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Notes for 2024 autumn seminar in geometry and
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1 Preliminaries

This part mainly follows Daniel Huybrechts’s Complex geometry: an introduc-
tion and Claire Voision’s Hodge theory and complex algebraic geometry I.

1.1 Complex analysis and complex geometry

1.2 Sheaf and cohomology

2 Definition of Higgs bundles

2.1 Definition

Let C be a compact Riemann surface, a Higgs bundles on C is a pair (E ,
Φ),where E is a holomorphic vector bundle on C and Φ is a section of End(E)⊗Ω1(C),that
is, an element in H0(C, End(E)⊗Ω1(C)).

3 More discussions about vector bundles

This part mainly refer to Moscow lecture 2: Algebraic curve: Towards moduli
space.

3.1 Degree of a vector bundle

3.1.1 Degree of holomorphic vector bundles

We had learned from algebraic curve course that for any meromorphic function
on a compact Riemann surface which is not constantly zero, the number of
its zeros counted with multiplicity minus the number of its poles counted with
multiplicity is always zero, independent of the choice of meromorphic function.

Using the language of vector bundle, we can describe the fact in this way:
any meromorphic section of the trivial (holomorphic) line bundle on a compact
Riemann surface has its zeros (counted with multiplicity) minus poles (counted
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with multiplicity) equal zero. Here a meromorphic section means a holomorphic
section of the holomorphic bundle restricted on the Whole Riemann surface with
finite points cut. Locally it is just a meromorphic function on an open set of
the Riemann surface, thus it has well defined zeros and poles.

Is there similar property for general holomorphic line bundles on a Riemann
surface? That is, for a given holomorphic line bundle and take any of its mero-
morphic section, whether it is true that the number of its zeros (counted with
multiplicity) and its poles (counted with multiplicity) is a constant independent
of the choice of meromorphic sections? This is true, since for any two meromor-
phic sections on one holomorphic line bundle, we can define their ratio which
is a meromorphic function f and then the difference of the constant counted
respectively by their own zeros and poles is the number of zeros of f (counted
with multiplicity) minus the number of poles of f (counted with multiplicity),
which is just zero.

This constant relies only on the Riemann surface and the holomorphic line
bundle. We call it the ”degree” of the holomorphic line bundle on the Riemann
surface. For holomorphic vector bundles of rank n (n ≥ 1), we also define its
degree to be the corresponding holomorphic line bundle of the skew symmetry
n forms on it.

3.1.2 Example: tautological bundle on CP1

CP 1 is the one dimension complex projective space and O(-1) is:

{ ( l, x ) ∈CP1 ×C2 :x is a point on line l}
here we take the view that CP 1 is all lines in C2through the origin.Then we

define a meromorphic section onO(−1) :

s: CP 1 →O(−1)

[z1, z2] → (1, z2/z1)

It has no zeros but a simple pole at [0,1] , so it has degree -1.

3.1.3 Degree of smooth or topological vector bundle

Consider a vector field V(x) in an open set U of Rn which has discrete zeros. Fix
a point x in U, one can take a closed ball B in U centered at x such that vector
field does not vanish anywhere in B-x. Then the restriction of V (x)/ |V (x)| on
∂B defines a continuous map from ∂B to a unit sphere in Rn. The mapping
degree of this map is stable when we choose smaller and smaller B. Therefore
we can define this ”eventual” degree to be the ”index” of the vector field V at
x.

Since this index is defined by local information of the vector field, and a
section of a rank n vector bundle over a n-dimensional manifold is locally in the
same situation as above, we can define the index of a section of a rank n vector
bundle over a n-dimensional manifold M at a point x in M.
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Hopf-Poincaré theorem states that, for a orientable closed manifold M of
dimension n and a rank n vector bundle on it, any section with discrete zeros
has the same sum of index on M. We define the sum as the degree of this vector
bundle.

Now consider a Riemann surface C, which is a one-dimensional complex
manifold, First we consider a smooth/topological rank 1 complex vector bundle
E on it. Let s be a smooth/continuous section of this bundle. Since C is a two-
dimensional manifold and E is a rank 2 vector bundle on it (over R), there is a
well defined degree of E in the above sense. For a rank n complex vector bundle
E’ on C, we define the degree of E’ to be the degree of the one-dimensional
complex vector bundle ∧nE’.

