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1 Characteristic classes

”A characteristic class is a way of associating to each principal bundle of X a cohomology

class of X. The cohomology class measures the extent the bundle is ’twisted’ and whether

it possesses sections. Characteristic classes are global invariants that measure the deviation

of a local product structure from a global product structure. They are one of the unifying

geometric concepts in algebraic topology, differential geometry, and algebraic geometry.”

–Wikipedia

Definition 1.0.1. A characteristic class c of a vector bundle or a principal G-bundle is an

assignment to each bundle a class in the cohomology ring of the base space that is natural:

if f : N →M is a map, then c(f ∗E) = f ∗(c(E)) ∈ H∗(N), where E is a bundle on M .

1.1 The Stiefel-Whitney classes

Definition 1.1.1. The Stiefel-Whitney classes are characteristic classes for a real vector

bundle E → M (may not be orientable). For each i > 0 the ith Stiefel-Whitney class

wi(E) ∈ H i(M,Z/2). The total Chern class w(E) := w0(E) + w1(E) + · · · . The Stiefel-

Whitney class of M , wi(M), is defined to be wi(TM). Stiefel-Whitney classes satisfy the

following condition:

(1) w0(E) = 1.

(2) The Whitney sum formula: w(E ⊕ F ) = w(E)w(F ). Hence,

wk(E ⊕ F ) =
∑
i+j=k

wi(E)wj(E)

(3) Let x be the generator of H2(RPn,Z/2) ∼= Z/2. Then c(H) = 1− x where H is the

tautological bundle of RP2.

Before showing that the Stiefel-Whitney classes exist and are unique, let’s see some

consequences of Stiefel-Whitney classes.

Example 1.1.2. (1) Let εn → M be the trivial bundle of rank n. Then w(εn) = 1 since

εn is the pull-back of the trivial bundle over a point.

(2) w(E⊕εn) = w(E)w(εn) = w(E). Thus if E is stably trivial, then w(E) = 1. Hence

the total Chern class can tell us a necessary condition for a bundle to be stably trivial.

(3) TRPn ⊕ ε1 ∼= H∗⊕n+1 implies w(RPn) = (1 + x)n+1.

(4) If E is a real vector bundle of rank n with a Riemannian metric, which possesses

k cross-sections which are nowhere linearly dependent, then

wn−k+1(E) = wn−k+2(E) = · · · = wn(E) = 0.

For E splits as a whitney sum εk ⊕ ε⊥k
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There is another way to think about the characteristic class. Given a real bundle

E → M of rank n with a Riemannian metric, we get a principal On-bundle, hence a

classifying map fE : M → BOn . If a ∈ H∗(BOn), then let a(E) := f ∗E(a). Then a(E) is a

characteristic class. On the other hand, all characteristic classes for E arise this way since

all principal On-bundle are pull-backs of the universal bundle EOn → BOn by Theorem

A.0.9. Namely, a characteristic class is a cohomology class of the classifying space.

Now, let’s define Stiefel-Whitney classes by classifying space. First, the map

On ↪→ On+1, A 7→
(

1 0
0 A

)
induces a map

BOn → BOn+1

This is a direct system so we can take the direct limit

BO := lim−→BOn

In fact BOn has a concrete expression: Grn(R∞) (see Example A.0.5 (5)).

By taking the direct limit of Grassmannian, it can be computed that

H∗(BO) ∼= Z[w1, w2, · · · ], with |wk| = k.

Then the kth Stiefel-Whitney class wk(E) can be defined to be f ∗E(wk) where fE is the

classifying map of E.

Remark 1.1.3. This approach allows us to define the Stiefel-Whitney classes for a prin-

cipale G-bundle, not just vector bundles.

It is easy to see that the axioms (1), (3) are satisfied. To show the existence, only need

to show the Whitney sum formula: w(E ⊕ F ) = w(E)w(F ).

Proof. First note that

BOn×Om ' BOn ×BOm (∗).

Indeed, by taking the product of uniforsal bundles for On and Om, we get a On×Om-bundle

over BOn ×BOm , with total space EOn × EOm :

On ×Om ↪→ EOn × EOm → BOn ×BOm (∗∗).

Since πi(EOn × EOm) ∼= πi(EOn) × πi(EOm) ∼= 0 ∀ i, it follows that (∗∗) is the universal

bundle for On ×Om, thus proving (∗) by Proposition A.0.11.

