a coordinate transformation (qj ,pj )→ (θj , Ij )
called action-angle coordinates such that Hamiltonian equation is given by

θ̇j = ωj(v), İj = 0

where ωj(v) is some function of v.

Example 1.3.5 (Euler top). We consider a rotating solid body attached to a fixed point.
The Euler top corresponds to the case where there is no external force. The equation of
motion read İ = −ω∧ J where J = I.ω, I = diag(I1, I2, I3) equivalent to

J̇ = [IJ, J],−1
2
tr(J2) = ||J ||2

H(J) = 2(
J21
I1

+
J22
I2

+
J23
I3

)

Since ||J ||2 and H are conserved, we can express J2 and J3 in terms of J1. The exact
calculation is gigantic, and you can try to write it out explicitly if you are so inclined.
Anyway, you will finally see that J1 satisfies an equation of the form

J̇21 = a+ bJ21 + cJ41
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which means t is an elliptic integral of J1 or equivalently J1 is an elliptic function of t. We
can actually “predict” the presence of elliptic curve, without cumbersome calculation, by
using spectral curve, as we will see in the next section.

Remark 1.3.6 (Digression on elliptic integrals, elliptic curves and Riemann surfaces). El-
liptic integrals came from the computations of arc length. More precisely, they are of the
form

∫
R(t,

√
P (t))dt where P (t) is a cubic or quartic. Legendre divided them into three

classes. Let’s consider the following one originated from the calculation of arc length:

α(x) =
∫ x

0

dt√
(1− c2t2)(1+ e2t2)

Since the derivative of α(x) is always greater than zero, we have an inverse function de-
noted by x = ϕ(α), dubbed an elliptic function. By Abel’s addition theorem, we can nat-
urally extend its domain to the real axis and even the whole complex plane. It turns out
that ϕ(α) is doubly periodic, with period 2ω1 and 2iω2 where

ω1 =
∫ 1/c
0

dt√
(1− c2t2)(1+ e2t2)

, ω2 =
∫ 1/e
0

dt√
(1+ c2t2)(1− e2t2)

But here comes an issue with the complex plane. ϕ(α) is multi-valued which can be
resolved by defining it on a Riemann surface. In fact, it is a function on an elliptic curve
E = C/Λ,Λ = Zω1 ⊕Zω2. Riemann even generalized the notion of elliptic functions to a
larger class of functions on Riemann surfaces called abelian functions. Like the case of
elliptic functions, they are inversion to abelian integrals which are of the form

∫
R(t,β)dt

where F(t,β) = 0, R is rational and F is irreducible polynomial in β. In modern language,
we can interpret it as the map Σ→ J(Σ), p 7→

∫ p

p0
ω, p0 is a fixed point.

Consider an elliptic curve E : y2 = x3 + px + q and ω = dx
y so we are indeed computing

elliptic integrals. However, the integral is not so well-defined since integrating different
paths between p0 and p might result in different values. However, it is well-defined mod-
ulo the integration around a loop γ passing through both p0 and p, i.e.

∫
γ
ω called a period

of the elliptic curve which depends only on the homology class of the cycle [γ] ∈H1(E,Z).
Hence the “elliptic integrals” is a map from E to C/Λ complex number modulo the period
lattice Λ = {

∫
γ
ω|γ ∈H1(E,Z)}, it turns out to be an isomorphism.

Moreover, from a lattice Λ we can construct the inverse isomorphism by using the
“universal” elliptic function - Weierstrass ℘ function and Eisenstein series:

℘(z;Λ) =
1
z2

+
∑

ω∈Λ/{0}

(
1

(z −ω)2
− 1
ω2

)
, Gk(Λ) =

∑
ω∈Λ/{0}

ω−2k

The map is as follows:

C/Λ→ E(Λ) : y2 = x3 − 60G2 − 140G3, z 7→ [℘(z) : ℘′(z) : 1],0 7→ [0 : 1 : 0]
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The Eisenstein series Gk(z) := Gk(Zz ⊕Z) is a modular form of weight 2k, they are “func-
tions” on the moduli space of elliptic curves Γ \H. The elliptic curves and modular forms
play an pivotal role as testing fields in Langlands program as we might see in the next
talk.

Let’s back to the discussion of integrable systems. The concepts and ideas from inte-
grable systems not only can help us solve actual physical problems, but also bring us the
the fertile land at the intersection of representation theory, geometry and analysis in the
mathematical world.

Example 1.3.7 (Calogero-Moser system).

Example 1.3.8 (Garnier system).

1.4 Modern aspects of classical integrable systems

1.4.1 Lax pair and r-matrix (unfinished)

From the previous “calculation” about the Euler top, we see the emergence of a new struc-
ture called Lax pairs. A Lax pair L,M consists of two matrices, functions on the phase
space of the system, such that the Hamiltonian evolution equations may be written as

L̇ = [M,L]

but unfortunately the conserved quantities, T rLn, either vanish or are functions of
J2, and therefore the Hamiltonian is not included in this set of conserved quantities To
cure this problem some modifications are needed. Let us introduce a diagonal matrix:
I = diag(I1,I2,I3) with Ik = 1

2 (Ii + Ij − Ik) We assume that all Ij are different and we set
L(λ) = I + λ−1J , M(λ) = λI + I Note that all the higher traces T r(L(λ)j) for j > 3 can be
recovered from these two. Another way of saying this is that: The coefficients of η in the
characteristic polynomial det(L(λ)− η1) are all conserved quantities: Elliptic curve!

