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Abstract

This is a note aimed to introduce differential operators on modular forms on a seminar

about modular forms. Since Eisenstein Series, which are significant examples of Modular

Forms, play an important role in this topic , we will give some knowledge about them.

Most of the content of the note comes from Zagier modular form.
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1 Something About Eisenstein Series

1.1 Two Natural Ways to Introduce the Eisenstein Series

There are two natural ways to introduce the Eisenstein series. For the first, we observe that the

characteristic transformation equation

f(
az + b

cz + d
) = (cz + d)kf(z) (1)

of a modular form can be written in the form f |kγ = f for γ ∈ Γ, where f |kγ = f : H → C is

defined by

(f |kg)(z) = (cz + d)−kf(
az + b

cz + d
) (z ∈ C, g =

a b

c d

 ∈ SL(2,R)) (2)

One checks easily that for fixed k ∈ Z, the map f 7→ (f |kg) defines an operation of the group

SL(2,R) (i.e., f |k(g1g2) = (f |kg1)|k(g2) for all g1, g2 ∈ SL(2,R)) on the vector space of

holomorphic functions in H having subexponential or polynomial growth. The spaceMk(Γ) of

holomorphic modular forms of weight k on a group Γ ⊂ SL(2,R) is then simply the subspace

of this vector space fixed by Γ.

If we have a linear action v 7→ v|g of a finite group G on a vector space V , then an ob-

vious way to construct a G-invariant vector in V is to start with v0 ∈ V and form the sum

v =
∑

g∈G v0|g. If the vector v0 is invariant under some subgroup G0 ⊂ G, then the vec-

tor v0|g depends only on the coset G0g ∈ G0\G and we can form instead the smaller sum

v =
∑

g∈G0\G v0|g, which again is G-invariant. In the context when G = Γ ⊂ SL(2,R) is a

Fuchsian group (acting by |k) and v0 a rational function, the modular forms obtained in this

way are called Poincaré series. An especially easy case is that when v0 is the constant func-

tion 1 and Γ0 = Γ∞, the stabilizer of the cusp at infinity. In this case the series is called an

Eisenstein series. Let us look at this series more carefully when Γ = Γ1. A matrix

a b

c d


∈ SL(2,R) sends ∞ to a/c, and hence belongs to the stabilizer of ∞ if and only if c = 0.

In Γ1 these are the matrices

1 n

0 1

 with n ∈ Z, i.e. the matrices T n. We can assume that

k is even (since there are no modular forms of odd weight on Γ1 and hence work with Γ1 =

PSL(2,Z), in which case the stabilizer Γ∞ is the infinite cyclic group generated by T. If we
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multiply an arbitrary matrixγ =

a b

c d

 on the left by

1 n

0 1

 , then the resulting matrix γ,

=

a+ nc b+ nd

c d

 has the same bottom row as γ. Conversely, if γ′ =

a′ b′

c d

 ∈ Γ1 has

the same bottom row as γ, then from(a’−a)d−(b’−b)c = det(γ) - det(γ′) = 0 and (c,d) = 1 we see

that a’ − a = nc, b’ − b = nd for some n ∈ Z, i.e., γ′ = T nγ. Since every coprime pair of integers

occurs as the bottom row of a matrix in SL(2,Z), these considerations give the formula

Ek(z) =
∑

γ∈Γ∞\Γ1

1|kγ =
∑

γ∈Γ∞\Γ1

1|kγ =
1

2

∑
c,d∈Z
(c,d)=1

1

(cz + d)k
(3)

for the Eisenstein series (the factor 1
2
arises because (c d) and (−c − d) give the same element of

Γ1\Γ1). It is easy to see that this sum is absolutely convergent for k> 2 (the number of pairs (c,

d) with N≤ |cz + d|<N+ 1 is the number of lattice points in an annulus of area π(N+1)2 − πN2

and hence is O(N), so the series is majorized by
∑∞

N=1 N
1−k), and this absolute convergence

guarantees the modularity (and, since it is locally uniform in z, also the holomorphy) of the

sum. The function Ek(z) is therefore a modular form of weight k for all even k ≥ 4. It is also

clear that it is non-zero, since for I(z) → ∞ all the terms in (3) except (c d) = (±1 0) tend

to 0, the convergence of the series being sufficiently uniform that their sum also goes to 0 , so

Ek(z) = 1 + o(1) 6= 0.