Note that the definition of degree of vector bundle over a compact Riemann
surface C is compatible since by local normal form a meromorphic section s of
a holomorphic vector bundle on C is locally a map z →zn, where n is the order
of s as well as the mapping degree between unit circles in C .Here we choose the
orientation compatible with the orientation of the Riemann surface and complex
plane.

3.2 Picard group and classification of line bundles

3.2.1 Divisors and Picard group

A divisor on a Compact Riemann surface is an integral valued function sup-
ported on a finite set. For a meromorphic function f on the Riemann surface,
we can define a divisor Div(f), which takes the value of the order of f at each
point. Divisors of this kind are called principal divisors. Two divisors are called
linear equivalent if they differ by a principal divisor.

It’s easily checked that the set of all divisors on a Riemann surface C forms
an abelian group under addition and the set of principal divisors forms a sub-
group. The quotient group is called the Picard group, denoted as Pic(C), of the
Riemann surface, whose elements are the linear equivalence class of divisors on
it.

For a divisor on a Riemann surface C, we define its degree to be the sum of
all nonzero values it takes. A principal divisor must have degree zero and hence
there is also a well defined concept of degree on any linear equivalence class,
that is, on any element in Picard group of the Riemann surface. This gives a
set-theoretic decomposition of Pic(C):

Pic(C)=...Pic−1(C)⊔Pic0(C)⊔Pic1(C)⊔...

where Pici(C) means the linear equivalence classes with degree i, and notice
that Pic0(C) is indeed a group. And for any d ∈Z,Picd(C) can be represented
as D+Pic0(C), where D is an arbitrary element in Picd(C).
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3.2.2 Divisors of line bundles

For a holomorphic line bundle on a compact Riemann surface C, any of its mero-
morphic sections gives a divisor on C, as in the case of a meromorphic function.
Since any two meromorphic sections of one holomorphic line bundle differ by a
factor of meromorphic, their corresponding divisors are linearly equivalent. So
we can associate to any holomorphic line bundle on C an element in Pic(C).

We can define a group structure on the set of all isomorphism classes of holo-
morphic line bundles on C to make the map to Pic(C) a group homomorphism.
Note these facts:
(i)tensor product of a pair of holomorphic line bundles gives a holomorphic line
bundle
(ii)this product is associative and commutative
(iii)the tensor product of trivial line bundle and any line bundle E is isomorphic
to E
(iv)the tensor product of any line bundle E and its dual bundle E* is isomorphic
to trivial line bundle
Moreover, (v)suppose si is a meromorphic section of line bundle Ei, (i=1, 2),
there is a meromorphic section s1⊗s2 of E1⊗E2 and Div(s1⊗s2) = Div( s1) +
Div(s2).
These facts imply a group structure on the set of isomorphism class of holomor-
phic line bundles on a Riemann C and a group homomorphism to Pic(C).

This homomorphism is injective. Suppose E is a line bundle on a compact
Riemann surface C mapping to identity in Pic(C). Take a meromorphic section s
on E and then we have a meromorphic function f on C such that Div(s)=Div(f).
Thus s/f is also a meromorphic section on E and Div(s/f)=0. This means that
s/f is a holomorphic and nowhere vanishing section of E, which provides E with
a global frame. Therefore E must be a trivial line bundle on C.

In fact, this homomorphism is also surjective. That is, for any linear equiv-
alence class of divisors on a compact Riemann surface C, we can construct a
holomorphic line bundle on C such that the meromorphic section divisors of it
coincides with the given linear equivalence class of divisors. (cf. theorem 8.1 of
Moscow lecture 2: Algebraic curves: Towards Moduli space)

In summary, there is a group isomorphism between the group of isomorphism
classes of line bundles on a compact Riemann surface C with tensor product and
its Picard group Pic(C). The group structure of Pic(C) and help us classify and
calculate the isomorphism classes of line bundles on C. (for example, we can
generate them if we know the line bundles corresponding to the generators of
Pic(C))

For example, Σ0=CP 1 is the Riemann sphere and any divisors on it with
degree zero is a principal divisor. So Pic(Σ0) is isomorphic with addition group
(Z,+). We have construct a line bundle on Σ0 in Example 1.1.1, whose degree
is -1. Thus it generate all isomorphism class of line bundles on Σ0 by tensoring
and taking dual. But for general Riemann surface of genus g ¿ 1, Pic0 is not
trivial.

