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1 A Cheatsheet on Differential Forms
Learn differential forms in 5 minutes!

1. A smooth k-form is a smooth section of ΛkT ∗M .

2. ΛkT ∗M is the smooth vector bundle obtained by gluing together ΛkT ∗
pM at each p using a really cool

trivialization that encodes the global information of the manifold.

3. ΛkT ∗
pM
∼= (ΛkTpM)∗ := HomVecR(Λ

kTpM,R) which is the space of k-anti-symmetric linear form on TpM .

4. TpM := { the linear space of all directional derivatives at point p} is the tangent space at p.

Other tools in the toolbox:

1. Pullback of differential form ω along smooth map F : M → N :

(F ∗ω)p(v1, . . . , vk) := ωF (p)(dFp(v1), . . . , dFp(vk)).

in which F ∗ : Ω∗(N)→ Ω∗(M), (F ∗ω)p : (ΛkTpM)∗ and v1, . . . , vk ∈ TpM .

2. dFp : TpM → TpN is the differential of smooth map F at p, defined by

dFp(v)(f) := v(f ◦ F ).

3. Λk
i∈Idxi is a handful basis of ΛkT ∗

pM when a chart φ : p 7→ (x1, . . . , xn) is specified.

2 Mayer-Vietories Sequence of De Rham Cohomology
De Rham cohomology is supposed to be some kind of cohomology theory, so the operator Ω∗(•) we have met
before should also be a contravariant functor. In fact, the pullback is in charge of turning a morphism f : M → N
to f∗ : Ω(N)→ Ω(M), completing the information of a contravariant functor.

We make it precise that Ω∗(•) is a functor from the category of smooth manifolds to the category of chain
complexes (or differential graded algebra, since we may consider some operation between elements in the chain
making it more natural to consider the chain groups as a whole structure). To fit beautifully into the framework
of category theory, we need to check that F ∗ is qualified as a morphism of chain complexes, that is, it commutes
with differential operator

Ωp(M) Ωp+1(M)

Ωp(N) Ωp+1(N)

d

d

F∗ F∗

This requirement is quite useful afterwards.
Let M be a smooth manifold which can be decomposed into open subsets U and V such that U ∩ V 6= ∅.

Consider the following diagram
U ∩ V U

V U ∪ V

jU

jV iU

iV

which turns into
Ω∗(U ∪ V ) Ω∗(U)

Ω∗(V ) Ω∗(U ∩ V )

i∗U

i∗V j∗U

j∗V

(1)
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after applying the functor Ω∗(•). It may tempt us into considering the following sequence

Ω∗(U ∪ V ) Ω∗(U)⊕ Ω∗(V ) Ω∗(U ∩ V )
(i∗U ,i∗V ) j∗U−j∗V .

We have the following claim:

Proposition 2.1. The sequence of chain complexes

0 Ω∗(U ∪ V ) Ω∗(U)⊕ Ω∗(V ) Ω∗(U ∩ V ) 0
(i∗U ,i∗V ) j∗U−j∗V

is exact.

Proof. First we check the exactness at Ω∗(U ∪ V ). For any ω ∈ Ω∗(M), suppose i∗U (ω) = 0. The intuition is,
i∗U (ω) may be understood to be some kind of “restriction” ω|U of ω as smooth function. Concretely, we have

0 = i∗U (ω)p = ωp ◦ Λk(diU )p. (2)

for any p ∈ U by expansion of notations. By the local nature of tangent spaces, the inclusion iU : U ↪→M induces
isomorphism (diU )p : TpU → TpM for all p, and taking their wedge product will yield another isomorphism
ΛkTpU → ΛkTpM . Therefore we have ω|U = 0. Similarly, ω|V = 0. Since M = U ∪ V , ω is zero everywhere.

Similarly, suppose ω ∈ Ω(U) and η ∈ Ω(V ) satisfy jU (ω) = jV (η). Informally it means ω|U∪V = η|U∪V ,
which means ω and η can be glued together to form a global section on M . To fulfill this dream, we need to
deal with these tedious definitions. Drawing diagrams will be useful to avoid getting lost. The assumption gives
us

ωp ◦ Λk(djU )p = ηp ◦ Λk(djV )p (3)

for each p ∈ U ∩ V .
Now construct τ ∈ Ωk(M) to be

p ∈M 7→

{
ωp ◦ (ΛkdjUp)

−1 p ∈ U

ηp ◦ (ΛkdjV p)
−1 p ∈ V

(4)

and clearly such τ satisfy i∗U (τ) = ω and i∗V (τ) = η. To make this well-defined, we need to check that for
p ∈ U ∩ V ,