The second natural way of introducing the Eisenstein series comes from the interpretation

of modular forms by lattice. Remember that we can identify solutions of the transformation

equation (1) with functions Λ ⊂ C satisfying the homogeneity condition F (λΛ) = λ−kF (Λ)

under homotheties Λ 7→ λΛ. An obvious way to produce such a homogeneous function if the

series converges is to form the sumGk(Λ) =
1
2

∑
λ∈Λ\0 λ

−k of the (−k)th powers of the non-zero

elements of Λ n In terms of z ∈ H and its associated lattice Γz = Z.z + Z.1, this becomes

Gk(z) =
1

2

∑
m,n∈Z

(m,n) ̸=(0,0)

1

(mz + n)k
(4)

where the sum is again absolutely and locally uniformly convergent for k ≥ 2, guaranteeing

that Gk ∈ Mk(Γ1). The modularity can also be seen directly by noting that (Gk|kγ)(z) =∑
m,n(m

′z+ n′)−k where (m′z+ n′) = (m,n)γ runs over the non-zero vectors of Z2\(0, 0) as

(m,n) does.
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In fact, the two functions (3) and (4) are proportional, as is easily seen: any non-zero vector

(m,n) ∈ Z2 can be written uniquely as r(c, d) with r (the greatest common divisor of m and n)

a positive integer and c and d coprime integers, so

Gk(z) = ζ(k)Ek(z) (5)

where ζ(k) =
∑

r≥1
1
rk
.is the value at k of the Riemann zeta function. It may therefore seem

pointless to have introduced both definitions. But in fact, this is not the case. First of all, each

definition gives a distinct point of view and has advantages in certain settings which are en-

countered at later points in the theory: the Ek definition is better in contexts like the famous

Rankin-Selberg method where one integrates the product of the Eisenstein series with another

modular form over a fundamental domain, while the Gk definition is better for analytic calcu-

lations and for the Fourier development. Moreover, if one passes to other groups, then there

are σ Eisenstein series of each type, where σ is the number of cusps, and, although they span

the same vector space, they are not individually proportional. In fact, we will actually want to

introduce a third normalization

Gk(z) =
(k − 1)!

(2πi)k
Gk(z) (6)

because, as we will see below, it has Fourier coefficients which are rational numbers.

1.2 Fourier Expansions of Eisenstein Series

Recall that any modular form on Γ1 has a Fourier expansion of the form
∑∞

n=0 anq
n, where

q = e2πiz. The coefficients an often contain interesting arithmetic information, and it is this

that makes modular forms important for classical number theory. For the Eisenstein series,

normalized by (6), the coefficients are given by:

Proposition 1.1. The Fourier expansion of the Eisenstein series Gk(z)(keven, k ≥ 2) is

Gk(z) = −Bk

2k
+

∞∑
n=1

σk−1(n)q
n (7)

where Bk is the kth Bernoulli number and where σk−1(n) for n ∈ N denotes the sum of the

(k-1)st powers of the positive divisors of n. We recall that the Bernoulli numbers are defined by

4



the generating function
∑∞

k=0 Bkx
k/k! = x/(ex − 1)

Proof. A well known and easily proved identity of Euler states that

∑
n∈Z

1

z + n
=

π

tan πz
(z ∈ C\Z) (8)

where the sum on the left, which is not absolutely convergent, is to be interpreted as a Cauchy

principal value. The function on the right is periodic of period 1 and its Fourier expansion for

z ∈ H is given by π
tanπz

= π cosπz
sinπz

= πi e
πiz+e−πiz

eπiz−e−πiz = −πi1+q
1−q

= −2πi(1
2
+

∑∞
r=1 q

r), where

q = e2πiz. Substitute this into (8), differentiate k−1 times and divide by (−1)k−1(k − 1)! to get∑
n∈Z

1
(z+n)k

= (−1)k−1

(k−1)!
dk−1

dzk−1 (
π

tanπz
) = (−2πi)k

(k−1)!

