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Background

Persistent homology

In 2005, G. Carlsson, A. Zomorodian et al. introduced the
persistent homology for extracting topological features.

Figure 1: Gunnar Carlsson, Stanford University

In 2009, G. Carlsson, A. Zomorodian et al. introduced the
multidimensional (or multi-parameter) persistent homology to
deal with multi-parameter filtration of simplicial complexes.

1 / 48



Background

Persistent homology

In 2010, G. Carlsson and V. D. Silva developed the theory of
zigzag persistence for studying the persistence of topological
features across a family of spaces or point-cloud data sets.

In 2011, the persistent cohomology (or copersistence) was in-
troduced to identify candidates for significant circle-structures
in the data.
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Background

Persistent homology

We compare the above outstanding variants of persistence as fol-
lows.

Different persistences Gradings The corresponding spaces

The usual persistence Z (or R) Z-graded vector spaces
Multidimensional persistence Zn Zn-graded vector spaces

Zigzag persistence Zigzag sequence Zigzag diagrams of vector spaces
Copersistence Z Z-graded dual vector spaces
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Background

Persistence module

Usually, a persistence module is a functor F : cat(Z,≤) → Veck
from the category cat(Z,≤) to the category of k-linear spaces. Let
K : cat(Z,≤)→ Simp be a persistence simplicial complex, that is,
a filtration of simplicial complexes satisfies

(i) For each i ∈ Z, Ki is a simplicial complex. For any integers
i ≤ j, there is a morphism of simplicial complexes fi,j : Ki →
Kj .

(ii) For i ≤ j ≤ k, we have fj,k ◦ fi,j = fi,k.
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Background

Persistence module

One has that the functor

H∗(K;k) : cat(Z,≤)→ Veck, i 7→ H∗(Ki;k)

is a persistence module.
For i ≤ j, the (i, j)-persistent homology is defined by

Hi,j
∗ = im(H∗(Ki;k)→ H∗(Kj ;k)).
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Background

Persistence module

Let H =
⊕
i∈Z

Hi
∗ be a graded k-linear space. The morphism t :

H∗(Ki;k)→ H∗(Ki+1;k) induces a morphism

t : H→ H

of degree 1. Consider the polynomial ring k[t]. For any f(t) =
n∑

k=0

akt
k ∈ k[t], we have a morphism

f(t) : H→ H

given by f(t)(α) =
n∑

k=0

ak ·
k︷ ︸︸ ︷

t ◦ t ◦ · · · ◦ t(α). This shows that H is a

graded left k[t]-module given by

k[t]×H→ H, (f(t), α) 7→ f(t)(α).
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Background

Persistence module

Theorem (A. Zomorodian & G. Carlsson)

If H is a finitely generated k[t]-module, then we have a finite direct
decomposition

H ∼=

(
k⊕

i=1

k[t] · ebii

)
⊕

(
l⊕

j=1

k[t]

k[t] · tsj
· εrjj

)
,

where ebii , ε
rj
j are generators of degree bi, rj , respectively.

Note that k[t] is a principal ideal domain (PID). The proof of this
decomposition mainly depends on the structure theorem of finitely
generated modules over a PID.
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Cayley persistence

Group grading and Cayley digraph

In this talk, we consider the persistence based on group grading.
To give persistence on a group, we recall the Cayley digraph, which
endows a group with a direction in some sense.

Definition

Let G be a group and S be a subset of G. A Cayley digraph
Cay(G,S) is a digraph with the elements of G as vertices and the
pairs (a, b) ∈ G×G satisfying ba−1 ∈ S as arcs.
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Cayley persistence

Examples of digraphs

(Rn,Rn
+) is a Cayley digraph. Here, R+ = {x ∈ R|x ≥ 0}.

(Zn,Zn
+) is a Cayley digraph. Here, Z+ = {x ∈ Z|x ≥ 0}.

(Z/p,Z/p) is a Cayley digraph.

