Persistent function based machine learning for drug design

Xiang Liu

Nankai University & BIMSA

September 19, 2022

Drug Discovery Process (simplified)

Artificial Intelligence

Enabling machines to think like humans

Machine Learning

Training machines to get better at a task without explicit programming

Deep Learning

Using multi-layered networks for machine learning

Feature extraction and feature learning

"The success of machine learning algorithms generally depends on data representation..." Y. Bengio, etc, "Representation Learning: A Review and New Mac "The deep learning research aims at discovering learning algorithms that discover multiple levels of distributed representations..." Y. Bengio, "Deep Learning of Representations: Looking Forward

Grisoni F, Ballabio D, Todeschini R, et al. Molecular descriptors for structure–activity applications: a hands-on approach[M]// Computational Toxicology. Humana Press, New York, NY, 2018: 3-53.

Common chemical descriptors for QSAR/QSPR analysis

Chemical descriptors	Based on	Examples
Theoretical descriptors		
0D	Molecular formula	Molecular weights, atom counts, bond counts
1D	Chemical graph	Fragment counts, functional group counts
2D	Structural topology	Weiner index, Balaban index, Randic index, BCUTS
3D	Structural geometry	WHIM, autocorrelation, 3D-MORSE, GETAWAY
4D	Chemical conformation	Volsurf, GRID, Raptor
Experimental descriptors		
Hydrophobic parameters	Hydrophobicity	Partition coefficents (logP), hydrohobic substituent constant (π)
Electronic parameters	Electronic properties	Acid dissociation constant, Hammett constant
Steric parameters	Steric properties	Taft steric constant, Charton's constant

Topological Data Analysis (TDA)

Topological invariant; Homology; Homotopy; Simplicial complex; Morse theory; Reeb graph;

Computational Geometry; Computational topology; Algebraic topology

Topological data analysis---persistent homology

 $\beta_0 = 2$ $\beta_1 = 1$ $\beta_2 = 1$

Persistent Homology Analysis of Carbon-60

(Xia, Feng, Tong & Wei, JCC, 2015)

TDA based machine learning models

(Pun, Lee and Xia, AIR, 2021)

Recent progress in TDA based drug design

Guowei Wei MSU Foundation professor

DUD database 128374 protein-ligand/decoy pairs

Prediction correlations for 2648 mutations on globular proteins (Cang & Wei, PLOS CS, 2017)

Prediction RMSD of logP(star set)

Recent progress in TDA based drug design

Stage 1

<u>Pose Predictions</u> (partials) <u>Scoring</u> (partials) <u>Free Energy Set 1</u> (partials) <u>Free Energy Set 2</u> (partials)

D3R Grand Challenge 2 Stage 2 (partials) Scoring (partials) Free Energy Set 1 (partials) (partials) Free Energy Set 2 (partials) Drug Design Data Resource (D3R) Grand Challenges

Grand Challenge 2: win 14% Grand Challenge 3: win 38% while the second winner had a rate of 19% Grand Challenge 4: win 50%

Wei Team's performance at D3R Grand Challenge

TDA-based learning models in SARS-Cov-2

Mutations Strengthened SARS-CoV-2 Infectivity

Wei's Team predicts key mutation sites in prevailing variants

Mutations at 501 and 452 in prevailing SARS-Cov-2 variants

Jiahui Chen¹, Rui Wang¹, Menglun Wang¹ and Guo-Wei Wei^{1,2,3}

1 - Department of Mathematics, Michigan State University, MI 48824, USA

2 - Department of Electrical and Computer Engineering, Michigan State University, MI 48824, USA

3 - Department of Biochemistry and Molecular Biology, Michigan State University, MI 48824, USA

Correspondence to Guo-Wei Wei: wei@math.msu.edu https://doi.org/10.1016/j.jmb.2020.07.009 Edited by Anna Panchenko

Received 4 June 2020; Received in revised form 9 July 2020; Accepted 17 July 2020;