For general compact Riemann surface C, we have a description of its Pi-
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card group Pic(C) using the Jacobian of C. We have discussed above that
Pic(C) is essentially Z×Pic0(C). And for Riemann surface of genus g, de-
noted as Σg, Pic0(Σg) is isomorphic with Jac0(Σg) which is isomorphic with
Cg/Z2g.Inparticular, weseethatΣ0=CP 1 is of genus 0 and its Picard group is
isomorphic with addition group (Z, +).

4 Moduli space of holomorphic vector bundles
and Higgs bundles on a Riemann surface

Now we are going to consider the classification problem of general holomorphic
vector bundles on a compact Riemann surface up to isomorphism. We will con-
struct a space that parametrizes the isomorphism classes, that is, their moduli
space. Then we will consider analogous problem of Higgs bundles on a Riemann
surface, which are holomorphic vector bundles with another more structure (a
field called Higgs field) attached.

This part mainly refer to the notes of Dr. John Benjamin McCarthy, Intro-
duction to Higgs Bundles.

4.1 Classification of smooth complex vector bundles

Consider a Riemann surface of genus g, denoted as Σg. Then up to smooth/topological
isomorphism, complex vector bundles on Σg is classified by its rank and degree.

This results follows from this theorem:

4.1.1 Theorem

Let E → M be a real vector bundle over a manifold. If rank E >dim M, there is
a real vector bundle E’ such that rank E’= dim M and E ∼= E′⊕1rankE−dimM

M ,
where 1 means trivial rank one real vector bundle on M.

Therefore, smoothly/topologically, a complex vector bundle E on a Riemann
surface C can be decomposed into the direct sum of a complex line bundle and
a set of trivial complex line bundles. The second component is determined by
rank E and the first component is determined by deg E.

4.2 Classification of holomorphic vector bundles

Since isomorphism in holomorphic sense implies isomorphism in smooth sense,
and the isomorphism in smooth sense is characterized by the rank and degree of
vector bundles, we focus on the following problem: how to classify holomorphic
vector bundles of given rank and degree over a fixed Riemann surface up to
isomorphism in holomorphic sense?

The answer to this question is no longer discrete as it was in the smooth
classification case. Instead, it is a huge moduli space, which we denote by N g

n,d.
Here n and d stands for the rank and degree of vector bundle and g is the genus
of the base Riemann surface.
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Although there are different complex structure of Riemann surfaces of genus
g, it turns out magically that N g

n,d only depends on g.

4.2.1 Exhausting all possible isomorphism class of holomorphic vec-
tor bundles of rank n and degree d over a Riemann surface of
genus g; Dolbeault operator

Now we are going to figure out, for a (in fact the only one up to isomorphism)
complex smooth vector bundle of rank n and degree d over a Riemann surface
of genus g, what are all possible structure of holomorphic vector bundles we can
equip to it.

Given any holomorphic vector bundle E over complex manifold X, there is a
differential operator on X that picks out holomorphic sections of E from the set
of smooth sections of E. Suppose in local chart, a smooth section can be written
as sU=Σsi ⊗ei, then Dolbeault operator can be defined locally as:

∂̄ϵsU=Σ∂̄(si) ⊗ei

Notes that this is well defined globally since E is a holomorphic vector bundle
and the result is a section in Ω0,1(X) ⊗Γ(X,E),or denoted as Ω0,1(E).A smooth
is in the kernel of this operator if and only if it is a holomorphic section of E. In
addition, for any smooth function f on X,∂̄ϵ(fs) = ∂̄(f)s+ f∂̄ϵ(s) and ∂̄ϵ