∑∞
r=1 r

k−1qr(k ≥ 2, z ∈ H), an identity known

as Lipschitz’s formula. Now the Fourier expansion ofGk (k≥ 2 even) is obtained immediately

by splitting up the sum in (4) into the terms with m = 0 and those with m 6= 0:

Gk(z) =
1

2

∑
n∈Z
n ̸=0

1

nk
+

1

2

∑
m,n∈Z
m ̸=0

1

(mz + n)k
=

∞∑
n=1

1

nk
+

∞∑
m=1

∞∑
n=−∞

1

(mz + n)k

= ζ(k) +
(2πi)k

(k − 1)!

∞∑
m=1

∞∑
r=1

rk−1qmr

=
(2πi)k

(k − 1)!
(−Bk

2k
+

∞∑
n=1

σk−1(n)q
n),

(9)

where in the last line we have used Euler’s evaluation of ζ(k) (k≥ 0 even) in terms of Bernoulli

numbers. The result follows.

The first three examples of (1.1) are the expansions

G4(z) =
1

240
+ q + 9q2 + 28q3 + 73q4 + 126q5 + 252q6 + . . . ,

G6(z) = − 1

504
+ q + 33q2 + 244q3 + 1057q4 + . . . ,

G8(z) =
1

480
+ q + 129q2 + 2188q3 + . . . .
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The other two normalizations of these functions are given by

G4z =
16π4

3!
G4(z) =

π4

90
E4(z), E4(z) = 1 + 240q + 2160q2 + . . . ,

G6z =
64π6

5!
G6(z) =

π6

945
E6(z), E6(z) = 1− 504q − 16632q2 − . . . ,

G8z =
256π8

7!
G8(z) =

π8

9450
E8(z), E8(z) = 1 + 480q + 61920q2 + . . . .

Remark. We have discussed only Eisenstein series on the full modular group in detail, but there

are also various kinds of Eisenstein series for subgroups Γ ⊂ Γ1. We give one example. Recall

that a Dirichlet character modulo N ∈ N is a homomorphism χ : (Z/NZ)∗ → C∗, extended

to a map χ : Z → C (traditionally denoted by the same letter) by setting χ(n) equal to χ(n

modN) if (n,N) = 1 and to 0 otherwise. If χ is a non-trivial Dirichlet character and k a positive

integer with χ(1) = (1)k, then there is an Eisenstein series having the Fourier expansion

Gk,χ(z) = ck(χ) +
∞∑
n=1

(
∑
d|n

χ(d)dk−1)qn

which is a “modular form of weight k and characterχ onΓ0(N).”(This means thatGk,χ(
az+b
cz+d

) =

χ(a)(cz + d)kGk,χ(z) for any z ∈ H and any

a b

c d

 ∈ SL(2,Z) with c≡ 0(modN).) Here

ck(χ) ∈ Q is a suitable constant, given explicitly by ck(χ) = 1
2
L(1− k, χ), where L(s, χ) is the

analytic continuation of the Dirichlet series
∑∞

n=1 χ(n)n
−s.

The simplest example, for N = 4 and χ = χ−4 the Dirichlet character modulo 4 given by

χ−4(n) =


+1 if n ≡ 1 (mod4),

−1 if n ≡ 3 (mod4),

0 if n is even

and k=1, is the series

G1,χ−4(z) = c1(χ−4) +
∞∑
n=1

(
∑
d|n

χ−4(d))q
n =

1

4
+ q + q2 + q4 + 2q5 + q8 + . . . (10)

(The fact that L(0,χ−4) = 2c1(χ−4 = 1
2
) is equivalent via the functional equation of L(s, χ−4)

to Leibnitz’s famous formula: L(1,χ−4) = 1− 1
3
+ 1

5
− · · · = π

4
).
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1.3 The Eisenstein Series of Weight 2

In above discussion we restricted ourselves to the case when k≥ 2, since then the series (3)and

(4) are absolutely convergent and therefore define modular forms of weight k. But the final

formula (7) for the Fourier expansion of Gk(z) converges rapidly and defines a holomorphic

function of z also for k = 2, so in this weight we can simply define the Eisenstein series G2, G2

and E2 by equations (7), (6), and (5), respectively, i.e.,

G2(z) = − 1

24
+

∞∑
n=1

σ1(n)q
n = − 1

24
+ q + 3q2 + 4q3 + 7q4 + 6q5 + . . . ,

G2(z) = −4π2(G)2(z), E2(z) =
6

π2
G2(z) = 1− 24q − 72q2 − . . .

