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1 Introduction

This is a brief note introducing Jacobian varieties of algebraic curves. Main references
are [Mil21], [XZ12] and chapter 12 of [MEK18]

2 Explanation for some notations

2.1 algebraic curve

All algebraic curves mentioned in this note except those in the last section refer to a
smooth proper curve over C, i.e., a compact Riemann surface.

2.2 Picard group

Unlike in most books and notes, we use Pic(C) to denote the group of Cartier divi-
sors(or just Weyl divisors because they are the same for algebraic curves) on C. And
we use Lic(C) to denote the group of principal divisors on C.

3 Abel-Jacobi map

3.1 Definition of Abel-Jacobi map

For n algebraic curve C with given point x0, we try to define a map ux0 from C to
the space of linear functionals on the space of holomorphic 1-forms on C by

ux0(x)(w) =

∫ x

x0

w
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for any holomorphic form w. However, this integral might not be well defined as
it depend on the path chosen. So we consider Λ to be the lattice generated by
all loops in C(or equivalently, H1(C,Z)). Then we can defines a holomorphic map
ux0 : C −→ Ω(C)∗/Λ.
We can extend this map to divisors on C by mapping

∑d
i=1 nipi to

∑d
i=1 ux0(pi).

Note that when we restrict the map on the divisors of degree 0 which is denoted by
Pic0(C), it is indepedent of the choice of x0.
We call Ω(C)∗/Λ the Jacobian variety of C and denote it by J(C) and we call the
map u : Pic0(C) −→ J(C) the Abei-Jacobi map.
There are some natural questions. First of all one knows J(C) is an commutative
group. One may ask whether Ω is nondegenerate, i.e. whether J(C) is a complex
torus? The answer is yes by De-Ram theory and a little hodge theory. One also
question the Kernel of u and whether u is surjective. The latter is called the Jacobi
inversion theorem.

3.2 the kernel of Abel Jacobian map

Theorem 3.1. The kernel of Abel-Jacobi map is exactly (C), the group of principal
divisors on C.
The proof of this theorem requires mainly techniques in complex analysis and Riemann
bilinear relations which will be introduced in the following talks of our seminor. So it
is not going to be included in this notes. People interested in this section may refer
to[MEK18].

3.3 Jacobi’s inversion problem

Theorem 3.2. The Abel-Jacobi map is surjective.

3.3.1 reduction of the problem

By Riemann-Roch, one see that for an algebraic curve C of genus g, any divisor
on C of degree ≥ g is linear equivalent to an effective divisor on C.So one has a
bijection between Pic0(C)/Li(C) and the effective divisors of degree g module linear
equivalence.
Now we try to establish the structure of an algebraic varietiy on effective divisors of
degree g.
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3.3.2 symmetric power of varieties

First we look at two easy examples, we define the nth symmetric power of A1 and P1.
The nth symmetric power of A1 is just isomorphic to An, defined through a ramified
covering of An to itself defined by mapping (x1, x2, ..., xn) to

(e1(x1, x2, ..., xn), e2(x1, x2, ..., xn), ..., en(x1, x2, ..., xn))

, where

ek(x1, x2, ..., xn) =
∑

1≤xi1
<xi2

<...<xik
≤n

k∏
j=1

xij

is the ith symmetric polynomial of x1, x2, ...,xn. In fact this established a homeo-
morphism of topological space between An/Sn and An.(Why? Hint: Consider the nth

symmetric power of P1 which is in fact Pn.)

Remark 3.3. In fact, the symmetric power of An is not as easy, for example, we
consider the 2th symmetric power of A2. We consider the morphism

ϕ : A4 −→ A5

(x1, x2, y1, y2) 7→ (x1 + x2, y1 + y2, x1x2, y1y2, x1y2 + x2y1)

.
One can show the image of ϕ is in fact a singular closed subvariety of A5 defined by
the ideal generated by t1t2 − t3 − t4 − t5 in C[t1, t2, t3, t4, t5].
However, for an algebraic curve, its dth symmetric product is an nonsingular projective
variety.

Definition 3.4. Now we define the dth symmetric power of any affine variety SpecA.
Consider the ring A⊗d. Consider the canonical action of Sd on A⊗d, there is an invari-
ant subring (A⊗d)Sd . Then we let the dth symmetric power of SpecA be Spec(A⊗d)Sd .
For an arbitrary variety V , we just patch the symmetric sum of affine opens of V
together to get V (d), which holds an morphism π : V d −→ V (d) which is a quotient
map of topology spaces and has the following universal property:
For any symmetric morphism ϕ : V d −→ T , ϕ factors through d with a unique
morphism γ such that ϕ = γ ◦ π.