2 = 0.
These properties of a Dolbeault operator on a holomorphic vector bundle

motivates the definition of a general Dolbeault operator on a complex smooth
vector bundle on X:

Definition: a Dolbeault operator on a smooth complex vector bundle E
over a complex manifold X is a C-linear operator

∂̄ϵ : Γ(X,E) →Ω(X)0,1⊗Γ(X,E)

which satisfies following properties: for any smooth function f on X and
smooth section s of E, ∂̄ϵ(fs) = ∂̄(f)s+ f∂̄ϵ(s) and ∂̄ϵ

2 = 0.
By an application of Newlander-Nirenberg theorem, for a Dolbeault

operator ∂̄ϵ] on the smooth complex vector bundle E on complex manifold X,
there is a unique holomorphic structure on E such that ∂̄ϵ is the natural Dol-
beault operator associated to this holomorphic vector bundle, and the set of
holomorphic sections are the kernel of this operator.

Let Dol(E) denote the set of all Dolbeault operators defined on the fixed
smooth complex vector bundle on Riemann surface Σg. Then there is a bijection
between Dol(E) and the set of holomorphic structures on E. But we still need
to take a quotient to reduce to isomorphism class.

4.2.2 Quotient, classification up to isomorphism

For a complex smooth vector bundle E on Riemann surface Σg, we denote GC
its automorphism group, called the Gauge group of E. Gauge of E naturally
acts on Dol(E) by conjugation action. Two Dolbeault are called equivalent if
they in the same orbit under this action.
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Dolbeault operators in Dol(E) corresponding to isomorphic holomorphic
structures on E if and only if they are equivalent.

Dolbeault operators are like connections with only (0,1)-part. In particu-
lar, Dol(E) is an affine space modeled on the infinite dimensional vector space
Ω0,1(End(E)) = Ω0,1(Σg)⊗ Γ(Σg, E).

We can put a reasonable topology on this affine space Dol(E), then Dol(E)/GC

is a space which is in bijection with holomorphic structures on E up to isomor-
phism. But this space is bad-behaved. For example, it’s not Hausdorff.

4.2.3 Geometric Invariant Theory, GIT

4.2.4 Moduli space of holomorphic vector bundles

To get a well-behaved moduli space, we need to contract the range of holomor-
phic vector bundles we consider on E.

Definition: A holomorphic vector bundle E on Σg is called (semi-)stable, if
for any non-zero holomorphic proper sub-bundle F ⊂ E, we have deg F / rank
F <(≤) deg E / rank E.

We call deg F / rank F the slope of a vector bundle F, denoted as µ(F ).
We denote the set of all stable and semi-stable holomorphic vector bundles

in Dol(E) as Dol(E)s and Dol(E)ss.
Then geometric invariant theory tells us Dol(E)s/ GC is Hausdorff and mod-

ified quotient Dol(E)ss//GC is also Hausdorff.
Notes that when (n,d)=1, i.e. rank and degree are relatively prime, Dol(E)s

and Dol(E)ss coincide.
Definition: The moduli space of stable holomorphic vector bundles of rank

n and degree d over a Riemann surface Σg is Dol(E)s/ GC , denoted as N g
n,d.

About the structure of N g
n,d, we have the following theorems:

Theorem (Mumford, Narasimhan-Seshadri, Atiyah-Bott, Ramanan, oth-
ers..). When (n, d) = 1, N g

n,d is a non-singular, projective complex algebraic
variety, and a fine moduli space for the classification problem we are considering
(i.e. there is a universal bundle over N g

n,d ×Σg which restricts to each given
holomorphic vector bundle E on each slice {[E]} ×Σg).

Theorem (Narasimhan-Seshadri ’65, Donaldson ’82). The following three
spaces are isomorphic:

1. N g
n,d

2. Moduli space of projectively flat irreducible connections on the underlying
smooth bundle E →Σg

3. The character variety Homirr
d (π̂(Σg), U(n)))/U(n) classifying irreducible

projective unitary representations of the fundamental group of Σg (of a certain
type).

