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We now have the Stiefel-Whitney class wi(M) ∈ Hi(M ;Z2) of M in hand.
Recall that the tangent bundle TM of M can be trivialized over the 2-skeleton
of M if and only if w2(M) = 0.

Definition 1. A characteristic surface of M is an oriented surface Σ em-
bedded in M such that [Σ] ∈ H2(M ;Z) is (the Poincare dual to) an integral lift
w ∈ H2(M ;Z) of the class w2(M).

The class w is called a characteristic element.

Characteristic elements are not unique: for any γ ∈ H2(M,Z), adding 2γ to
w does not affect its reduction in H2(M,Z2).

Another proof of Wu’s formula. We have already seen Wu’s Formula:

Theorem 1. Let M be a simply-connected 4-manifold. An oriented surface Σ
is characteristic if and only if σ · S = S · S (mod 2) for all oriented surfaces S
inside M .

We will give a more concrete proof of this, although a lot of facts have to be
admitted without proof.

Definition 2. Let M be a smooth n-manifold, v ∈ Γ(TM ) be a tangent vector
field of M . Assume all zeros of v are isolated. Then at each x ∈ M with
v(x) = 0, there is an n-ball D 3 x such that v|D−{x} is nowhere-zero.

Define a map d : ∂D = Sn−1 → Sn−1, d(x) = v(x)
‖v(x)‖ . The index of v at

the zero x is defined to be the degree of d.

Lemma 1 (Poincare-Hopf). Keep the notion of the previous definition, then∑
i

index(i) = χ(M)

where the sum is taken over all zeros of v and χ(M) is the Euler characteristic
of M .

Definition 3. Keep all the notations above. At a zero x of v, one can choose a
neighborhood U ∼= Rn of x such that TM |U is trivial. Then v|U can be identified
as a map Rn → Rn. If the derivative dvx at x has nonzero determinant, then
we call the zero x non-degenerate, otherwise call it degenerate.

One should check that the degeneracy does not depend on the choice of U .
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Lemma 2. If v ∈ Γ(M) has all zeros isolated and non-degenerate, then each
zero has index ±1.

Proof of theorem 1 (not very rigorous). Let τ ∈ Γ(TS) be a tangent vector field
of S, v ∈ Γ(NS/M ) be a normal vector field of S. By assuming τ and v generic,
we suppose that they vanish only at non-degenerate isolated points of S. We
may pertube them a little such that they are zero at different point of S.

Pick a vector field τ̃ ∈ Γ(TS) that is orthonormal to τ and a vector field
ṽ ∈ Γ(NS/M ) orthonormal to v. Then τ̃ , ṽ are zero only possibly on the zeros
of τ , v, respectively. Then the vector field τ̃ + ṽ is nowhere vanishing on S.

The 3-frame {τ, v, τ̃ + ṽ} can be completed to a full 4-frame {τ, v, τ̃ + ṽ, u}
of TM whenever none of τ , v vanishes, then TM can be trivialized on S. At
each isolated zero x, there is a disk D such that τ |D−{x} is nowhere vanish.
The map f : ∂D → SO(4) given by mapping each x to the orthonormal matrix
[τ(x), v(x), (τ̃ + ṽ)(x), u(x)], defines a cycle in SO(4). It’s not hard to see that
this full 4-frame can be extended to the zero if and only if this cycle is trivial
in SO(4). That is, if and only if f = 0 ∈ π1(SO(4)) = Z2.

Therefore, the obstruction extending the 3-frame comes entirely from the
zeros of τ and v. That is,

obstruction = #{zeros of τ}+ #{zeros of v} (mod2)

By the genericity assumption and lemma 1, lemma 2, the first term on the right
is equal to χ(S) modulo 2, which is 0 since the Euler characteristic of a closed
oriented surface is even. The second term vanishes only when the tangent space
of S is equal to the tangent space of M , that is, at the self-intersection points
of S. Thus we have

obstruction = 0 + S · S
On the other hand, the obstruction trivializing is measured by the second Stiefel-
Whitney class w2(M) operating on S, which is Σ ·S, implemented by a charac-
teristic surface.