Let G = F [x1, . . . , xn] be a free group generated by x1, . . . , xn,
and let S = F+[x1, . . . , xn] be the free monoid generated by
x1, . . . , xn. Then (G,S) is a Cayley digraph.
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Cayley persistence

Cayley persistence

We may regard a Cayley digraph Cay(G,S) as a category, denoted
by cat(Cay(G,S)), with the vertices as objects and directed paths
as morphisms.
If S is a subset of G, let 〈S〉 be the monoid generated by S. Then
we have

cat(Cay(G,S)) = cat(Cay(G, 〈S〉)).
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Cayley persistence

Cayley persistence

Let C be a category. A Cayley-persistence object is a functor F :
cat(Cay(G,S))→ C from the category cat(Cay(G,S)) to C.

Dually, the Cayley-copersistence object is a contravariant functor
F : cat(Cay(G,S)) → C from the category cat(Cay(G,S)) to the
category C.
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Cayley persistence

Cayley persistence

Let lx : a→ xa be a G-graded map for a ∈ G, x ∈ S in the category
cat(Cay(G,S)). Then we have a morphism

F(lx) : Fa → Fxa, a ∈ G, x ∈ S

in category C. Moreover, the set {F(lx)}x∈S can be regarded as a
monoid with composition as multiplication, denoted by LS .
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Cayley persistence

Cayley persistence

In 2010, G. Carlsson and A. Zomorodian considered classifica-
tion of the multidimensional persistence module.

In this talk, we have a Cayley-persistence structure of modules
based on the finitely generated module.
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Cayley persistence

Cayley persistence

Theorem (Wanying Bi, Jingyan Li, Jian Liu & Jie Wu)

Let MF be a finitely generated k[LS ]-module and S be a finitely
generated monoid. Then we have a finite direct sum decomposition

MF ∼=
k⊕

i=1

k[LS ] · exi

i ⊕

((
l⊕

j=1

k[LS ] · εyjj

)
/N

)

for some k, l, where exi

i ∈ Fxi , ε
yj
j ∈ Fyj and N is a finitely

generated k[LS ]-module generated by the elements of the form
F(ly)εytt −F(lyyty−1

s
)εyss for some 1 ≤ s, t ≤ l, y ∈ S.
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Cayley persistence

Cayley persistence

Corollary

Let F : cat(Cay(G,S)) → Veck be a Cayley-persistence k-linear
space. If FG =

⊕
x∈G
Fx is a finitely generated k[LS ]-module and

S is a finitely generated monoid, then we have a finite direct sum
decomposition

FG ∼=
k⊕

i=1

k[LS ] · exi

i ⊕

((
l⊕

j=1

k[LS ] · εyjj

)
/N

)

for some k, l, where exi

i ∈ Fxi , ε
yj
j ∈ Fyj and N is a finitely

generated k[LS ]-module generated by the elements of the form
F(ly)εytt −F(lyyty−1

s
)εyss or F(ly)εytt for some 1 ≤ s, t ≤ l, y ∈ S.
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Cayley persistence

Cayley persistence

The condition that MF is a finitely generated RF -module ensures
the existence of the “born time” of the generators. The condition
that S is a finitely generated monoid makes it possible for us to
obtain the finiteness of the time of disappearance and meeting of
generators, that is, N is a finitely generated RF -module.
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Cayley persistence

Cayley persistence

Note that exi

i ∈ Fx1 , ε
yj
j ∈ Fyj represent the elements coming into

being at xi, yj , respectively. A generator F(ly)εytt −F(lyyty−1
s

)εyss of

N shows the information that two elements εytt , ε
ys
s become the same

one at the time yyt. We denote yst = yyt. Then the information of
N can be represented by all the triples (εyss , ε

yt
t , yst), which means

the two generators appearing at ys, yt and meeting at yst.
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Cayley persistence

A example

Let F : (R2,R2
+) → Veck be a Cayley-persistence vector space,

where Veck is a category of vector spaces. Let Vv = kv ⊕ kv′,
Vw = kw ⊕ kw′, and let 0 be the null space.