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectivity is a major concern in coronavirus disease 2019 (COVID-19) prevention and economic reopening. However, rigorous determination of SARS-CoV-2 infectivity is very difficult owing to its continuous evolution with over 10,000 single nucleotide polymorphisms (SNP) variants in many subtypes. We employ an algebraic topology-based machine learning model to quantitatively evaluate the binding free energy changes of SARS-CoV-2 spike glycoprotein (S protein) and host angiotensin-converting enzyme 2 receptor following mutations. We reveal that the SARS-CoV-2 virus becomes more infectious. Three out of six SARS-CoV-2 subtypes have become slightly more infectious, while the other three subtypes have significantly strengthened their infectivity. We also find that SARS-CoV-2 is slightly more infectious than SARS-CoV according to computed S protein-angiotensin-converting enzyme 2 binding free energy changes. Based on a systematic evaluation of all possible 3686 future mutations on the S protein receptor-binding domain, we show that most likely future mutations will make SARS-CoV-2 more infectious. Combining sequence alignment, probability analysis, and binding free energy calculation, we predict that a few residues on the receptor-binding motif, i.e., 452, 489, 500, 501, and 505, have high chances to mutate into significantly more infectious COVID-19 strains.

Alpha: N501Y Beta: K417N, E484K, N501Y Gamma: K417T, E484K, N501Y Delta: L452R, T478K Epsilon: L452R Kappa: L452R, E484Q Omicron: N501,...

They discovered the mechanism of viral transmission and evolution: more infectious

© 2020 Elsevier Ltd. All rights reserved.

Abstract

TDA is based on the multiscale simplicial complex

* Graph models and measurements:

Graph Laplacian; Fiedler Eigenvalue; Fiedler eigenvector; Shortest path; Clique; Cluster coefficient; Closeness; Centrality; Betweenness; Modularity; Cheeger constant; Erdos number; Percolation...

Simplicial complex models and measurements:

Combinatorial Laplacian; Hodge theory; Betti number; Euler characteristics; Homology; Cohomology; Morse theory; Knot polynomials...

* Multiscale simplicial complex:

Persistent homology; Persistent cohomology...

Persistent Spectral (PerSpect)

Spectral models

Spectral graph Spectral simplicial complex Spectral hypergraph

Filtration

Nested sequence of graphs Nested sequence of simplicial complex Nested sequence of hypergraphs

Spectral models + filtration

Persistent spectral graph Persistent spectral simplicial complex Persistent spectral hypergraph

Graph simplicial complex Hypergraph

F. Chung, and S.T. Yau."A Harnack inequality for homogeneous graphs and subgraphs."Comm.Anal. Geom 2.4 (1994):627-640.

F. Chung,"Spectral graph theory". American Mathematical Societ, 1997 D. Spielman, "Spectral graph theory", Combinatorial scientific computing. No.18.Boca Raton, FL: CRC Press,2012.

D.Horak, and J.Jost, "Spectra of combinatorial Laplace operators on simplicial complexes". Advances in Mathematics, 244, 303-336, 2013 O. Parzanchevski, and R. Ron"Simplicial complexes: spectrum, homology and random walks. "Random Structures & Algorithms 50.2 (2017): 225-261. M. T.Schaub, et al. "Random walks on simplicial complexes and the normalized Hodge 1-Laplacian." SIAM Review 62.2 (2020):353-391. K. Q. Feng, "Spectra of hypergraphs and applications."Journal of number theory 60.1(1996):1-22.

J.Cooper, and D.Aaron."Spectra of uniform hypergraphs."Linear Algebra and its applications 436.9 (2012):3268-3292.

L.Q.Qi, and Z.Y.Luo."Tensor analysis: spectral theory and special tensors".Society for Industrial and Applied Mathematics, 2017 Wang R, Nguyen D D, Wei G W. Persistent spectral graph[J]. International journal for numerical methods in biomedical engineering, 2020, 36(9): e3376.

Combinatorial Laplacian

Let K be a simplicial complex and $C_k(K)$ be a vector space over some field \mathbb{F} whose basis is all k-simplices of K.

Definition

The *dual* of $C_k(K)$, denoted by $C^k(K)$, is the set of all linear functionals on $C_k(K)$:

 $C^{k}(\mathcal{K}) = \{\phi: C_{k}(\mathcal{K}) \to \mathbb{F} : \phi \text{ is linear}\}.$

Note: Both $C_k(K)$ and $C^k(K)$ have the same dimension = no. of *k*-simplices of *K*.