Next, the inclusion On ×Om ↪→ On+m yields a map

φ : BOn×Om ' BOn ×BOm → BOn+m .
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By Künneth formula, one can show that:

φ∗wk =
∑
i+j=k

wi × wj.

Therefore,
wk(E ⊕ F ) =wk(∆

∗(E × F ))

=∆∗wk(E × F )

=∆∗(f ∗E×F (wk))

=∆(f ∗E × f ∗F )(φ∗wk)

=
∑
i+j=k

∆∗(f ∗E(wi)× f ∗F (wj))

=
∑
i+j=k

∆∗(wi(E)× wj(F ))

=
∑
i+j=k

wi(E)wj(F ).

Here, we use the fact that the classifying map for E × F , regarded as an On+m-bundle is

φ ◦ (fE × fF ).

For the uniqueness of the Stiefel-Whitney class, suppose there are two Stiefel-Whitney

classes w and w̃. Then w(H) = w̃(H). Thus, w(H × · · · × H) = w̃(H × · · · × H).

Now using the existence of a bundle map H × · · · × H → H(n) (where H(n) is the

tautological bundle of Grn(R∞)) and the fact that H∗(Grn(R∞)) injects monomorphicaly

into H∗(RP∞ × · · · × RP∞), it follows that w(H(n)) = w̃(H(n)).

∀ bundle E → B, choose a classifying map fE : B → Grn(R∞). It follows that

w(E) = f ∗E(w(H(n))) = f ∗E((H(n))) = w̃(E).

Theorem 1.1.4. If E → B is a vector bundle of rank n over a CW complex B, then

wk(E) measures the obstruction to finding a field of n− k+ 1 linearly independent vectors

over the k-skeleton of B.

Proof. See [3, page 140-142].

Although we don’t prove it here, we can see the motivation by considering the low-

dimensional case.

For a vector bundle E → B with B path-connected, orientability is detected by the

homomorphism π1(B) → Z/2 that assigns 0 or 1 to each loop according to whether

orientations of fibers are preserved or reversed as one goes around the loop. Since Z/2
is abelian, this homomorphism factors through the abelianization H1(B) of π1(B), and
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homomorphisms H1(B,Z/2) are identifiable with elements of H1(B,Z/2). Thus we have

an element of H1(B,Z/2) associated to E which is zero exactly when E is orientable.

This is exactly w1(E). If B is a CW complex, then E is orientable iff its restriction to

the 1-skeleton K1 of B is orientable, since all loops in B can be deformed to lie in K1.

Futhermore, a vector bundle over a 1-dimensional CW complex is trivial iff it is orientable,

so we can also say that w1(E) measures whether E is trivial over the 1-skeleton K1.

What about the higher skeleton? Assuming that E is trivial over K1, then if the fibers

have dimension n we can choose n orthonormal sections over K1, and so we ask whether

these sections extend to orthonormal sections over each 2-cell. If we pull E back to a

vector bundle over the disk D2 via a characteristic map D2 → B for a 2-cell, the sections

over K1 pull back to sections of the pullback over ∂D2. The pullback bundle is trivial since

D2 is contractible, so by choosing a trivializaion the sections over ∂D2 determine a map

∂D2 → On. If we choose the trivialization to give the same orientation as the trivialization

of E over K1 determined by the sections, we can take this map to have image in SOn.

Thus we have an element of π1(SOn) for each 2-cell, and it is not hard to see that the

sections over K1 extend to orthonormal sections over K2 iff this element of π1(SOn) is

zero for each 2-cell. The group π1(SOn) is 0 for n = 1, and it is Z for n = 2. For n > 2,

π1(SOn) = Z/2. Thus for any case, the coefficient can be reduced to Z/2.

Definition 1.1.5. For a compact manifold M , there exists one and only one cohomology

class (caled Wu class)

vk ∈ Hk(M)

which satisfies the identity

〈vk ∪ x, [M ]〉 = 〈Sqk(x), [M ]〉

for every x. The total Wu class is defined to be

v = 1 + v1 + · · ·+ vn

.

Theorem 1.1.6 (Wu’s formula). The total Stiefel-Whitney class w is equal to Sq(v). In

other words

wk =
∑
i+j=k

Sqi(vj).

Proof. See [3, page 132-133].