(11)

Moreover, the same proof as for (1.1) still shows that G2(z) is given by the expression (10), if

we agree to carry out the summation over n first and then over m:

G2(z) =
1

2

∑
n ̸=0

1

n2
+

1

2

∑
m ̸=0

∑
n∈Z

1

(mz + n)2
. (12)

The only difference is that, because of the non-absolute convergence of the double series, we

can no longer interchange the order of summation to get the modular transformation equation

G2(1/z) = z2G2(z). (The equation G2(z +1) = G2(z), of course, still holds just as for higher

weights.) Nevertheless, the function G2(z) and its multiples E2(z) and G2(z) do have some

modular properties and, as we will see later, these are important for many applications.

Proposition 1.2. For z ∈ H and

a b

c d

 ∈ SL(2,Z) we have

G2(
az + b

cz + d
) = (cz + d)2G2(z)− πic(cz + d). (13)

Proof. There are many ways to prove this. We sketch one, due to Hecke, since the method is

useful in many other situations. The series (4) for k = 2 does not converge absolutely, but it is

just at the edge of convergence, since
∑

m,n |mz+n| converges for any real number λ≥ 2. We

therefore modify the sum slightly by introducing

G2,ϵ(z) =
1

2

′∑
m,n

1

(mz + n)2|mz + n|2ϵ
(z ∈ H, ϵ > 0). (14)
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(Here
∑
’ means that the value (m, n) = (0, 0) is to be omitted from the summation.) The new

series converges absolutely and transforms byG2,ϵ
az+b
cz+d

= (cz+d)2|cz+d|2ϵG2,ϵ(z). We claim

that lim
ϵ→+0

G2,(z) exists and equals G2(z)
π
2y
, where y = I(z). It follows that each of the three

non-holomorphic functions

G∗
2(z) = G2(z)−

π

2y
, E∗

2(z) = E2(z)−
3

πy
, G∗

2(z) = G2(z)−
1

8πy
(15)

transforms like a modular form of weight 2, and from this one easily deduces the transformation

equation (2.1) and its analogues for E2 and G2. To prove the claim, we define a function Iϵ by

Iϵ(z) =

∫ ∞

−∞

dt

(z + t)2|z + t|2ϵ
(z ∈ H, ϵ > −1

2
). (16)

Then for ϵ > 0 we can write

G2,ϵ−
∞∑

m=1

Iϵ(mz) =
∞∑
n=1

1

n2+2ϵ

+
∞∑

m=1

∞∑
n=−∞

[
1

(mz + n)2|mz + n|2ϵ
−
∫ n+1

n

dt

(mz + t)2|mz + t|2ϵ
].

(17)

Both sums on the right converge absolutely and locally uniformly for ϵ > 1
2
(the second one

because the expression in square brackets is O(|mz + n|−3−2ϵ) by the mean-value theorem,

which tells us that f(t) − f(n) for any differentiable function f is bounded in n ≤ t ≤ n + 1

by maxn≤t≤n+1|f ′(u)|), so the limit of the expression on the right as ϵ → 0 exists and can be

obtained simply by putting ϵ = 0 in each term, where it reduces to G2(z) by (12). On the other

hand, for ϵ > −1
2
we have

Iϵ(x+ iy) =

∫ ∞

−∞

dt

(x+ t+ iy)2((x+ t)2 + y2)ϵ

=

∫ ∞

−∞

dt

(t+ iy)2(t2 + y2)ϵ
=

(I(ϵ)

y(1 + 2ϵ)
,

where (I(ϵ) =
∫∞
−∞ (t+ i)−2(t2 + 1)−ϵdt, so

∑∞
m=1 Iϵ(mz) = I(ϵ)ζ(1 + 2ϵ)/y1+2ϵ for ϵ > 0.