ωp ◦ (ΛkdiUp)
−1 = ηp ◦ (ΛkdiV p)

−1. (5)

In fact, we have the diagram

ΛkTpU ∩ V ΛkTpU

ΛkTpM

ΛkTpU ∩ V R

ΛkdjUp

ΛkdjV p ωp

w (ΛkdiUp)
−1

(ΛkdiV p)
−1

ηp

(6)

in which w is (the lift of) the inverse of witness of commutativity in diagram (1). There is

ωp ◦ (ΛkdiUp)
−1 = ωp ◦ Λk(djU )p ◦ witness = ηp ◦ Λk(djV )p ◦ witness = ηp ◦ (ΛkdiV p)

−1 (7)

for p ∈ U ∩V . Note: we are allowed to perform such kind of acrobatics thanks to the fact that inclusions induce
isomorphisms between tangent spaces, which is then due to the idea that tangent space is some kind of local
object.

On the other hand, a form ω ∈ Ω∗(M) traveling all the way through Ω∗(U) ⊕ Ω∗(V ) into Ω∗(U ∩ V ) will
annihilate since

(j∗U ◦ i∗U )(ω) = (jU ◦ iU )∗(ω) = (jV ◦ iV )∗(ω) = (j∗V ◦ i∗V )(ω) (8)

by the functorality of pullback. So the exactness is also satisfied at Ω∗(U)⊕ Ω∗(V ).
Remark: the two steps that we have done on Ω∗(U)⊕Ω∗(V ) actually checks that the contravariant functor

Ω∗(•) is actually a sheaf of differential graded algebra on the space M if we consider these steps on arbitrary
open cover instead of just U and V .

Finally we check the same thing at Ω∗(U ∩V ). The seemingly redundant magic mentioned before, partition
of unity, is used at this point. We first use the simple case of M = R to demonstrate the ideal. Pick f ∈ Ω0(R),
which is a smooth function on R. We need to find a pair of functions defined on U and V respectively whose
difference on U ∩ V happens to be f . Since U and V form an open cover of M , there is a partition of unity
{ρU , ρV } subordinate to this cover. We can see that ρV · f is roughly actually a function on U , since ρV is
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annihilating on U − U ∩ V so it doesn’t matter whatever f evaluates to over U , even if f is undefined. And
here’s the trick:

(ρUf)− (−ρV f) = f (9)
holds everywhere on U ∩ V .

Now for general manifolds, consider ω ∈ Ωk(U ∩ V ). Defining τ ∈ Ωk(U) as

p 7→

{
ρV (p) · ωp ◦ ΛkdjUp p ∈ U ∩ V

0 otherwise.

and η ∈ Ωk(V ) likewise will do the trick.

The short exact sequence of the graded differential algebra mentioned above is actually a short exact sequence
of chain complexes since the horizontal induced maps cannot change the degree of differential forms and these
squares commutes.

. . . . . . . . .

0 Ωq+1(M) Ωq+1(U)⊕ Ωq+1(V ) Ωq+1(U ∩ V ) 0

0 Ωq(M) Ωq(U)⊕ Ωq(V ) Ωq(U ∩ V ) 0

. . . . . . . . .

d d d

By snake lemma such short exact sequence induce a long exact sequence of cohomology groups

Hq+1(M) Hq+1(U)⊕Hq+1(V ) Hq+1(U ∩ V ) · · ·

· · · Hq(M) Hq(U)⊕Hq(V ) Hq(U ∩ V )
d∗

and this is the main result of this lecture. For some purpose (i.e. when we regard the cohomology chain as
a graded differential algebra around its “cup product” (that is, exterior product)) we need to find out what is
the generator of each group. This can be done by careful diagram chasing. It turns out that the coboundary
operator is given by

d∗[ω]p =

{
[−d(ρV (p)ωp ◦ ΛkdiUp)] p ∈ U,

[d(ρU (p)ω)p ◦ ΛkdiV p)] p ∈ V.
(10)

which is actually a series of operation:

Ωq(U ∩ V ) Ωq(U)⊕ Ωq(V ) Ωq+1(U)⊕ Ωq+1(V ) Ωq(M)extend d glue (11)

Having been tortured by writing these Λk(diU )p things, we allow ourselves to abuse the notation a little bit
to identify TpM and TpU the same thing based on the fact that they are actually isomorphic.
Example 2.1 (Cohomology of S1). Decompose the circle S1 into left and right hemispheres called U and V .
Then we get the following exact sequence