The equivalence (1) ⇐⇒ (3) was the original theorem of Narasimhan-
Seshadri, and uses algebraic geometry and representation theory. The equiv-
alence (2) ⇐⇒ (3) is given by taking the holonomy of the connection, and
in the other direction by constructing the associated bundle to the univer-
sal π1(Σg)−bundle over Σg given by its universal cover . The equivalence(1)
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⇐⇒ (2) was proven by Donaldson, who used gauge theory techniques.
It was proven by Goldman that the representation variety is symplectic, and

by Atiyah-Bott that the moduli space of flat connections is symplectic (this
structure is called the Atiyah-Bott symplectic form). These two symplectic
structures agree. Since N g

n,d is naturally a complex manifold, it turns out that
through the Narasimhan-Seshadri theorem it is a compact Kähler manifold (at
least when (n, d) = 1).

The dimension of moduli space is given by

dimRN g
n,d=2+2n2(g-1)

4.3 Higgs bundles

For the purpose of classifying Higgs bundles on a Riemann surface of genus g and
whose holomorphic vector bundles are of degree d and rank n using Dolbeault,
we need to rephrase the definition:

Definition: Σg is a Riemann surface of genus g, E is a smooth complex
vector bundle over Σg of degree d and rank n. Then a Higgs bundle over Σg

of degree d and rank n is a pair (∂̄ϵ,Φ), where ∂̄ϵ is a Dolbeault operator on E
and Φ is a holomorphic (with respect to ∂̄ϵ) section of Ω(Σg)

1⊗End(E), that is
∂̄ϵ(Φ) = 0.

We denote by B the set of all Higgs bundles on (Σg, E).

B={(∂̄ϵ,Φ) ∈ Dol(E)×Ω1,0(End(E)): ∂̄ϵ(Φ) = 0}

If everything is set up right, B is a infinite-dimensional orbifold and there
is an action of GC on B by conjugation on both Dolbeault operator and Higgs
field:

g(∂̄ϵ,Φ) = (g∂̄ϵg
−1, gΦg−1)

Similar to the case of holomorphic vector bundle, if we want to get well-
behaved moduli space, we need to consider stable and semi-stable Higgs bundle:

Definition: We call a Higgs bundle (E, Φ)(semi−)stable, if for any proper,
non-zero,Φ− invariant sub-bundle F of E, we have µ(F )<(≤)µ(E).

Definition: The moduli space of stable Higgs bundles of rank n and degree
d over a Riemann surface Σg is Bs/GC , which we denote by Mg

n,d. Where Bs is
the set of stable Higgs bundles in B.

For the structure ofMg
n,d, we have the theorem by Hitchin, Simpson, Donaldson-

Corlette:
Theorem: The following are isomorphic:
(1) Mg

n,d

(2) The moduli space of irreducible projectively flat connections on smooth
complex vector bundle E over Σg

(3) The character varietyHomirr
d (π̂(Σg), GL(n,C)))/GL(n,C) classifying com-

plex representations of the fundamental group (of a certain type).
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Hitchin proved (1) ⇐⇒ (2), in the case of n = 2, d = 1 (and fixed determi-
nant bundle). Work of Donaldson-Corlette on harmonic representations gives
(2) ⇐⇒ (3), and Carlos Simpson proved the rest of the theorem for any (n, d).

The dimension of Mg
n,d is dimR=4+4n2(g-1), which is twice the dimension

ofN g
n,d. This can be explained in the following way: given a stable vector bundle

E, standard moduli space voodoo tells you that the tangent space to N g
n,d at [E]

is given by cohomology group H1(Σg, End(E)). By Serre’s theorem we have:

T ∗
[E]N

g
n,d

∼=H1(Σg, End(E))
∗ ∼=H0(Σg, End(E)⊗Ω(Σg))

which is precisely the space of compatible Higgs fields for E. Namely, there
is an inclusion

T ∗N g
n,d ⊂Mg

n,d

4.3.1 Example

In the rank 1 case, there are no Higgs bundles that aren’t arising from stable
vector bundles (of course everything is stable), so there is an isomorphism

Mg
n,d

∼=T∗N g
n,d

∼=T∗Jacd(Σg) ∼= (Cg/Z2g×R2g)

In this case the complex structures and geometric structures on Mg
n,d are all

very explicit.
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