If Er →Mn is oriented, then there is a class e(E) ∈ Hr(M,Z), called the Euler class,

s.t. wr(E) = e(E) mod 2. Explicitly, the Euler class can be defined as follows:
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Definition 1.1.7. Suppose σ : M → E is a smooth section that transversly intersects the

zero section. Let Z ⊂ X be the zero locus of σ. Then Z is a codimension r submanifold of

X which represents a homology class [Z] ∈ Hn−r(M,Z) and the Euler class e(E) is defined

to be the Poincaré dual of [Z].

By obstruction theory, it is easy to see that wn ≡ e mod 2.

Theorem 1.1.8. If M is a smooth compact oriented manifold, then

〈e(M), [M ]〉 = χ(M),

where χ(M) is the Euler character.

Proof. See [3, page 130].

1.2 The Chern classes

Definition 1.2.1. The Chern classes are characteristic classes for a complex vector bundle

E → M . For each i > 0 the ith Chern class ci(E) ∈ H2i(M,Z). The total Chern class

c(E) := c0(E) + c1(E) + · · · . The Chern class of M , ci(M), is defined to be ci(TM).

Chern classes satisfy the following condition:

(1) c0(E) = 1.

(2) The Whitney sum formula: c(E ⊕ F ) = c(E)c(F ). Hence,

ck(E ⊕ F ) =
∑
i+j=k

ci(E)cj(E)

(3) Let x be the generator of H2(CPn) ∼= Z. Then c(H) = 1 − x where H is the

tautological bundle of CP2.

Example 1.2.2. (1) Let εn →M be the trivial bundle of rank n. Then c(εn) = 1 since εn

is the pull-back of the trivial bundle over a point.

(2) c(E ⊕ εn) = c(E)c(εn) = c(E). Thus if E is stably trivial, then c(E) = 1. Hence

the total Chern class can tell us a necessary condition for a bundle to be stably trivial.

(3) TCPn ⊕ ε1 ∼= H∗⊕n+1 implies c(CPn) = (1 + x)n+1.

There is another way to think about the characteristic class. Given a complex bundle

E →M of rank n, we get a principal Un-bundle, hence a classifying map fE : M → BUn .

If a ∈ H∗(BUn), then let a(E) := f ∗E(a). Then a(E) is a characteristic class. On the

other hand, all characteristic classes for E arise this way since all principal Un-bundle are

pull-backs of the universal bundle EUn → BUn by Theorem A.0.9. Namely, a characteristic

class is a cohomology class of the classifying space.
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Now, let’s define Chern classes by classifying space. First, the map

Un ↪→ Un+1, A 7→
(

1 0
0 A

)
induces a map

BUn → BUn+1

This is a direct system so we can take the direct limit

BU := lim−→BUn

In fact BUn has a concrete expression: Grn(C∞) (see Example A.0.5 (5)).

By taking the direct limit of Grassmannian, it can be computed that

H∗(BU) ∼= Z[c1, c2, · · · ], with |ck| = 2k.

Then the kth Chern class ck(E) can be defined to be f ∗E(ck) where fE is the classifying

map of E.

Remark 1.2.3. This approach allows us to define the Chern classes for a principale G-

bundle, not just vector bundles.

It is easy to see that the axioms (1), (3) are satisfied. To show the existence, only need

to show the Whitney sum formula: c(E ⊕ F ) = c(E)c(F ).

Proof. First note that

BUn×Um ' BUn ×BUm (∗).

Indeed, by taking the product of uniforsal bundles for Un and Um, we get a Un×Um-bundle

over BUn ×BUm , with total space EUn × EUm :

Un × Um ↪→ EUn × EUm → BUn ×BUm (∗∗).

Since πi(EUn × EUm) ∼= πi(EUn) × πi(EUm) ∼= 0 ∀ i, it follows that (∗∗) is the universal

bundle for Un × Um, thus proving (∗) by Proposition A.0.11.

Next, the inclusion Un × Um ↪→ Un+m yields a map

φ : BUn×Um ' BUn ×BUm → BUn+m .

By Künneth formula, one can show that:

φ∗wk =
∑
i+j=k

wi × wj.
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Therefore,
ck(E ⊕ F ) =ck(∆

∗(E × F ))

=∆∗ck(E × F )

=∆∗(f ∗E×F (ck))

=∆(f ∗E × f ∗F )(φ∗ck)

=
∑
i+j=k

∆∗(f ∗E(ci)× f ∗F (cj))

=
∑
i+j=k

∆∗(ci(E)× cj(F ))

=
∑
i+j=k

ci(E)cj(F ).