Proposition 3.5. The dth symmetric product of an algebraic curve is nonsingular.
Sketch of proof: Consider the completion of local ring at any point and use Cohen’s
stucture theorem.
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Proposition 3.6. The dth symmetric product of an algebraic curve is projective.
Sketch of proof: Consider its homogeneous coordinate ring.

3.3.3 sketch of proof

First, we note that for an algebraic curve C of genus g, the effective divisors of degree
g has a the structure C(g), the gth symmetric power of C. Then through the Abel-
Jacobi map C(g) maps holomorphically to J(C). As both C(g) and J(C) are projective
varieties, by GAGA we know that any holomorphic map between them is algebraic.

We can even consider the differential of this map. To show the surjectivity of the
map, it suffices to show the surjectivity of differential map at some point. When g = 1
it is obvious, we only consider when g ≥ 2.

Let D =
∑g

1 pj be a effective divisor of degree g on C.We take the local coordinate
(z1, z2, ..., zg), at the point D of C(g). We take a basis ω1, ω2, ..., ωg of Ω(C), where
ωi = fijdzj in an neigborhood of pj and fij is holomorphic.

Then we know the Jacobian matrix of the map is (fij(pj))g×g. This matrix is
related to the Bill-Noether matrix.

We want to show the matrix (fij(pj))g×g is rank full at generic points of C(g). We
can consider the map Φ:

C −→ Pg−1

p 7→ (ω1(p) : ω2(p) : · · · : ωg(p))

since the canonical bundle is base point free. Since C is projective, the map Φ is
algebraic and the image of Φ is a closed subvariety of Pg−1. Also note that the image
of Φ can not be contained in any hyperplane of Pg−1 since ω1, ω2, ..., ωg are linearly
independent. Note that for p ∈ C, Φ(p) is contained in some hyperplane H, means
ω(p) = 0 for some ω ∈ Ω(C). Since any w ∈ Ω(C) is of degree 2g − 2, there is at
most 2g − 2 points whose image is contained in a given hyperplane. Therefore there
is at most

(
g+2g−3
2g−3

)
points in C(g) where every column of the Jacobian matrix is in the

same hyperplane. Note that the points such that the Jacobian matrix is not rank full
form a closed subscheme of C(g), and it is equppied with a quasi-finite morphism(in
fact finite because it is proper) to the variety representing the hyperplanes of P g−1,
which is isomorphic to P g−1 itself which is of dimension lower than that of C(g). So
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it is a subscheme of degree lower than that of C(g). So (fij(pj))g×g is rank full at
generic points of C(g).

Remark 3.7. In fact showing the surjectivity does not quite require the construction
of the structure as an algebraic variety for C(g), we can just consider the map from
Cg. However we can further show C(g) is birational equvalent to J(C). And further
more C(g) and J(C) are both moduli spaces of some moduli problems.

4 Jacobian varieties are projective varieties

Theorem 4.1. A complex torus E = V/Λ is a projective variety if and only if it has
a positive definite Hermitian form which takes interger values on Λ.

Theorem 4.2. The Jacobian of an algebraic curve is an projective variety.

Sketch of proof: Such a Hermitian form on Ω(C)∗ can be obtained from the intersec-
tion pairing:

H1(C,Z)×H1(C,Z) −→ Z

.

5 Algebraic definition of Jacobian varieties

Given any field k and an complete nonsingular curve C.
For any noetherian k-Scheme T , we consider C ×spec(k) T ,and the natural projection
q : C ×spec(k) T −→ T and p : C ×spec(k) T −→ C.
For a Cartier divisor D on C×spec(k)T , D is flat over T if and only if the intersection
divisor Dt = D.Ct is defined for all closed points t ∈ T . Moreover if T is connected,
then degDt is independent of t. (See HartshorneII.9 or AVs by Milne)
If the flatness condition above is satisfied, we say the divisors Dt|t ∈ T form an alge-
braic family of divisors of C parametrized by T .
For any k-Scheme T , let

Pic0(T ) = {L ∈ Pic(C ×spec(k) T )|degLt = 0 for all t ∈ T/q∗Pic(T )}.

In fact Pic0(T ) is a contravariant functor from the category of noetherian k-scheme
to sets. And it is representable.(see theorem 1.1[Mil21]) We define the scheme repre-
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senting this functor to be J(C).
Moreover, C(d) represents the functor DivdC :

T −→

{D|D is aneffective Cartier divisor on X ×Spec k T flat over T

and degDt = d for all t ∈ T}

(see theorem3.13[Mil21])
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