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Abstract

This report examines Gothen’s article on surfaces and Higgs bundles, with a partic-
ular focus on the application of hyperbolic structures and surface group representations.
To facilitate understanding, I will first provide an overview of the necessary background
in hyperbolic geometry as a preliminary. The primary objective of this report is to
explore the relationship between the moduli space of surface group representations and
the moduli space of Higgs bundles on PSL(2,R). In this connection, the purpose of the
report is to derive the corresponding properties of PSL(2,R)-Higgs bundles.

1 Introduction

Focussing on the hyperbolic case we describe how to obtain all hyperbolic structures on a
given topological surface, and how to parametrise them. We will first provide an overview of
key concepts in hyperbolic geometry and surface group representations. Then we introduce
moduli spaces of some structures about surfaces and explore some of their properties. Finally
we introduce Higgs bundles and explain how they relate to hyperbolic surfaces. However,
prior to this, it is important to briefly restate the objective of our study.

R(Γg, PSL(2,R))
∼=←→M(X,PSL(2,R))

where R(Γg, PSL(2,R)) is a PSL(2,R)-representation moduli space, andM(X,PSL(2,R))
is a PSL(2,R)-Higgs bundle moduli space.

There are three complete plane geometries of constant curvature: spherical, Euclidean
and hyperbolic geometry. We explain how a closed oriented surface can carry a geometry
which locally looks like one of these.

We can analyze arc length and isometry groups within the Euclidean plane. The differ-
ential arc length, denoted ds, is given by

ds2 = dx2 + dy2.

If A represents an element of Isom(E2), A : E2 −→ E2 can be written

A : x 7→ Bx+ v, B ∈ O(2), v ∈ R2.
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Then, we can obtain a flat torus E2/Γ in the Euclidean plane through the action of a group
Γ = ⟨A,B⟩ ⊆ Isom(E2) (lattices in E2), where A and B are translations. We all know that
there is a universal covering map from flat torus E2/Γ to torus T2.

The Killing–Hopf theorem states that complete connected Riemannian manifolds of con-
stant curvature are isometric to a quotient of a sphere, Euclidean space, or hyperbolic space
by a group acting freely and properly discontinuously. These manifolds are called space
forms.

2 Preliminaries

2.1 Three typical models of hyperbolic space

I. Hyperboloid model

Hyperboloid model In = {x ∈ Rn+1 | ⟨x, x⟩ = −1, xn+1 > 0}, where ⟨x, y⟩ =
∑n

i=1 xiyi −
xn+1yn+1 is the Lorentzian scalar product.

We define the Lorentz group O(n, 1) as the group of linear isomorphisms f of Rn+1 that
preserve the Lorantzian scalar product, i.e., ⟨v, w⟩ = ⟨f(v), f(w)⟩ for any v, w ∈ Rn. Ele-
ments in O(n, 1) preserve In and form the subgroup O+(n, 1). We find Isom(I2) = O+(n, 1).

Figure 1: The hyperboloid with two sheets defined by the equation
⟨x, x⟩ = −1. The model In is the upper sheet.

II. Poincaré disc

Poincaré disc Dn = {x ∈ Rn | ∥x∥ < 1}.
The metric tensor on Dn is obviously not the Euclidean one of Rn, but instead is induced

by a particular diffeomorphism between In and Dn.
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Figure 2: The projection towards P = (0, . . . , 0,−1) induces a bijection
between the hyperboloid model In and the disc model Dn.

The projection p may be written as:

p(x1, . . . , xn+1) =
(x1, . . . , xn)

xn+1 + 1

and is indeed a diffeomorphism p : In → Dn that transports the metric tensor on In to some
metric tensor g on Dn.

By computation, we can obtain that the metric tensor g at x ∈ Dn is:

gx =

(
2

1− ∥x∥2

)2

· gEx

where gE is the Euclidean metric tensor on Dn ⊂ Rn.
We can obtain the geodesics of the Poincaré disc from the projection, as shown in the

figure.