Here, we use the fact that the classifying map for E × F , regarded as an Un+m-bundle is

φ ◦ (fE × fF ).

For the uniqueness of the Chern class, suppose there are two Chern classes c and c̃.

Then c(H) = c̃(H). Thus, c(H × · · · ×H) = c̃(H × · · · ×H). Now using the existence of

a bundle map H × · · · ×H → H(n) (where H(n) is the tautological bundle of Grn(C∞))

and the fact that H∗(Grn(C∞)) injects monomorphicaly into H∗(CP∞ × · · · × CP∞), it

follows that c(H(n)) = c̃(H(n)).

∀ bundle E → B, choose a classifying map fE : B → Grn(C∞). It follows that

c(E) = f ∗E(c(H(n))) = f ∗E((H(n))) = c̃(E).

Definition 1.2.4. Given a real vector bundle E over M , the kth Pontryjagin class pk(E)

is defined to be

pk(E) := (−1)kc2k(E ⊗ C) ∈ H4k(M,Z)

Proposition 1.2.5. For a complex bundle E, its Pontrjagin classes are totally determined

by the Chern classes by:

1−p1(E)+p2(E)−· · ·+(−1)npn(E) = (1+c1(E)+· · ·+cn(E))(1−c1(E)+· · ·+(−1)ncn(E)).

Proof. Note that

E ⊗ C ∼= E ⊕
√
−1E ∼= E ⊕ Ē,

and use the Whitney formula.

Example 1.2.6. (1) p1 = c21 − 2c2.

(2) p2 = 2c4 − 2c1c3 + c22.

Definition 1.2.7. Let E be a complex bundle, the Chern polynomial ct of E is given by:

ct(E) := 1 + c1(E)t+ · · ·+ cn(E)tn
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If we use the axiomatic approach to define the Chern class, then it is easy to see thath

the Chern polynomial satisfies the Whitney sum formula:

ct(E ⊕ F ) = ct(E)ct(F )

If E = L1 ⊕ · · · ⊕ Ln is a direct sum of complex line bundles, then it follows from the

Whitney sum formula that

ct(E) = (1 + γ1(E)t) · · · (1 + γn(E)t)

where γi(E) = c1(Li). γi(E) is called the Chern root of E, which determine the coefficients

of the Chern polynomial:

ck(E) = ek(γ1(E), · · · , γn(E))

where ek is the kth elementary symmetric polynomial.

Definition 1.2.8. The Chern character of a complex bundle E → X is defined to be

ch(E) := eγ + · · ·+ eγ ∈ H∗(X,Q)

where ai are Chern roots.

Equivalently, by Chern-Weil theory,

ch(E) = tr

(
exp

(
iΩ

2π

))
where Ω is the curvature matrix.

The Chern character satisfies

ch(E ⊕ F ) = ch(E) + ch(F )

ch(E ⊗ F ) = ch(E)ch(F )

Definition 1.2.9. Let (M,J) be a almost complex manifold , λ = [λ1, · · · , λk] be a parti-

tion of n. The Chern number of (M,J) with respect to λ is defined to be

Cλ(M) :=

∫
M

cλ1 · · · cλk ∈ Z.

where the integral of a characteristic class is the integral of its associated differential form

class by de Rham theorem

Hn(M,R) ∼= Hn
dR(M)
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2 Spin structure

Recall that for an oriented vector bundle E of rank n, there is an associated principal

SOn-bundle, which we denote by PSO(E). As π1(SOn) = Z/2 for n > 3, there is a simply

connected 2-fold covering of SOn, known as Spin(n). For n = 2, we take Spin(n) to be

the circle, double covering itself. As covering of Lie groups are Lie groups, Spin(n) itself

is a Lie group. If we can lift the structure group to Spin(n), then we say that our oriented

bundle E is spinnable.

Definition 2.0.1. For a spinnable vector bundle E → B, a spin structure Pspin(E)→ B

is a principal Spin(n)-bundle that nontrivially and equivariantly double covers PSO(E) on

each fiber, and the covering map is a bundle morphism.