• Boundary map $\partial_k : C_k(K) \to C_{k-1}(K)$

$$\partial_k([u_0, u_1, \ldots, u_k]) = \sum_{i=0}^k (-1)^i [u_0, \ldots, u_{i-1}, u_{i+1}, \ldots, u_k],$$

where $[u_0, u_1, \ldots, u_k]$ is a basis element of $C_k(K)$.

• Coboundary map
$$\delta_k : C^k(K) \to C^{k+1}(K)$$

$$\delta_k(\phi)(\sigma^{k+1}) = \sum_{i=0}^{k+1} (-1)^i \phi([u_0, \ldots, u_{i-1}, u_{i+1}, \ldots, u_{k+1}]),$$

where $\phi \in C^k(K)$ and $\sigma^{k+1} = [u_0, \ldots, u_{k+1}]$ is a basis element of $C_{k+1}(K)$.

Combinatorial Laplacian

Another important map that is crucial in the formulation of Hodge Decomposition Theorem is the combinatorial Laplacian:

Definition

The k-dimensional combinatorial Laplacian is the linear operator $\Delta_k : C^k(K) \to C^k(K)$ is defined as follows:

$$\Delta_k = \begin{cases} \delta_k^* \circ \delta_k + \delta_{k-1} \circ \delta_{k-1}^* & \text{if } k \ge 1, \\ \delta_k^* \circ \delta_k & \text{if } k = 0. \end{cases}$$

 $\delta_k^*: C^{k+1}(K) \to C^k(K)$ is the adjoint/transpose map of δ_k where

$$\langle \delta_k(f), g \rangle = \langle f, \delta_k^*(g) \rangle$$

for every $f \in C^{k}(K)$, $g \in C^{k+1}(K)$ and a suitable inner product \langle , \rangle for $C^{k}(K)$ and $C^{k+1}(K)$.

Persistent spectral simplicial complex

Meng, Xia. Science Advance, 2021

Combinatorial Laplacian (Hodge Laplacian)

$$\mathbf{L}_k = \mathbf{B}_k^T \mathbf{B}_k + \mathbf{B}_{k+1} \mathbf{B}_{k+1}^T.$$

Multiplicity of zero eigenvalues (Persistent multiplicity) from PerSpect simplicial complex is equivalent to persistent Betti number.

PerSpect variables change with filtration parameter and incorporate in them related geometric information.

Jie Wu, BIMSA

Hypergraph based data representation

Grbic J, Wu J, Xia K, Wei GW. Aspects of topological approaches for data science[J]. Foundations of Data Science, 2022.

Bressan, Li, Ren, Wu. The embedded homology of hypergraphs and applications , 2016 Ren, Shiquan, et al. "Computing the Homology of Hypergraphs." *arXiv preprint arXiv:1705.00151* (2017).

Ren, Shiquan, Chengyuan Wu, and Jie Wu. "Operators on random hypergraphs and random simplicial complexes." *arXiv preprint arXiv:1712.02045* (2017).

Ren, Shiquan, and Jie Wu. "Stability of persistent homology for hypergraphs." *arXiv* preprint arXiv:2002.02237 (2020).

Ren, Shiquan, et al. "A Discrete Morse Theory for Hypergraphs." *arXiv preprint arXiv:1804.07132* (2018).

Embedded homology of hypergraph

Definition (infimum chain complex)

Given a hypergraph ${\cal H},$ the infimum chain complex of ${\cal H}$ with coefficient R is defined as

 $Inf_{n}(\mathcal{H},R) = \sum \{C_{n} | C_{\star} \text{ is a subchain complex of } R((K_{\mathcal{H}})_{\star}) \text{ and } C_{n} \subset R(\mathcal{H}_{n}) \}$

which is the largest subchain complex of the chain complex of $K_{\mathcal{H}}$ that is contained in the graded modules $R(\mathcal{H}_{\star})$

Definition (supremum chain complex)

Given a hypergraph ${\cal H},$ the supremum chain complex of ${\cal H}$ with coefficient R is defined as

 $Sup_n(\mathcal{H},R) = \bigcap \{C_n | \ C_\star \text{ is a subchain complex of } R((K_\mathcal{H})_\star) \text{ and } R(\mathcal{H}_n) \subset C_n \}$

which is the smallest subchain complex of the chain complex of $K_{\mathcal{H}}$ that contains $R(\mathcal{H}_{\star})$ as a graded modules.