O x1 2 3 4−1

y

∅

∅

∅

C1 C2

C3 C4

C5

O x1 2 3 4−1

y

∅

∅

∅

0 v, v′

w,w′ 0

u
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Cayley persistence

An example

Let C1 = {(x, y)|0 ≤ x, y < 2}, C2 = {(x, y)|2 ≤ x < 4, 0 ≤ y < 2},
C3 = {(x, y)|0 ≤ x < 2, y ≥ 2}, C4 = {(x, y)|0 ≤ x, y ≤ 2},
C5 = {(x, y)|x ≥ 4, 0 ≤ y < 2}. The functor F is given by

FP =


Vv, P ∈ C2;
Vw, P ∈ C3;
Vu, P ∈ C5;
0, P ∈ C1 ∪ C4;
∅, otherwise.

and

FP→Q =


id, P,Q ∈ C2, C3;
ϕ, P ∈ C2, Q ∈ C5;
0, P ∈ C1 or Q ∈ C4;
∅, otherwise.
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Cayley persistence

An example

Here, ϕ : Vv → ku is given by ϕ(v) = ϕ(v′) = u. Then w,w′ begin
to appear at (0, 2) and disappear at (2, 2) while v, v′ begin to appear
at (2, 0), meet at (4, 0) and disappear at (2, 2). A straightforward
calculation shows that

FG
∼=
RF · e

(2,0)
v ⊕RF · e

(2,0)
v′ ⊕RF · e

(0,2)
w ⊕RF · e

(0,2)
w′ ⊕RF · e

(4,0)
u

N
,

where N is an RF -module generated by

Fl(0,2)e
(2,0)
v ,Fl(0,2)e

(2,0)
v′ ,Fl(2,0)e

(0,2)
w ,F(l(2,0)e

(0,2)
w′ ,

Fl(2,0)e
(2,0)
v − e(4,0)u ,Fl(2,0)e

(2,0)
v′ − e(4,0)u .
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Cayley persistence

An example

By reduction, we get

FG
∼=
RF · e

(2,0)
v ⊕RF · e

(2,0)
v′ ⊕RF · e

(0,2)
w ⊕RF · e

(0,2)
w′

N ′
,

where

N ′ =RF · F(l(0,2))e
(2,0)
v ⊕RF · F(l(0,2))e

(2,0)
v′ ⊕RF · F(l(2,0))e

(0,2)
w

⊕RF · F(l(2,0))e
(0,2)
w′ ⊕RF · F(l(2,0))(e

(2,0)
v − e(2,0)v′ ).
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Cayley persistence

An example

For the two 1-parameter filtrations given by y = 0 and y = x3, we
have the following barcode diagrams.

O x

v

v − v′

1 2 3 4 O x

w

w′

13
√

2 2 3 4

Figure 2: The barcodes of persistence sets obtained by y = 0 and y = x3.

22 / 48



Cayley persistence

An example

We have a collection of triples

(e
(2,0)
v ,0, (2, 2)), (e

(2,0)
v′ ,0, (2, 2)), (e

(0,2)
w ,0, (2, 2)),

(e
(0,2)
w′ ,0, (2, 2)), (e

(2,0)
v , e

(2,0)
v′ , (4, 0)).

This gives a finite set to represent the information of infinite many
1-parameter filtrations in the parameter space. This also shows
us the survival spaces rather then some survival intervals of the
generators.
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Cayley persistence

The Cayley persistent homology

When a Cayley persistent homology is a finitely generated k[LS ]-
module?

From now on, let S ⊆ G be a monoid such that the identity 1 is the
unique invertible element in S. Then the group G can be regarded
as a poset with partial order given by a ≤ b if ba−1 ∈ S.
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Cayley persistence

The Cayley persistent homology

Definition

A Cayley persistence object F : cat(Cay(G,S)) → C is called
noetherian if every ordered subset X ⊆ G has an element x such
that F(lz) : Fx → Fzx is the identity morphism for all z ∈ S.