Remark 2.0.2. Two spin structures may be equivalent as bundles, but not equivalent as

spin structures. Consider spin structures over S1. We will see later that spin structures are

classified up to equivalence by H1(B,Z/2), so there are two distinct spin structures over

S1. However, any principal G-bundle the circle with G connected is bundle isomorphic to

the trivial bundle, since such bundles are classified up to isomorphism by homotopy class

of maps [S1 → BG] = π1(BG) = π0(B) = 0.

Theorem 2.0.3. Let X be a CW complex, F → E → B is a fibration. Let f : X → B

be a map and g : Xn → E a lift of f on the n-skeleton. If F is n-connected, then an

obstruction class

[θn+1(g)] ∈ Hn+1(X, πn(F ))

is defined.

If [θn+1(g)] vanishes, then g can be redefined over the n-skeleton, then exteded over the

(n+ 1)-skeleton Xn+1.

Proof. See [4, page 197-202.]

Proposition 2.0.4. E → B is spinnable iff there is a lift of the classifying map B → BSOn

to a map B → BSpin(n). Thus, the only obstruction to E being spinnable is the second

Stiefel-Whitney class w2(E).

The last sentence follows from the fact that the fiber on the right hand sid is RP∞ so

the only obstruction to extending a section is in H2(BSOn , π1(RP∞)) = H2(BSOn ,Z/2),

which is just w2(E).

Recall that to trivialize a G-bundle is to find a section of this bundle. Suppose E

is spinnable and PSpin(k) is the associated principal Spin(k)-bundle. Then to trivialize

E over 2-skeleton, we only need to find a section of PSpin(k) and then project it to the
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sections of E. Since Spin(k) is simply-connected, this can be done by the Theorem 2.0.3.

Hence, for each spin structure of E, we can find a trivialization of E over 1-skeleton which

extends to 2-skeleton. The converse is also true (see [4, page 183-189].

Proposition 2.0.5. If E → B is spinnable, then the group H1(B,Z/2) acts freely and

transitively on the set of equivalence classes of spin structures of E over a fixed principal

SOn-bundle.

Proof. We can first identify H1(B,Z/2) with Čech cohomology, where 1-cocycles αij :

Ui ∩Uj → Z/2 are defined on a cover of local trivializations of a given spin structure with

transition functions gij : Ui ∩ Uj → Spin(n). Given a 1-cocycle α and a spin structure

determined by functions gij, we can define new transition function hij on Ui ∩ Uj that

determine an inequivalent spin structure over the same SOn-bundle by setting

hij =

{
gij if αij = 0

−gij if αij = 1

Freeness follows immediately, while transitivity follows from the fact that both spin struc-

tures are double covers of the same SOn-bundle, so that any such two differ by multipli-

cation by −1 in the fiber over appropriate trivializations.

Example 2.0.6. (1) Every parallelizable manifold is clearly spinnable, such as Lie groups,

compact orientable 3-manifolds, etc.

(2) Recall that w(RPn) = (1 + x)n+1. Since we requre both w1 and w2 to vanish, this

forces n to be odd and n(n+1)
2

to be even. Thus RPn is spinnable iff n ≡ 3 mod 4.

(3) Recall that a K3 surface X has the trivial canonical bundle. Thus, w2(X) =

c1(X) mod 2 = −c1(KX) mod 2 = 0. Hence, every K3 surface is spinnable.
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3 Applications on 4-dimensional cases

Theorem 3.0.1 (Dold-Whitney theorem). If two oriented bundles of rank 4 over an

oriented 4-manifold have the same second Whitney-Stiefel class, first Pontrjagin class,

and Euler class, then they must be isomorphic.

Recall that given a real vector bundle E over M , the kth Pontrjagin class pk(E) is

defined to be

pk(E) := (−1)kc2k(E ⊗ C) ∈ H4k(M,Z).

Let

Q(x) :=
x

tanh(x)
=
∑
k>0

22kB2k

(2k)!
x2k = 1 +

x2

3
− x4

45
+ · · · .

be a formal power series, where Bi is the ith Bernoulli number.

Theorem 3.0.2 (Hirzebruch’s signature theorem). Let M4k be a closed almost complex

manifold. The L-genus is defined to be

L(M) :=
∏
i

Q(γi),

where γi are Chern roots of TM ⊗ C. Then

sign(M) = 〈L(M), [M ]〉 =

∫
M

L(M).

