
1 The modular group

1.1 Definitions

Let SL2(R) be the group of matrices

(
a b
c d

)
, with real coefficients, such

that ad-bc = 1. We make SL2(R) act on C̃ = C ∪ {∞} in the following way:

if g =

(
a b
c d

)
∈ SL2(R), and if z ∈ C̃, we put gz = az+b

cz+d . Check that is a

group action indeed.

One checks Im(gz) = Im(z)
|cz+d|2 (1) This shows that H is stable under the

action of SL2(R). Note that the element −1 =

(
−1 0
0 −1

)
of SL2(R) acts

trivially on H. We can consider that it is the group PSL2(R) = SL2(R)/ {±1}
which operates, and this group acts faithfully.

Recall that SL2(Z) is the subgroup of SL2(R) and it is a discrete subgroup
of SL2(Z).
Definition 1. The group G = SL2(Z)/ {±1} is called the modular group;

it is the image of SL2(Z) in PSL2(R).

1.2 Fundamental domain in the modular group G

Recall that Aut(H) ∼= SL2(Z), where an automorphism of an open set is a
holomorphic bijection from the open set to itself. The goal of this section is to
determine the structure of G and how G acts on H.

Let S and T be the elements of G defined respectively by

(
0 −1
1 0

)
and(

1 1
0 1

)
, which are generators of G. One has :

Sz = −1/z Tz = z + 1 S2 = 1 (ST )3 = 1
On the other hand, let D be the subset of H formed of all points z such that

|z| ≥ 1 and |Re(z)| ≤ 1/2. We will show that D is a fundamental domain for
the action of G on H, where fundamental domain means D contains precisely
one point of every orbit of H under the action of G. More precisely:
Theorem 1. (1) For every z ∈ H, there exists g ∈ G such that gz ∈ D.
(2) Suppose that two distinct points z, z’ of D are congruent modulo G. Then,

Re(z) = ± 1
2 and z = z′ ± 1, or |z| = 1 and z′ = − 1

z .
(3) Let z ∈ D and let Gz = {g|g ∈ G, gz = z} the stabilizer of z in G. One

has Gz = 1 except following three cases:
z = i, in which case Gz is the group of order 2 generated by S;
z = ρ = e(2πi/3), in which case Gz is the group of order 3 generated by ST;
z = −ρ = e(πi/3), in which case Gz is the group of order 3 generated by TS;
Corollary. The canonical map D → H/G is surjective and its restriction to

the interior of D is injective.
Theorem 2. The group G is generated by S and T.
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proof of theorems 1 and 2. (1) Let G′ be the subgroup of G generated by S

and T. Consider Im(gz) = Im(z)
|cz+d|2 . Since c and d are integers, the number of

pairs (c, d) such that |cz+d| < r for some r is finite, so there exists g ∈ G′ such
that Im(gz) is maximum. Let Tngz has real part between ±1/2, then it belongs
to D. It suffices to see that |z′| ≥ 1, if not -1/z’ would have an imaginary part
strictly larger than Im(z′) , Contrdiction.

(2) Also consider Im(gz) = Im(z)
|cz+d|2 . We may assume Im(gz) ≥ Im(z), the

possible value of c belongs to {−1, 0, 1}.
It remains to prove G′ = G. Let z = gz0 for some z0 ∈ D◦, g ∈ G, there

exists g′ ∈ G′ such that gz ∈ D, so g′g = 1, G = G′.□
Actually, < S, T ;S2, (ST )3 > is a presentation of G.

2 Modular functions

2.1 Definitions

Definition 2. Let k be an integer. We say a function f is weakly modular
fo weight 2k if f is meromorphic on the half plane H and verifies the relation

f(z) = (cz + d)−2kf(az+b
cz+d ) for all

(
a b
c d

)
∈ SL2(Z) (2).

Let g be the image in G of

(
a b
c d

)
. We have d(gz)

dz = (cz+d)−2. The relation

can be written:
f(gz)
f(z) = (d(gz)dz )−k or f(gz)d(gz)k = f(z)dzk. (3)

It means that the ”differential form of weight k” f(z)dzk is invariant under
G.

Proposition 1. Let f be meromorphic on H. The function f is a weakly
modular function of weight 2k if and only if it satisfies following two relations:

f(z + 1) = f(z) (4)
f(−1/z) = z2kf(z) (5)

proof. If f is weakly modular, f satisfies the two relations is obvious.Conversely,
only need to prove (3) holds for g = S or T , since G is generated by S and T.□

Suppose the relation (4) is verified. We can let q = e2πiz, so f(z) = f̃(q). We
need to check if f̃ is well-defined, i.e. all possible value of e2πiz → z is z + n,
where n ∈ Z. f̃ is meromorphic in the dsik |q| < 1 with the origin removed,
since Im(z) > 0.

The equation limz→0 f̃(z) = limIm(z)→+∞ f(z) = limIm(z+)→+∞ f(z + 1)

allows followings. If f̃ extends to meromorphic at the origin, we say that f
is meromorphic at infinity. This means f̃ admits a Laurent expansion in a
neighbourhood of the origin f̃(q) =

∑+∞
−∞ anq

n, where the an are zero for n
small enough.
Definition 3. A weakly modular function is called modular if it is mero-

morphic at infinity. When f is holomorphic at infinity, we set f(∞) = f̃(0). This
is the value of f at infinity.
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Definition 4. A modular function is holomorphic everywhere (including
infinity) is called a modular form; if such a function is zero at infinity, it is
called a cusp form.
A modular form of weight 2k is thus given by a series

f(z) =
∑∞

0 anq
n =

∑∞
0 ane

2πinz (6)
which converges for |q| < 1 (i.e. for Im(z) > 0), and which verifies (5). It is

a cusp form if a0 = 0
Examples
1) If f and f ′ are modular forms of weight 2k and 2k’, the product ff ′ is

modular form of weight 2k + 2k′.
2) A cusp form of weight 12

q
∏∞

n=1(1− qn)24 = q − 24q2 + 252q3 − 1472q4 + ...