Figure 3: Three lines that determine a hyperbolic triangle in the Poincaré
disc. The inner angles α, β, and γ coincide with the Euclidean ones, and

we have α + β + γ < π.
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III. Half-space model

Half-space model Hn = {(x1, . . . , xn) ∈ Rn | xn > 0}.
To generate the half-space model from the Poincaré disc, we require the following inver-

sion transformation.

Figure 4: The inversion trough a sphere of center O and radius r moves P to
P ′ 0 so that |OP | · |OP ′| = r2 (left). It transforms a k-sphere S (blue) into a
k-plane (green) if O ∈ S (center) or into a k-sphere (green) if O /∈ S (right).

The explicit form of the inversion: φ(x1, . . . , xn) =
(x1,...,xn)

∥x∥2 , which obtains the half-space
model from the Poincaré disc as follows.

Figure 5: The inversion along the sphere with center C = (0, . . . , 0,−1) and
radius

√
2 transforms the Poincaré disc Dn into the half-space model Hn.

Here n = 2.

By computation, we can obtain that the metric tensor g at x ∈ Hn is:

gx =
1

x2
n

· gE.
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Isom(Hn) ∼= Isom(Dn) ∼= Isom(In) ∼= O+(n, 1). Additionally, on the conformal models
Dn and Hn, the isometry group is generated by inversions along spheres and reflections along
Euclidean planes orthogonal to the boundary.

In the model H2 geodesics are open arcs of semi-circles orthogonal to the real axis R =
{y = 0} ⊂ C together with open half-lines orthogonal to R. Note that the hyperbolic plane
is complete, so these curves do in fact have infinite hyperbolic length.

2.2 Hyperbolic plane

Now we can consider the case when n = 2, in which the hyperbolic plane is the upper half-
plane H2 = {z = x + iy ∈ C | y > 0}. We can derive the arc length from the metric tensor
of H2, i.e.

ds2 =
dx2 + dy2

y2
.

With the hyperboloid model the isometry group Isom(Hn) is the matrix group O+(n, 1).
We now see that in dimensions n = 2 the group Isom+(Hn) is also isomorphic to some
familiar groups of 2 × 2 matrices. Next, consider the Möbius transformation.

Orientation preserving isometries can be represented by Möbius transformations

z 7→ A · z =
az + b

cz + d
,

where

A =

(
a b
c d

)
∈ SL(2,R)

is a real 2 × 2-matrix of determinant one. As examples we can take A =
(
1 ρ
0 1

)
which gives

a hyperbolic translation whose axis is the real axis in H2, and A =
(
cos θ − sin θ
sin θ cos θ

)
which gives

a hyperbolic rotation about i ∈ H2 by the angle 2θ.
Note that A and −A define the same Möbius transformation, so the group of orientation

preserving isometries is really the quotient group PSL(2,R) = SL(2,R)/{±I}.
A matrix ( a b

c d ) ∈ PSL(2,C) also determines a Möbius anti-transformation

z 7→ az̄ + b

cz̄ + d
.

For instance, the (biholomorphic) inversion sending H2 to D2 is

z 7→ z̄ + i

iz̄ + 1
.

Möbius transformations and anti-transformations form Conf(H2). Also, inversions along
circles and reflections along lines orthogonal to R generate Conf(H2). Hence, we have
Isom(H)2 = Conf(H)2. In particular, Isom+(Hn) = PSL(2,R).
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2.3 Hyperbolic surface

Let us review the classification of surfaces; any closed, connected, orientable surface is dif-
feomorphic to Sg for some g ≥ 0, where Sg = T# . . .#T︸ ︷︷ ︸

g

, tori T = S1 × S1.

We extend our investigation to a larger interesting class of surfaces. Let g, b, p > 0 be
three natural numbers. The surface of finite type Sg,b,p is the surface obtained from Sg by
removing the interior of b disjoint discs and p points. We say that Sg,b,p has genus g, has b
boundary components, and p punctures. Its Euler characteristic is

χ(Sg,b,p) = 2− 2g − b− p.