1.4.2 Spectral curves

branched cover and genus of spectral curves

Example 1.4.1 (hyperelliptic curve).

digression: topological recursion

1.4.3 Riemann surfaces and integrability

Riemann-Hurwitz and Riemann-Roch
Jacobi variety and theta functions
Spectral curves, eigenbundles and integrability
cf [1]
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1.5 Hitchin systems as integrable systems

1.5.1 Moduli space of G-bundles

Grothendieck’s results on principal G-bundles on P1

BunG(X) as double quotient and arithmetic manifolds (Shimura varieties)

1.5.2 Higgs bundles and classical Hitchin integrable systems

stable bundles and Higgs fields
The classical Hitchin system for G = GLn,SLn, P GLn
proof: step 1: Hamiltonian reduction
step 2: Spectral curves

1.5.3 (Parabolic, twisted) Hitchin systems as universal integrable systems

Principal bundles with parabolic structures (Used in Hyperbolic band theory [7])
Classical Hitchin systems with parabolic structures

Example 1.5.1 (Garnier system).

Twisted classical Hitchin systems (Used in Hyperbolic band theory [7])

Example 1.5.2 (Twisted Garnier system).

Example 1.5.3 (Elliptic Calogero-Moser system). cf. [4]

Almost all classical integrable system can be constructed as Hitchin integrable systems
and variants.

2 Quantum mechanics and quantization

2.1 A first glance at quantization

2.1.1 Hochschild cohomology and deformation quantization

intro to quantum mechanics
deformation of associative algebras and Hochschild cohomology cf. [3]
deformation quantization of Possion manifolds and formality (homotopy transfer) cf. [8]

2.1.2 Quantum moment map and quantum Hamiltonian reduction

cf. [3]
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2.2 Hyperbolic band theory and Higgs bundles

2.2.1 band theory and eigenbundles

2.2.2 Higgs bundles as crystal moduli of hyperbolic band theory

Example 2.2.1 (hyperelliptic curve and parabolic structure).

2.2.3 Higgs bundles as complex momenta

2.2.4 Boundary-bulk correpsondence
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Part III

Langlands program through the lens of
quantization and Hitchin fibration

1 Quantization and representation theory

1.1 Geometric quantization and theta correpsondence

1.1.1 Heisenberg group and Weil representation

Harmonic oscillator and its quantization
Heisenberg group, Schrodinger representation, Stone-von Neumann theorem
Symplectic groups, Weil representation and polarization
Spin groups and metaplectic groups: spin vs oscillator
cf. [10]

1.1.2 Geometric quantization of symplectic manifolds

polarization and geometric quantization
Hamiltonian reduction commute with quantization (used in relative Langlands)

Example 1.1.1 (Quantum GIT conjecture). cf. [9]

1.1.3 Howe duality and theta correspondence

representation of symmetric groups and Howe duality
Weil representation and theta correspondence

1.2 Deformation quantization and quantum integrable system

1.2.1 Quantization of classical integrable system

Quantum Hamiltonian reduction

1.2.2 Quantization of Garnier model: Gaudin model

Bethe ansatz and sugawara construction
opers and twisted differential operators

1.2.3 quantization of Hitchin integrable system

higher rank Lie algebra and Feigin–Frenkel theorem
Quantization of Hitchin system for SL2
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2 Langlands program, quantization and Higgs bundles

2.1 Automorphic forms, theta lifting and Langlands functoriality

2.1.1 Elliptic curves, modularity and global Langlands program

2.1.2 Theta lifting and functoriality

reductive dual pair and (global, local) theta correpsondence
Jacquet-Langlands correspondence
Trace formula
automorphic periods in terms of special values of L-function (used in relative Langlands)
cf. [6]

2.1.3 Interlude: theta correspondence, Siegel-Weil formula and BSD conjecture

Sum of two squares and Siegel-Weil formula
generalization of Gross-Zagier formula

2.2 Interlude: Hitchin fibration and fundamental lemma

2.2.1 stalization of trace formula

2.2.2 endoscopy

2.2.3 geometrization

2.3 Geometric Langlands program and Higgs bundles

BunG as double quotient and sheaf-function dictionary
Geometric Langlands duality as S-duality

2.4 Interlude: Quantum Langlands program, Quantum q-Langlands program
and analytic Langlands program

2.4.1 Quantum Langlands as generic twist of N=4 SYM

quantum affine algebra or Yangian: quantum spin chain and q-opers (Quantum q-langlands)

2.5 analytic Langlands through elliptic curves

cf. [5]
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3 Relative Langlands program and quantization

3.1 Hamiltonian G-varities, relative period and L-function

3.2 theta correspondence and hyperspherical variety

3.2.1 Whittaker induction commute with symplectic reduction

3.3 geometric quantization and deformation quantization of hyperspherical
variety

3.4 relative Langlands duality as dual hyperspherical variety

cf. [2]
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