Finally, we have I(0) = 0 (obvious),

I ′(0) = −
∫ ∞

−∞

log(t2 + 1)

(t+ i)2
dt = (

1 + log(t2 + 1)

t+ i
− tan−1 t)|∞−∞ = −π
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and ζ(1 + 2ϵ) = 1
2ϵ
+O(1), so the product I(ϵ)ζ(1 + 2ϵ)/y1+2ϵ tends to −π/2y as ϵ → 0. The

claim follows.

Remark. The transformation equation (12) says that G2 is an example of what is called a

quasimodular form, while the functions G∗
2, E∗

2 and G∗
2 defined in (15) are so-called almost

holomorphic modular forms of weight 2.

2 Modular Forms and Differential Operators

The starting point for this section is the observation that the derivative of a modular form is

not modular, but nearly is. Specifically, if f is a modular form of weight k with the Fourier

expansion
∑∞

n=0 anq
n, then by differentiating (1) we see that the derivative

Df = f ′ :=
1

2πi

df

dz
= q

df

dq
=

∞∑
n=1

nanq
n (18)

(where the factor 2πi has been included in order to preserve the rationality properties of the

Fourier coefficients) satisfies

f ′(
az + b

cz + d
) = (cz + d)k+2f ′(z) +

k

2πi
c(cz + d)k+1f(z). (19)

If we had only the first term, then f’ would be a modular form of weight k+2. The presence of

the second term, far from being a problem, makes the theory much richer. To deal with it, we

will:

1) modify the differentiation operator so that it preserves modularity;

2) make combinations of derivatives of modular forms which are again modular;

3) relax the notion of modularity to include functions satisfying equations like (52);

4) differentiate with respect to t(z) rather than z itself, where t(z) is a modular function.

These four approaches are discussed in the four subsections in the textbook, we choose section

one, which is the most accessible to discuss on this seminar.
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2.1 Derivatives of Modular Forms

As already stated, the first approach is to introduce modifications of the operator D which do

preserve modularity. There are two ways to do this, one holomorphic and one not. We begin

with the holomorphic one. Comparing the transformation equation (19) with equations (11) and

, we find that for any modular form f ∈ Mk(Γ1) the function

Vf := f ′ − k

12
E2f, (20)

sometimes called theSerre derivative, belongs to Mk+2(Γ1). (We will often drop the subscript

k, since it must always be the weight of the form to which the operator is applied.) A first

consequence of this basic fact is the following. We introduce the ring M̃∗(Γ1) := M∗(Γ1)[E2] =

C[E2, E4, E6], called the ring of quasimodular forms on SL(2,Z). (An intrinsic definition of

the elements of this ring, and a definition for other groups Γ ⊂ G, will be given in the next

subsection in the textbook, not covered by this note unfortunately.) Then we have:

Proposition 2.1. The ring M̃∗(Γ1) closed under differentiation. Specifically, we have

E ′
2 =

E2
2 − E4

12
, E ′

4 =
E2E4 − E6

3
, E ′

6 =
E2E6 − E2

4

2
. (21)

Proof. ClearlyVE4 and VE6, being holomorphic modular forms of weight 6 and 8 on 1, re-

spectively, must be proportional to E6 and E2
4 , and by looking at the first terms in their Fourier

expansion we find that the factors are −1/3 and −1/2. Similarly, by differentiating (11) we find

the analogue of (20) for E2, namely that the function E ′
2 − 1

12
E2

2 belongs to M4(Γ). It must

thereforebe a multiple of E4, and by looking at the first term in the Fourier expansion one sees

that the factor is −1/12.

An immediate consequence of Proposition (2.1) is the following:

Proposition 2.2. Any modular form or quasi-modular form on 1 satisfies a non-linear third

order differential equation with constant coefficients.

Proof. Since the ring M̃∗(Γ1) has transcendence degree 3 and is closed under differentiation,

the four functions f, f’, f” and f”’ are algebraically dependent for any f ∈ M̃∗(Γ1).