Figure 6: The finite type surface Sg,b,p.

We now wish to perform geometrization, which involves equipping Sg,b,p with a metric,
particularly a hyperbolic one for genus g ≥ 2.

We now construct hyperbolic structures on all the surfaces Sg of genus g ≥ 2, and more
generally on all the surfaces Sg,b,p of negative Euler characteristic. We start with a simple
block, the pair-of-pants S0,3, with Euler characteristic -1.

Given three real numbers a, b, c > 0 there is (up to isometries) a unique complete finite-
volume hyperbolic pair-of-pants with geodesic boundary, with boundary curves of length a,
b, and c.

Figure 7: The last three surfaces may be considered as some degenerated
hyperbolic pairs-of-pants where one or more boundary lengths a, b, or c are
zero, and we get cusps instead of geodesic boundary components there.
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We can construct the desired pair of pants by gluing specific hyperbolic hexagons, with
the operation as follows:

Figure 8: A right-angled hexagon with alternate sides of length
a, b and c (left) and its construction (right).

Figure 9: By gluing two identical right-angled hexagons along their
black sides we get a hyperbolic pair-of-pants with geodesic boundary.

Two manifolds with hyperbolic structures can be glued along their boundaries, which
serve as geodesics, to form a new manifold that naturally inherits a hyperbolic structure.
This demonstrates that any pair-of-pants can be endowed with a hyperbolic structure.

The pairs-of-pants can be used as building blocks to construct topologically all finite
type surfaces with χ < 0. If χ(Sg,b,p) < 0 then Sg,b,p decomposes topologically into −χ(Sg,b,p)
(possibly degenerate) pairs-of-pants, and Sg,b,p admits a complete hyperbolic metric with b
geodesic boundary components of arbitrary length.

Additionally, we can also geometrise the few orientable surfaces with χ > 0, but since
there are no cusps in the elliptic and flat geometries we do not consider surfaces with punc-
tures. The compact orientable surfaces with χ > 0 are the sphere and the disc, and they
all have an elliptic metric with geodesic boundary. Those with χ = 0 are the torus and the
annulus, and they admit flat metrics with geodesic boundary.
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Figure 10: Every surface of finite type with χ < 0 decomposes into
pair-of-pants. We show here a decomposition of S3.

2.4 Surface group representations

As we shall see, a closed orientable topological surface of genus g can be given a hyperbolic
structure for any g ≥ 2. We can emulate the construction of a flat torus to create a hyperbolic
2-torus. Geometrically, it can be generated from a hyperbolic octagon with equal side lengths
that are to be glued together. The sum of the interior angles should be 2π.1

Figure 11: Genus 2 surface from an octagon.

In order to write the surface as H2/Γ for a suitable subgroup Γ ⊂ SL(2,R) we take
hyperbolic translations Ai and Bi in Isom(H2) giving the required identifications, and let
Γ be the group generated by these translations. The octagon then becomes a fundamental
domain for the action of Γ. The condition that the interior angles add up to 2π is equivalent
to the identity

[A1, B1][A2, B2] = I

in SL(2,R). In general, we let Γg be the abstract group

Γg = ⟨a1, b1, . . . , ag, bg |
g∏

i=1

[ai, bi] = 1⟩.

1In hyperbolic geometry, the sum of the interior angles equals (n− 2)π −Area.
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This group is known as a surface group, which can be identified with the fundamental group
of a topological surface of genus g.

In order to study all such subgroups we consider representations ρ : Γg → SL(2,R). We
say that ρ is Fuchsian if it is injective and its image is discrete, i.e., consists of isolated
points.2 When ρ is Fuchsian it can be proved that the action of Γg on H2 is properly
discontinuous. Hence the orbit space

Sρ := H2/ρ(Γg),

is a nice hyperbolic surface of genus g with charts coming from H2. Conversely, the Killing–
Hopf Theorem again tells us that any closed orientable hyperbolic surface is of this form.