Proof. The theorem can be shown by Atiyah-Singer index theorem (but we won’t state

the index theorem here): Let D = ∆ = d+ d∗. Define

τ :=
√
−1

r(r−1)+n
2 ∗ : Ar(M)→ An−r(M),

where ∗ is the Hodge star, which satisfies τ 2 = Id and τD + Dτ = 0. Then A∗(M) =⊕
Ar(M) can be decomposed as

A∗(M) = A(M) +⊕A−(M)

with respect to the eigenvalues +1 and −1 respectively. The anti-commutativity τD =

−Dτ implies that we can define a restriction D+, and its dual D−, of D given by

D+ : A+(M)→ A−(M),

D− : A−(M)→ A+(M).

Then the analytical index of D+ is

a− Ind(D) = sign(M)
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the topological index is

t− Ind(D) =

∫
M

ch(D+)td(M) =

∫
M

L(M)

Then we get the result.

Corollary 3.0.3. For every closed 4-manifold M , we have

〈p1(M), [M ]〉 = 3sign(M).

Proof. By Hirzebruch’s signatrure theorem 3.0.2, we have

sign(M) =

∫
M

L(M)

=
1

3

∫
M

∑
γ2i

=
1

3

∫
M

((
∑

γi)
2 − 2

∑
i<j

γiγj)

=
1

3

∫
M

(c1(M)2 − 2c2(M)) by Example 1.2.6

=
1

3

∫
M

p1(M).

Remark 3.0.4. The signature theorem is also true for non-almost-complex 4k-manifolds,

but we need some modifications:

First, we can define a genus with respect to a formal power series in terms of the

Pontrjagin classes by multiplicative series (See [3]).

Next, by this method, the L-genus corresponds to the formal power series

Q(x) =

√
x

tanh(
√
x)

rather than

Q(x) =
x

tanh(x)
.

The statements of the theorem and the corollary will be the same as before.

Proposition 3.0.5. Let M be a 4-dimensional manifold. Then ∀ oriented surfaces S

embedded in M , we have:

w2 · S ≡ S · S mod 2.
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Proof. By Wu’s formula 1.1.6,

w2 =Sq0(V2) + 2Sq1(v1) + Sq2(v0)

=v2 + 2v21

≡v2 mod 2

Let PD : Hk(M)→ Hn−k(M) be the Poincaré dual. Then

w2 · S =〈PD−1([S]), PD−1([S]) ∩ [M ]〉

=〈PD−1([S]) ∪ PD−1([S]), [M ]〉

=〈Sq2([S]), [M ]〉

≡〈v2, [S]〉

=〈PD−1([S]) ∪ PD−1([S]), [M ]〉

=S · S

Corollary 3.0.6. The intersection form of a spin 4-manifold is even.

Conversely, if the intersection form of M is even, and H1(M) has no 2-torsion in

addition, then w2(M) = 0.

Corollary 3.0.7. Any 4-manifold without 2-torsion, for example simply-connected, admits

spin structures iff its intersection form is even.

Recall how we define cobordism groups of oriented closed manifolds. Now we want

to restrict the cobordism to the equivalence set of closed spin manifolds. The following

theorem will help us to calculate some spin-cobordism groups.

Theorem 3.0.8 (V. Rokhlin). If a closed spin 4-manifold M has zero signature, then M

bounds a spin 5-manifold whose spin structure induces the spin structure of M .

There is a discussion on how the Hirzebruch’s signature theorem implies this theorem

on [4, page 167], but I have not understand yet.

Corollary 3.0.9. If two spin 4-manifolds M and N have the same signature, then they

can be linked by a cobordism that is a spin 5-manifold, and its spin structure induces on

M and N their respective spin structures.

Theorem 3.0.10 (V. Rokhlin). The signature of a spin 4-manifold must be divided by 16.

This theorem will be discussed by RUAN Xiabing next time.
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Corollary 3.0.11. ΩSpin
4
∼= Z, and a K3 surface is its generator.

Proof. By the Corollary 3.0.9 and the Theorem 3.0.10, only need to show the signature of

a K3 surface S is ±16.

Recall that the intersection form of a K3 surface is given by

Q = −E8 ⊕−E8 ⊕H ⊕H ⊕H.

The dimension of the positive and negative eigenspaces are 3 and 19 respectively. Thus,

the signature is −16.