We now turn to the second modification of the differentiation operator which preserves

modularity, this time, however, at the expense of sacrificing holomorphy. For f ∈ Mk(Γ) (we
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now no longer require that Γ be the full modular group Γ1) we define

∂kf(z) = f ′(z)− k

4πy
f(z), (22)

where y denotes the imaginary part of z. Clearly this is no longer holomorphic, but from the

calculation

1

γz
=

|cz + d|2

y
=

(cz + d)2

y
− 2ic(cz + d) (γ =

a b

c d

 ∈ SL(2,R)) (23)

and (19) one easily sees that it transforms like amodular form ofweight k+2, i.e., that (∂kf)|k+2γ =

∂kf for all γ ∈ Γ. Moreover, this remains true even if f is modular but not holomorphic, if we

interpret f’ as 1
2πi

∂f
∂z
. This means that we can apply ∂ = ∂k repeatedly to get non-holomorphic

modular forms ∂nf of weight k + 2n for all n≥ 0. (Here, as withVk, we can drop the subscript

k because ∂k will only be applied to forms of weight k; this is convenient because we can then

write ∂nf instead of the more correct ∂k+2n−2 . . . ∂k+2∂kf .) For example, for f ∈ Mk(Γ) we

find
∂2f = (

1

2πi

∂

∂z
− k + 2

4πy
)(f ′ − k

4πy
f)

= f ′′ − k

4πy
f ′ − k

16π2y2
f − k + 2

4πy
f ′ +

k(k + 2)

16π2y2
f

= f ′′ − k + 1

2πy
f ′ +

k(k + 1)

16π2y2
f

(24)

and more generally, as one sees by an easy induction,

∂nf =
n∑

r=0

(−1)n−r

(
n

r

)
(k + r)n−r

(4πy)n−r
Drf, (25)

The inversion of (25) is

Dnf =
n∑

r=0

(
n

r

)
(k + r)n−r

(4πy)n−r
∂rf (26)

and describes the decomposition of the holomorphic but non-modular form f (n) = Dnf into

non-holomorphic but modular pieces: the function yrn∂rf is multiplied by (cz+ d)k+n+r(cz+

d)nr when z is replaced by az+b
cz+d

with

a b

c d

 ∈ Γ

Formula (25) has a consequence which will be important in Singular Moduli. The usual

way to write down modular forms is via their Fourier expansions, i.e., as power series in the
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quantity q = e2πiz which is a local coordinate at infinity for the modular curve Γ\H. But since

modular forms are holomorphic functions in the upper half-plane, they also have Taylor series

expansions in the neighborhood of any point z = x + iy ∈ H. The “straight” Taylor series

expansion, giving f(z + ω) as a power series in w, converges only in the disk |ω| < y centered

at z and tangent to the real line, which is unnatural since the domain of holomorphy of f is

the whole upper half-plane, not just this disk. Instead, we should remember that we can map H

isomorphically to the unit disk, with z mapping to 0, by sending z’∈ H to ω = z′−z
z′−z

. The inverse

of this map is given by z′ = z−zω
1−ω

, and then if f is a modular form of weight k we should also

include the automorphy factor (1 − ω)k corresponding to this fractional linear transformation

(even though it belongs to PSL(2,C) and not Γ). The most natural way to study f near z is

therefore to expand(1 − ω)kf( z−zω
1−ω

)in powers of ω. The following proposition describes the

coefficients of this expansion in terms of the operator (27).

Proposition 2.3. Let f be a modular form of weight k and z = x+iy a point of H. Then

(1− ω)−kf(
z − zω

1− ω
) =

∞∑
n=0

∂nf(z)
(4πyω)n

n!
(|ω| < 1). (27)

Proof. From the usual Taylor expansion, we find

(1− ω)−kf(
z − zω

1− ω
) = (1− ω)−kf(z +

2iyω

1− ω
)

= (1− ω)−k

∞∑
r=0

Drf(z)

r!
(
−4πyω

1− ω
)r,

and now expanding (1− ω)−k−r by the binomial theorem and using (25)) we obtain (27).

Proposition (2.3) is useful because the expansion (27), after some renormalizing, often has

algebraic coefficients that contain interesting arithmetic information.
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