However, it is certainly not true that any representation ρ : Γg → SL(2,R) defines a
closed hyperbolic surface. For example, the trivial representation clearly does not. This
leaves us with the following
Question: Let ρ : Γg → SL(2,R) be a representation. How can we tell if ρ defines a closed
hyperbolic surface?

2.5 Topology and algebra of SL(2,R)
In order to answer the question we shall define an invariant of representations ρ : Γ →
SL(2,R). For that we shall need to understand how the topology and algebra of SL(2,R)
interact. In fact SL(2,R) can be identified topologically with the product of a circle and a
plane, using polar decomposition of matrices.

The subgroup SO(2) ⊆ SL(2,R) of rotation matrices E(θ) =

(
cos θ − sin θ
sin θ cos θ

)
can be

identified with a circle.
The map E : R→ SO(2), θ 7→ E(θ) wraps the real line around the circle, and it satisfies

E(0) = I and E(θ1 + θ2) = E(θ1)E(θ2). In other words, E is a group homomorphism from
the additive group R→ SO(2).

Now, thinking of SO(2) inside SL(2,R), we want to extend this picture and find a group

S̃L(2,R) containing R, with a surjective group homomorphism p : S̃L(2,R) → SL(2,R)
which restricts to E : R→ SO(2), i.e., making the diagram

R −−−→ S̃L(2,R)yE

yp

SO(2) −−−→ SL(2,R)

commutative (the horisontal maps are inclusions). In fact it follows from general theory that
such a group exists and is essentially unique; it is known as the universal covering group of

2Recall that topological notions make sense viewing SL(2,R) ⊆ R4. In fact the Implicit Function Theorem
applied to this equation shows that SL(2,R) is a 3-dimensional Lie group, meaning that it can be covered
by local coordinate systems in 3-space and that the group operations are differentiable in these coordinates.
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SL(2,R). We shall explain how it can be constructed explicitly, using the action of SL(2,R)
on the hyperbolic plane H2.

So let A =

(
a b
c d

)
∈ SL(2,R). Write

j(A, z) = cz + d

for the denominator of A · z. Note that

j(E(θ), i) = i sin θ + cos θ = eiθ,

which indicates that this function can used to keep track of the phase θ. For each fixed A,
we can consider the holomorphic function

H2 → C \ {0}
z 7→ j(A, z) = cz + d.

Observe that cz + d ̸= 0 for z ∈ H. Therefore, since H2 is simply connected, there is
a continuous determination of the logarithm of j(A, z) = cz + d, i.e., a continuous map
ϕ : H2 → C such that

eϕ(z) = cz + d.

We want to make the point that such a ϕ can be explicitly calculated: simply choose a value
θ for the argument arg(ci+ d), write ci+ d = reiθ and let ϕ(i) = log(r) + iθ. Then

ϕ(z)− ϕ(i) =

∫
γ

dz

z
=

∫ 1

0

c(z − i)dt

c(i+ t(z − i)) + d

(here γ parametrises the segment joining ci + d to cz + d). Note that ϕ is not unique, but
it is uniquely determined by the choice of ϕ(i). Thus any two determinations ϕ differ by an
integer multiple of 2πi.

Now define S̃L(2,R) as the set of pairs (A, ϕ), where A ∈ SL(2,R) and ϕ : H2 → C is any

continuous determination of the logarithm of j(A, z). The product on S̃L(2,R) is defined by

(A1, ϕ1) · (A2, ϕ2) = (A1A2, ϕ̃),

where
ϕ̃(z) := ϕ1(A2 · z) + ϕ2(z).

It is an easy calculation to check that

j(A1A2, z) = j(A1, A2 · z)j(A2, z)

which implies that indeed

eϕ̃(z) = j(A1A2, z)
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as required. It is not hard to check that this defines a group structure on S̃L(2,R). For
example, for A = I, the identity matrix, we can take ϕ(z) = 0 and (A, 0) is the neutral
element. Moreover, (A, ϕ)−1 = (A−1, ϕ̃), where

ϕ̃(z) = −ϕ(A−1 · z). (2.1)

The projection p : S̃L(2,R) → SL(2,R) is of course just (A, ϕ) 7→ A. The inclusion

R ↪→ S̃L(2,R) is given by θ 7→ (E(θ), ϕθ), where ϕθ is the determination of log(j(E(θ), z))
which satisfies ϕθ(i) = iθ (recall that j(E(θ), i) = eiθ).