15



A Universal bundles and classifying spaces

Every fiber bundle can be pulled back by a continuous maps. After being pulled back, the

bundle carries less information than before. So here is a question: Does there exist ”the

most complicated bundle” s.t. every bundle is a pull-back of this bundle? Under some

circumstances, the answer is ”yes”.

Definition A.0.1 (Principal bundles). Let G be a topological group. If the continuous

map p : E → B from a G-space E to a topological space B satisfies the following conditions,

then (E,B, p) (sometimes denoted as E only) is called a principal G-bundle.

∃ a countable open covering {Ui}i∈I of B and homeomorphisms φi : Ui ×G→ p−1(Ui)

satisfying that ∀ b ∈ Ui and g, h ∈ G
(1) p ◦ φi(b, g) = b

(2) φi(b, gh) = g · φi(b, h)

Such (Ui, φi) is called a trivialization and E is called the total space.

Definition A.0.2. A principal bundle is called universal if the total space is weakly con-

tractible. i.e. every homotopy group of the total space is 0.

The universal bundle with respect to the topological group G is always denoted as

EG → BG. BG is called the classifying space with respect to G.

Remark A.0.3. (1) This is not the origin definition but it is convenient. Later we will

see why it is called ”universal”.

(2) The Whitehead theorem says that if f is a continuous map between CW-complexes

X, Y inducing isomorphisms on all homotopy groups, then f is a homotopy equivalence.

Thus if a CW-complex is weakly contractible, then it is contractible.

For an arbitrary topological group G, dose there exist a universal principal G-bundle?

Theorem A.0.4 (Milnor). Every topological group has a universal bundle.

Proof. Milnor constructed EG directly as follows: Define the join of two spaces X,Y as

X × Y × [0, 1]/ ∼ where (x, y1, 0) ∼ (x, y2, 0) and (x1, y, 1) ∼ (x2, y, 1) ( See the figure 2

), and it is denoted as X ∗ Y . Just let EG := G ∗ G ∗ · · · ∗ G ∗ · · · , BG := EG/G. G has

a natural action on EG and EG is weakly contractible. Hence EG → BG is a universal

bundle with respect to G.
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Figure 1: X × Y × [0, 1]→ X ∗ Y

Example A.0.5. (1) Let G = {e}, then pt→ pt is the associated universal bundle.

(2) Let G = C∗. G acts on Cn\{0} by

c · (x1, · · · , xn) = (cx1, · · · , cxn)

Then Cn\{0} → CPn−1 is a principal G-bundle.

However, this is not a universal bundle, since π2n−1(Cn\{0}) 6= 0, although the pre-

vious homotopy goups are all 0. How to fix this problem? Note Cn\{0} ↪→ Cn+1\{0}
(x1, · · · , xn) 7→ (x1, · · · , xn, 0) is G-equivariant. Therefore we get inclusions of G-bundles:

· · · ↪→ Cn\{0} ↪→ Cn+1\{0} ↪→ · · ·

↓ ↓

· · · ↪→ CPn−1 ↪→ CPn ↪→ · · ·

This forms a direct system. Take the direct limit. Then we get

C∞\{0} → CP∞

is a universal principal G-bundle, since C∞\{0} is weakly contractible.

(3) Let G = S1. G acts on S2n+1 in the similar way as that in (2). Then S2n+1 → CPn

is a principal G-bundle. S2n+1 is k-connected whenever k < 2n + 1 but it is not 2n + 1-

connected, so this is not a universal bundle. Using the similar method to fix it, we get

S∞ → CP∞

is the universal bundle with respect to S1.

(4) Let G = GLn(C), M full
m,n denote the space of m × n matrices of full rank and

Grn(Cm) denote the Grassmannian. Then G has a natural action on M full
m,n .

M full
m,n → Grn(Cm), [v1, · · · , vn]→ [span{v1, · · · , vn}]

is a principal G-bundle. It can be shown that M full
m,n is k-connected whenever k ≤ m − n.

Hence

M full
∞,n → Grn(C∞)
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is the universal bundle with respect to GLn(C).

(5) Let G = Un. Then

EG = {(e1, · · · , en)|〈ei, ej〉 = δij, ei ∈ C∞}

BG = EG/G = {V ⊂ C∞|dimV = n} = Grn(C∞).