0 0 · · ·

H1(S1) H1(U)⊕H1(V ) = 0 H1(U ∩ V ) = 0

0 H0(S1) = R H0(U)⊕H0(V ) = R⊕ R H0(U ∩ V ) = R⊕ R

d∗

d∗

in which H0(S1) ∼= H0(U) ∼= H0(V ) ∼= R is easy to see (and this is a common property of a qualified cohomology
theory); H1(U) ∼= H1(V ) ∼= H1(U ∩ V ) = 0 is pretty intuitive since these spaces are “flat”. Therefore we get
the following

0 R R⊕ R R⊕ R H1(S1) 0

and it is quite lucky that we can calculate H1(S1) = R directly from exactness without looking into the details
of these connecting arrows.
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We are particularly interested in determine the generator of H1(S1). It is clear that H1(S1) is generated by
d∗([α]), in which α is a non-exact form i.e. α takes different constant value on upper and lower piece of U ∩ V .
We pick α to be constantly 1 on the upper and 0 on the lower piece. Then

d∗[α] =

{
[−ρV (p)d(α)p] p ∈ U,

[ρU (p)d(α)p] p ∈ V.
(12)

since these two parts agree on their overlap, the representative of d∗[α] is forced to be supported on the upper
piece of U ∩ V . It turns out that it is a bump 1-form supported on upper U ∩ V .

3 Mayer-Vietories Sequence of De Rham Cohomology with Com-
pact Support

We can build the Mayer-Vietoris sequence of de Rham cohomology with compact supports almost alongside
that of ordinary de Rham cohomology but with some subtle points to deal with. We cannot still use pullbacks
to define the functor since compactness of a form is not preserved in general. To fix this, we restrict our
consideration to an appropriate subset of smooth maps, inclusions. We use the following definition:

Definition 3.1 (Pushout of compactly supported form along inclusion). If j : U ↪→ M is the inclusion of
open set U in manifold M , then j∗ : Ω∗

c(U) → Ω∗
c(M) is the map which “extends” a form on U by zero. Such

extension j∗ω is surely smooth since the form is compactly supported. In fact, if a point of M is inside Suppj∗ω,
then p is inside U and has a neighbor on which ω is smooth; if not, then ω is constantly zero on a neighborhood
around p, thus it is still smooth. (This demonstrates the benefits of defining support to be the closure of the
non-vanishing points.) (Letting an open set be the “soft cover” of some closed set is also a usual trick to avoid
some harsh edge cases from topology.)

Although also entitled with the name “cohomology”, de Rham cohomology with compact support is actually
not a qualified cohomology theory in the sense of Eilenberg–Steenrod axioms, for it does not satisfy homotopy
invariance and it is even a covariant functor! However, as we will see soon, this kind of “cohomology” actually
fits into the place of homology when we talk about pairings in the context of Poincáre’s duality.

Then for the sequence of inclusions that we considered before,

M ← U
⨿

V ⇔ U ∩ V

we apply Ω∗
c(•) and get

Ω∗
c(M) Ω∗

c(U)⊕ Ω∗
c(V ) Ω∗

c(U ∩ V )

(−jU∗ω, jV ∗ω) ω

+ δ

(13)

Proposition 3.1. The Mayer-Vietoris sequence of forms with compact support

0 Ω∗
c(M) Ω∗

c(U)⊕ Ω∗
c(V ) Ω∗

c(U ∩ V ) 0 (14)

is exact.

Proof. The exactness at Ω∗
c(U ∩ V ) and Ω∗

c(U)⊕Ω∗
c(V ) is trivial. For Ω∗

c(M), we restrict the form on M to U
and V respectively and use the same bump-function trick to handle the troublesome overlapping area.

This short exact sequence induce a long exact sequence of cohomology groups (looks similar but totally
different!)

Hq+1
c (U ∩ V ) Hq+1

c (U)⊕Hq+1
c (V ) Hq+1

c (M) · · ·

· · · Hq
c (U ∩ V ) Hq

c (U)⊕Hq
c (V ) Hq

c (M)

d∗

in which

d∗[ω] =

{
[−d(ρV ω)] p ∈ U

[d(ρUω)] p ∈ V
(15)
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Example 3.1. (Compactly supported De Rham cohomology of S1) Cover S1 with U and V as before.

0 0 · · ·

H1
c (U ∩ V ) = R⊕ R H1

c (U)⊕H1(V ) = R⊕ R H1
c (S

1) = R

0 H0
c (U ∩ V ) = 0 H0

c (U)⊕H0
c (V ) = 0 H0(S1) = R

d∗

d∗

It is clear that H0
c (U ∩ V ) and H0

c (U) ⊕ H0
c (V ) = 0 since the only compactly supported constant function

on them is the zero function. However since S1 is compact itself, any constant function is still valid. Thus
H0

c (S
1) = R. Now we can deduce that H1

c (S
1) = R by playing with dimensions of linear maps.
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