Clearly p(A, ϕ) = I if and only if A = I. Moreover, j(I, z) = 1, so ϕ is a determination
of the logarithm of the constant function z 7→ 1 ∈ C, i.e., it is a constant ϕ ∈ πZ ⊂ R.

Thus, the kernel of p : S̃L(2,R)→ SL(2,R) consists of pairs (I, ϕ), where I is the identity
matrix and ϕ is a constant function taking values in 2πZ ⊂ R.

2.6 The Toledo Invariant

Let ρ : Γ→ SL(2,R) be a representation. We shall associate an integer invariant to ρ. This
invariant is known as the Toledo invariant. Write

Ai = ρ(ai), Bi = ρ(bi)

for i = 1, . . . , g. Choose lifts Ãi and B̃i in S̃L(2,R) such that p(Ãi) = Ai and p(B̃i) = Bi,
and define the Toledo invariant of ρ to be

τ(ρ) =
1

π

g∏
i=1

[Ãi, B̃i].

In view of the relation defining Γg, the product
∏g

i=1[Ãi, B̃i] is in the kernel of p. Hence, the
Toledo invariant is an even integer.3

A celebrated inequality due to Milnor states that

|τ(ρ)| ≤ 2g − 2

for every representation ρ : Γg → SL(2,R). The following beautiful result shows that repre-
sentations with maximal Toledo invariant (known as maximal representations) have a special
geometric significance.

ρ : Γg → SL(2,R) is Fuchsian⇔ |τ(ρ)| = 2g − 2,

which is a consequence of the Goldman’s theorem.
One might wonder about the significance of the sign of the Toledo invariant. If we

conjugate a representation ρ by the outer automorphism of SL(2,R) given by conjugation
by a reflection we obtain a representation ρ̄ with τ(ρ̄) = −τ(ρ). In fact, the hyperbolic
surface Sρ̄ is obtained from Sρ by a change of orientation, i.e., by composing all charts with
a reflection in H2.

3Odd Toledo invariants arise from representations ρ : Γg → PSL(2,R) which do not lift to SL(2,R).
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3 Main result

3.1 The moduli space of representations

Let us now take a global view and consider all representations of Γg in SL(2,R) simultane-
ously. It is natural to consider ρ1 ∼ ρ2 if they differ by overall conjugation by an element
of SL(2,R), corresponding to a change of basis in R2. It also turns out that two hyperbolic
structures on the same topological surface are isometric by an isometry which can be con-
tinuously deformed to the identity if and only if the corresponding Fuchsian representations
are equivalent in this sense.

Thus the moduli space of representations is defined to be the orbit space

R(Γg, SL(2,R)) = Hom(Γg, SL(2,R))/SL(2,R)

under the conjugation action.
A homomorphism ρ : Γg → SL(2,R) is determined by 2g matrices

Ai = ρ(ai), Bi = ρ(bi), i = 1, . . . , g

satisfying the single relation
∏
[Ai, Bi] = I. Hence Hom(Γg, SL(2,R)) can be identified with

the subspace of R6g cut out by the 3 scalar equations given by
∏
[Ai, Bi] = I. It follows that

it is a variety of dimension 6g−3, which is smooth at the locus of irreducible representations.
The conjugation action by SL(2,R) reduces the dimension by 3, and so the moduli space
has dimension

dimR(Γg, SL(2,R)) = 6g − 6.