Therefore, we have

obstruction = S · S = Σ · S.

Conversely, if an integral class w ∈ H2(M ;Z) satisfying w(S) = S · S for
any oriented surface S, then by definition its modulo 2 reduction in H2(M ;Z2)
must be w2(TM ).

Wu’s theorem describes the relation between the characteristic surface and
the intersection form. By the properties of the intersection form, such charac-
teristic surface do exist:

Theorem 2. Let M be a 4-manifold, then there exist an integral class w ∈
H2(M ;Z) such that w · x = x · x (mod 2) for every x ∈ H2(M ;Z).

Proof. Let Q′M : H2(M ;Z2) × H2(M ;Z2) → Z2 be the modulo-2 reduction of
the intersection form QM of M . Define f : H2(M ;Z2)→ Z2 by x 7→ Q′M (x, x).
This is linear, since Q′M (x + y, x + y) = x · x + 2x · y + y · y ≡ x · x + y · y =
Q′M (x, x)+Q′M (y, y) (mod 2). By the unimodularity of Q′M , there is an element
Σ′ ∈ H2(M ;Z2) such that Σ′ · x = f(x) = x · x for any x. Since we can
assume H2(M ;Z) is free, H2(M ;Z2) = H2(M ;Z)⊕ Z2, there is an integral lift
Σ ∈ H2(M ;Z) of Σ′. This completes the proof.
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Remark. The existence of characteristic elements is equivalent to the existence
of spinC structures, which play an essential role in Seiberg-Witten theory. (I
know nothing about this.)

Rokhlin’s theorem We introduce the interesting Rokhlin’s theorem and sev-
eral consequences of it without proof. For the proofs readers may refer to [1]
section 4.4.

Lemma 3 (Van der Blij’s lemma). For every characteristic element w we must
have

signQM = w · w (mod8)

In particular, if M has a spin structure, then we can always choose w = 0,
so its signature must be a multiple of 8. Moreover,

Theorem 3 (Rockhlin’s theorem). If M4 is smooth with w2(M) = 0, then we
must have signQM = 0 (mod16).

Corollary 1. E8 cannot be the intersection form of a smooth manifold. In
particular, the E8-manifold ME8 does not admit any smooth strucutre.

Proof. We know that E8 is an even form, so w · x = x · x = 0 (mod 2) for any
x ∈ H2(ME8

;Z2). Since the second Stiefel-Whitney class is determined by its
operation on surfaces, we have w2(M) = 0. By Rokhlin’s theorem, ME8

cannot
have any smooth structure.

Recall that H :=

[
0 1
1 0

]
is of signature 0, and that signature is additive

over direct product.

Corollary 2. Suppose M is smooth without 2-torsion (for example, when M is
simply-connected). If the intersection form of M is of the form

QM =
⊕
±mE8

⊕
nH

then m must be even.

Proof. When M has no 2-torsion, even intersection form implies w2(M) = 0.
Then by Rokhlin’s theorem, signQM = 0 (mod 16). Then m must be even.

Remark. The absence of 2-torsion is essential. The complex Enriques surface,
which is doubly covered by K3, has intersection form −E8

⊗
H. Its fundamental

group is π1 = Z2. The 2-torsion of the fundamental group allows the intersection
form to be even without w vanishing.

Rokhlin’s theorem is a very fundamental result in topology. It is closely re-
lated to Kirby-Siebenmann invariant, governing the existence of smooth struc-
tures on a manifold. It can be further generalized:

Theorem 4 (M.Kervaire & J.Milnor). Let M be a simply-connected 4-manifold.
If Σ is a characteristic sphere of M , then

signM = Σ · Σ (mod16)

3



This result can be used to determine which characteristic elements cannot
be represented by an embedded sphere. If Σ is not a sphere, this is true after
adding some correction term:

signM = Σ · Σ + 8Arf(M,Σ) (mod16)

The Arf(M,σ) is the correction term, which is 0 for Σ a sphere. We will not
introduce further about this. Interested readers can refer to [1] chapter 11.
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