Proposition

Given a hypergraph \mathcal{H} , the homology of the infimum chain complex of and supremum chain complex of \mathcal{H} with coefficient R are isomorphic.

Definition (Hypergraph embedded homology)

Given a hypergraph \mathcal{H} , the n-th embedded homology of \mathcal{H} with coefficient R is defined as

 $H_n(\mathcal{H}, R) = H_n(Sup_{\star}(\mathcal{H}, R)) = H_n(Inf_{\star}(\mathcal{H}, R))$

Bressan, Li, Ren, Wu. AJM, 2019

 K_H

$$C_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\} \\ C_{1} = Z\{\{0,1\}, \{2,3\}, \{2,4\}, \{3,4\}\} \\ C_{2} = Z\{\{0,12\}\} \\ A_{0} = Z\{\{0,1\}, \{0,2\}, \{1,2\}, \{2,3\}, \{2,4\}, \{3,4\}\} \\ A_{1} = Z\{\{0,1\}, \{0,2\}, \{1,2\}, \{2,3\}, \{2,4\}, \{3,4\}\} \\ A_{2} = Z\{\{0,12\}\} \\ \rightarrow A_{3} \xrightarrow{\partial_{3}} A_{2} \xrightarrow{\partial_{2}} A_{1} \xrightarrow{\partial_{1}} A_{0} \\ S_{n} = C_{n} + \partial_{n+1}(C_{n+1}), I_{n} = C_{n} \cap \partial_{n}^{-1}(C_{n-1}) \end{cases} \qquad I_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\} \\ I_{1} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ S_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ S_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ S_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ S_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ S_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ S_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ S_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ S_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ S_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ S_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ S_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ S_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ S_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ S_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ S_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ S_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ S_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ S_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ S_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ S_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ S_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ S_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ S_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ I_{2} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ I_{2} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ I_{2} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ I_{2} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ I_{2} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ I_{2} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ I_{2} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}, \{4\}, \{4\}\}\} \\ I_{2} = Z\{\{0\}, \{4\}, \{4\}, \{4\},$$

Protein-ligand interaction modeled as hypergraph

Liu, Wang, Wu, Xia, BIB, 2021

Hypergraphbased models

Hypergraph-based filtration

filtration=3.9

filtration=4.3

filtration=4.1

filtration=4.4

filtration=4.2

filtration=4.5

Bipartite graph VS Hypergraph

Din

Dim 0

Dim

(a) (b) (c)

Benchmark testing with PDBbind datasets

Model setting: homology vectors + Gradientboostingtree

Dowker Complex based molecular representation

Dowker complex based persistent Laplacian

Neighborhood complex based molecular representation

0.2

SAS AND COL

D BODS INS AST

Hom complex Hom(G1,G2)

Hom-complex representation of Benzene ring from different graphs

Graph G filtration

 $Hom(K_3, G)$ filtration

Table 1. Comparison of the performance between our model and other models on SKEMPI S1131 dataset.

Method	PCC
Hom-ML(2)	0.857
TopNetTree	0.850
Hom-ML(1)	0.792
BindProfX	0.738
Profile-	0.738
score+FoldX	
Profile-score	0.675
SAAMBE	0.624
FoldX	0.457
BeAtMuSic	0.272
Dcomplex	0.056

Table 2. Comparison of the performance between our model and other models on AB-Bind S645.

Method	РСС
TopNetTree	0.65(0.68)
Hom-ML(2)	0.58(0.70)
Hom-ML(1)	0.58(0.68)
mCSM-AB	0.53(0.56)
Discovery Studio	0.45
mCSM-PPI	0.35
FoldX	0.34
STATIUM	0.32
DFIRE	0.31
bAsA	0.22
dDFIRE	0.19
Rosetta	0.16

Thank You!