The Toledo invariant separates the moduli space into subspaces

Rd ⊆ R(Γg, SL(2,R)) =
⊔

d=τ(ρ)

Rd

corresponding to representations with invariant d. Goldman showed that the Rd are in fact
connected components of the moduli space, except in the maximal case |d| = 2g−2. It turns
out that R2g−2 has 22g connected components. However, these components get identified
after projecting onto

R(Γg, PSL(2,R)) =
⊔

d=τ(ρ)

RP
d ,

which thus has just one connected component with Toledo invariant 2g− 2. This is not sur-
prising because, by Goldman’s Theorem, the subspace R2g−2 is exactly the locus of Fuchsian
representations and, moreover, any two Fuchsian representations into SL(2,R) define the
same hyperbolic surface if and only if they coincide after projecting to PSL(2,R). Accord-
ingly, the corresponding connected component T = RP

2g−2 ⊆ R(Γg, PSL(2,R)) is known as
the Fuchsian locus.

As we have seen, Fuchsian locus parametrises all hyperbolic structures on the topological
surface Sg up to a natural equivalence. It is a classical result that the space of such hyperbolic
structures can be identified with R6g−6.
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3.2 Riemann surfaces and Teichmüller space

If we have a hyperbolic surface Sg
∼= H2/Γ for a Fuchsian representation of Γ, then the

local coordinates in H2 give Sg the structure of a Riemann surface.4 Generally, hyperbolic
surfaces possess a natural Riemann surface structure. We write Xρ for the Riemann surface
constructed from a Fuchsian representation ρ in this way.

From another perspective, the Uniformisation Theorem asserts that any Riemann surface
can be represented as a hyperbolic surface. This means the space of all Riemann surfaces
with the same underlying topological surface of genus g can be identified with the Fuchsian
locus T , which is known as Teichmüller space

Teich(Sg) = {deformation of complex structure on Xρ}/ ∼biholomorphic

= {hyperbolic structure on Sg}/ ∼isotopic .

We have seen that Teichmüller space is a (6g − 6)-dimensional connected space. It is a
classical result that Teichmüller space is homeomorphic to R6g−6.5

3.3 Higgs bundles

A PSL(2,R)-Higgs bundle on X consists of three pieces of data

(L, β, γ)

where, L→ X is a holomorphic line bundle, and β ∈ H0(X;K⊗L) and γ ∈ H0(X;K⊗L∗)
can be seen as holomorphic differentials which take values in the line bundles L and L∗,
respectively.

In a manner analogous to the conjugation action on representations, there is a natural
notion of isomorphism of Higgs bundles, and the set of isomorphism classes of PSL(2,R)-
Higgs bundles forms the moduli space M(X,PSL(2,R)). It is a complex algebraic variety
of complex dimension 3g − 3. We note that in order to get a reasonable moduli space it is
necessary to restrict to so-called semistable Higgs bundles. This is analogous to the way in
which one restricts to semisimple representations in the moduli space of representations.6

There is a natural field arising from non-Abelian Hodge theory, the study of the corre-
sponding moduli spaces of these objects. From Simpson’s work on the construction of the
moduli spaces, we have the following four moduli spaces:

• Betti moduli space MB(X, r): the moduli space of rank r representations π1(X)→
GL(r,C);

• de Rham moduli space MdR(X, r): the moduli space of rank r flat bundles over X;

4Indeed the changes of coordinates are Möbius transformations of H2, which are certainly holomorphic.
5Fenchel-Nielsen coordinates identify Teich (Sg) with R6g−6, more precisely with R3g−3

>0 × R3g−3.
6Similarly, there is a connection between Xρ and Sg.

13



• Dolbeault moduli space MDol(X, r): the moduli space of semistable rank r Higgs
bundles over X with vanishing Chern classes;

• Hodge moduli space MHod(X, r): the moduli space of semistable rank r λ-flat bun-
dles over X with vanishing Chern classes.

The study of these moduli spaces arising from non-Abelian Hodge theory shows that they
are also related. More precisely, the Riemann-Hilbert correspondence implies that MB(X, r)
and MdR(X, r) are analytic isomorphic. Moreover, the Hodge moduli space MHod(X, r) has
a fibration over C such that the fibers over 0 and 1 are exactly MDol(X, r) and MdR(X, r),
respectively. The underlying topological spaces of MDol(X, r) and MdR(X, r) are homeomor-
phic, and are C∞ isomorphic over the stable points.