2.2 Lattice functions and modular functions

Recall what is a lattice in a real vector space V of finite dimension. It is a
subgroup Γ of V verifying one of the following equivalent conditions:
1) Γ is discrete and V/Γ is compact;
2) Γ is discrete and generates the R-vector space V ;
3) There exists an R-basis (e1, ..., en) of V which is a Z-basis of Γ (i.e. Γ =

⊕n
i=1Zei)
Let R be the set of lattices of C considered as an R-vector space. Let M be

the set of pairs(ω1, ω2) of elements of C∗ such that Im(ω1/ω2) > 0; to such a
pair we associate the lattice Γ(ω1, ω2) = Zω1 ⊕Zω2 with basis ω1, ω2. We thus
obtain a map M → R which is clearly surjective.

Let g =

(
a b
c d

)
∈ SL2(Z) and let (ω1, ω2)∈M. We put ω′

1 = aω1+bω2, ω
′
2 =

cω1 + dω2, which can be checked as a group action. It is clear that ω′
1, ω

′
2 is

the basis of Γ(ω1, ω2), since g ∈ SL2(Z). Moreover, if we set z = ω1/ω2 and
z′ = ω′

1/ω
′
2, we have z

′ = az+b
ca+d = gz. This shows that Im(z′) > 0, hence (ω′

1, ω
′
2)

belongs to M.
Proposition 2. For two elements of M to define the same lattice it is nec-

essary and sufficient that they are congruent modulo SL2(Z)
proof. The condition is sufficient has been shown above. Next we prove

it is necessary. Suppose that (ω′
1, ω

′
2) = g(ω1, ω2), we have g ∈ M2(Z), and

furthermore, det(g) = ±1, since the lattice are same. And if det(g) < 0, the
sign of Im(ω′

1/ω
′
2) would be opposite of Im(ω1/ω2).□

Hence, R ←→M/SL2(Z).
Consider C∗ acts on R and M by:

Γ→ λΓ (ω1, ω2)→ (λω1, λω2), λ ∈ C∗

which means the angle of (ω1, ω2) and the ratio of lengths are invariant.
M/C∗ ←− H by (ω1, ω2) 7→ z = ω1/ω2. So SL2(Z) acts on M is transformed
to G acts on H.

Proposition 3. The map (ω1, ω2) 7→ ω1/ω2 is a bijection of R/C∗ onto
H/G. (Thus, an element of H/G can be identified with alattice of C defined up
to a homothety)
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proof. Choose a element of R/C∗ whose image in M has the form (ω1, ω2) and
check. Conversely similar to above.□
Remark. Consider (ω1, ω2), g(ω1, ω2), λg(ω1, ω2) generates the same lattice

precisely. And Consider their images under the map in Proposition3., which are
in the same orbit by the group action G on H.
Let us pass now to modular functions. Let F be a function on R, with

complex numbers, and let k ∈ Z. We say that F is of weight 2k if F (λΓ) =
λ−2kF (Γ) (7) for all lattices Γ and all λ ∈ C∗. If we use (ω1, ω2) denote
Γ(ω1, ω2), F (λω1, λω2) = λ−2kF (ω1, ω2) (8). Moreover, F (ω1, ω2) is invari-
ant by the action of SL2(Z) on M . There exists a function f on H such that
F (ω1, ω2) = ω2

−2kf(ω1/ω2) (9). We see that f satisfies the identity (2).
Conversely, if f verifies (2), formula (9) associates to it a function F on R which
is of weight 2k.

2.3 Examples of modular functions; Eisenstein series

Lemma 1. Let Γ be a lattice in C. The series
∑′

γ∈Γ 1/|γ|
σ
is convergent

for σ > 2.
Let k be an integer > 1. Put Gk(Γ) =

∑′
γ∈Γ 1/γ

2k. It is converges abso-
lutely, and of weight 2k. It is called Eisenstein series of index k. Gk(ω1, ω2) =∑′

m,n 1/(mω1 + nω2)
2k
. By formula (9), we have Gk(z) =

∑′
m,n 1/(mz + n)

2k
.

Proposition 4. Let k be an integer > 1. The Eisenstein SERIES Gk(z)
is a modular form of weight 2k. We have Gk(∞) = 2ζ(2k). proof. Gk(z)
is a convergent series, so it is holomorphic on H. We only need to prove it
holomorphic at ∞ and find its value. Since it is converges absolutely, so we can
exchange integral and limit. limIm(z)→+∞ Gk(z) =

∑′
1/n2k = 2ζ(2k).□

Examples. The Eisenstein series of lowest weights are G2 and G3, which are
of weight 4 and 6. Let g2 = 60G2, g3 = 140G3. We have g2(∞) = 120ζ(4)
and g3(∞) = 280ζ(6). One find g2(∞) = 4

3π
4 and g3(∞) = 8

27π
6. If we put

∆ = g2
3 − 27g23 , we have ∆(∞) = 0; that is to say, ∆ is a cusp form of weight

12.
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