Similarly, let G = On. Then

EG = {(e1, · · · , en)|〈ei, ej〉 = δij, ei ∈ R∞}

BG = EG/G = {V ⊂ R∞|dimV = n} = Grn(R∞).

(6) Let G be a Lie group and H is a closed Lie subgroup of G. If EG → BG is a

universal bundle of G, then EG → EG/H is a universal bundle for H.

Before explaining the properties of the universal bundles, we need to make some prepa-

rations.

Definition A.0.6. If X is a right G-space and Y is a left G-space, the balanced product

X ×G Y is the quotient space X × Y/ ∼, where (xg, y) ∼ (x, gy). Equivalently, we can

regard X × Y as a right G-space: (x, y)g = (xg, g−1y). Then X ×G Y = (X × Y )/G.

Lemma A.0.7. Every fiber bundle with weakly contractible fibers admits a section.

Proof. See [2], Lemma 4.0.1.

Lemma A.0.8. Given two principal G-bundles P → B and P ′ → B′. There is a bijective

correspondance between MorG(P, P ′) and Γ(B,P ×G P ′).

Proof. See [2], Corollary 4.0.1.

Now, it is ready to explain what makes the universal bundle universal.

Theorem A.0.9. Suppose EG → BG is a universal G-bundle. Then ∀ CW-complex X,

the map

[X,BG]→ PGX, [f ] 7→ [f ∗EG]

is bijective, where [X,BG] denotes the homotopic classes of continuous map from X to BG

and PGX denotes the principal bundles over X up to isomorphisms.

Proof. For surjectivity: Suppse P → X is a principal G-bundle. It is equivalent to finding

a G-equivariant map φ : P → EG and putting f : X → BG the induced map.

By the Lemma A.0.7, it suffices to find a section of the bundle P ×G EG → X.

By the Lemma A.0.8, it suffices to show P ×G EG is weakly contractible.

Since EG is a universal bundle, it is weakly contractible. P is a principal G-bundle,

which implies G acts on P transitively. Hence, P ×G EG is weakly contractible.

The injectivity part requires a lot of preparations so it is omitted. One can find the

proof in [2], Theorem 4.0.1.
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From this theorem, we know that every pincipal G-bundle is a pull-back of the universal

bundle. BG is called the classifying space for G. If P → X is a principal G-bundle, then

any map f : X → BG s.t. P = f ∗(EG) is called a classifying map for P .

Lemma A.0.10. Let F → E → B be a fiber bundle. Then there is a long exact sequence

of homotopy groups:

· · · → πn(F )→ πn(E)→ πn(B)→ πn−1(F )→ · · ·

Proof. See [1, Theorem 4.41, page 376].

Proposition A.0.11. Let EG → BG be a universal bundle. Then

(1) BG can be taken to be a CW-complex. Henceforth, BG’s that appear below default

to CW-complexes.

(2) EG is unique up to homotopy equivalence.

Proof. (1) Let φ : B′G → BG be a CW-approximation. Then we have the following

commutative diagram:

φ∗(EG)
p1−→ EG

p2 ↓ ↓

B′G −→ BG

Only need to show φ∗ is weakly contractible. We have the following exact sequences

and commutative diagram by the Lemma 2.1.10:

· · · → πn(G)→ πn(EG)→ πn(BG)→ πn−1(G)→ · · ·

↑ ∼= ↑ p2∗ ↑ φ∗ ↑ ∼=

· · · → πn(G)→ πn(φ∗(EG))→ πn(B′G)→ πn−1(G)→ · · ·

Since φ is a CW-approximation, φ∗ is an isomorphism. Thus p2∗ is also an isomorphism

by Five Lemma. Hence, ∀ n,

πn(φ∗(EG)) = πn(EG) = 0

i.e. φ∗(EG) is weakly contractible.

(2) Choose two classifying maps

f : B′G → BG, g : BG → B′G

s.t.

E ′G
∼= f ∗(EG), EG ∼= g∗(E ′G)
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Then

f ◦ g : BG → BG

is a classifying map of EG to itselfe since

(f ◦ g)∗(EG) ∼= g∗(f ∗(EG)) ∼= g∗(E ′G) ∼= EG

By the injectivity of the map [X,BG]→ PGX defined in Theorem A.0.9, we have

f ◦ g ' IdBG

Similarly,

g ◦ f ' IdB′
G

Thus, BG ' B′G
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