The Non-abelian Hodge Theorem for this situation states that there is a real analytic
isomorphism

R(Γg, PSL(2,R)) ∼=M(X,PSL(2,R))

For fixed d we denote by Md the subspace of PSL(2,R)-Higgs bundles (L, β, γ) with
deg(L) = d. Then we have RP

d
∼=Md under the non-abelian Hodge Theorem. In particular,

the Fuchsian locus T corresponds toM2g−2. Thus,

M(X,PSL(2,R)) =
⊔

d=deg(L)

Md.

3.4 Hitchin’s parametrisation of Fuchsian locus

Under the non-abelian Hodge isomorphism the imageM2g−2(X,PSL(2,R)) of Ψ corresponds
to the Fuchsian locus RP

2g−2 of R(Γg, PSL(2,R)). Thus, in particular, Hitchin obtains a
parametrisation of Teichmüller space by quadratic differentials.

A particular class of PSL(2,R)-Higgs bundles can be obtained by taking L = K. Then
γ is a section of the line bundle K ⊗ K∗ which is naturally isomorphic to the trivial line
bundle on X. In other words, γ is simply a holomorphic function on X, so we can set γ = 1
(the constant function). Moreover, β is a section of K2 = K ⊗ K. In other words it is a
quadratic differential, so it can locally be written as β(z) = b(z)(dz)2, where b(z) satisfies an
appropriate transformation rule under changes of coordinates. The vector space H0(X,K2)
of quadratic differentials on X has complex dimension 3g− 3 which equals the dimension of
the moduli spaceM(X,PSL(2,R)). This construction defines a map

Ψ: H0(X,K2)→M(X,PSL(2,R)),
β 7→ (K, β, 1).

The semistability condition alluded to earlier implies that all Higgs bundles inM2g−2 arise
in this way. Hence Ψ is an isomorphism onto its imageM2g−2.

From the non-abelian Hodge Theorem we already knew thatM2g−2
∼= T is a connected

component. But the Higgs bundle construction gives an alternative proof. Using gauge

14



theoretic methods Hitchin also shows thatM2g−2 parametrises all hyperbolic metrics on the
topological surface underlying X.

Hitchin generalised the construction of the map Ψ to a map

Ψ:
⊕
i

H0(X,Kdi)→M(X,G)

whose image is again a connected component of the moduli space M(X,G) of G-Higgs
bundles for any simple split real Lie group G, known as Hitchin component. The domain
of Ψ is a direct sum of spaces of higher holomorphic differentials on X; the integers di are
determined by the Lie group G.

Similar constructions of special connected components have later been given for Hermitian
groups G of non-compact tube type, such as SU(p, p). In this case the domain of the map
Ψ turns out to be a moduli spaceMK2(X,G′) of so-called K2-twisted G′-Higgs bundles, for
a certain real Lie group G′ associated to G, known as Cayley components.

4 Conclusion

Both Hitchin components and Cayley components are special because they are not (as all
other known components of the moduli space) detected by standard topological invariants
of the underlying bundles and the Higgs fields satisfy a certain non-degeneracy condition.

Recently both of these constructions have been unified and generalised. Conjecturally
the generalised Cayley components obtained by this construction account for all special con-
nected components of the moduli space and thus opens the door to a complete determination
of this important topological invariant.

One important piece of supporting evidence for this conjecture comes from the area of
Higher Teichmüller Theory. Higher Teichmüller theory has developed in parallel with the
Higgs bundle story just described, and there has been a rich cross-fertilisation of ideas be-
tween the two areas. Briefly, a higher Teichmüller space is a connected component of the
moduli space of representations, which consists exclusively of discrete and injective repre-
sentations, like the Fuchsian locus in the PSL(2,R)-case. It turns out that the generalised
Cayley components are indeed higher Teichmüller spaces, and it is expected that all higher
Teichmüller spaces are thus obtained.
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