A Cayley persistence object F : cat(Cay(G,S))→ C is called lower
bounded if there exists an element a ∈ G such that Fx = ∅ unless
x ≥ a.
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Cayley persistence

The Cayley persistent homology

Theorem (Wanying Bi, Jingyan Li, Jian Liu & Jie Wu)

Let F : cat(Cay(G,S))→ Veck be a noetherian and lower bound-
ed Cayley-persistence simplicial complex. If S is a finitely generat-
ed commutative monoid, then F(G) is a finitely generated k[LS ]-
module.
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Cayley persistence

The Cayley persistent homology

In practical application, the filtration of simplicial complexes al-
ways begins at a given parameter and becomes stable at a finite
parameter. The beginning parameter indicates that

K : cat(Cay(Zn,Zn
≥0))→ Simp

is lower bounded, while “stable” implies that K is noetherian.
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Cayley persistence

An example

Let V = {x1, x2, x3, x4}, where x1 = (0, 0), x2 = (2, 0), x3 =
(0, 1), x4 = (2, 1) are points in R2. Consider the weight function
w : V → R given by

w(P1) = 1, w(P2) = 2, w(P3) = 3, w(P4) = 1.

O x

y

w(P1) = 1 w(P2) = 2

w(P3) = 3 w(P4) = 1
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Cayley persistence

An example

Then we have a 2-parameter filtration Ks,t given as the following
diagram.

s

t

s0 = 1

s1 = 2

s2 = 3

t0 = 0 t1 = 1 t2 = 2 t3 =
√
5

2

u(2,0)

e(2,2)

w(1,0)

Base point

v(0,0)
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Cayley persistence

An example

We have a finite direct sum decomposition

H(K) ∼=
k[L1, L2] · v(0,0) ⊕ k[L1, L2] · w(1,0) ⊕ k[L1, L2] · u(2,0) ⊕ k[L1, L2] · e(2,2)

N
,

where N is a k[L1, L2]-module generated by

L3
2v

(0,0), L2w
(1,0) − L1L2v

(0,0), L2
2w

(1,0), L2u
(2,0), L2e

(2,2).

Here, L1 = H∗(K(l(1,0));k) and L2 = H∗(K(l(0,1));k).
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Further results

Cayley persistence algebra

Let K : cat(Cay(G,S))→ Simp be a Cayley-persistence simplicial
complex such that the homology H∗(Ka;k) is of finite dimension
for all a ∈ G. Then the (reduced) cohomology induces a Cayley-
copersistence module

H∗(K;k) : cat(Cay(G,S))→ Veck.
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Further results

Cayley persistence algebra

Let S ⊆ G be a monoid such that the identity element e is the
unique invertible element in S. Then the group G can be regarded
as a poset with partial order given by a ≤ b if ba−1 ∈ S. Suppose
that the category cat(Cay(G,S)) has finite product, for example,
G is a lattice group. Let H =

⊕
a∈G

H∗(Ka;k). The morphism

Lx = H∗(Ka,xa;k) : H∗xa → H∗a , a ∈ G, x ∈ S.

induced by a → xa gives a right action on H. Note that the set
LS = {Lx}x∈S is a monoid with multiplication Lx · Ly = Ly ◦ Lx
for x, y ∈ S. Let k[LS ] be a monoid ring of LS over k, then H is a
right k[LS ]-module.
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Further results

Cayley persistence algebra

For β ∈ H∗xa and γ ∈ H∗ya, the cup product of β, γ at the time a is
defined by

β ∪a γ = (Lxβ) ∪ (Lyγ).

Definition

For b, c ∈ G, the persistence-cup product of β ∈ H∗b and γ ∈ H∗c is
defined by

β · γ = β ∪b×c γ.

Indeed, the persistence-cup product defined above is a product.
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Further results

Cayley persistence algebra

Definition

Let R be a commutative ring with unit. An R-module A is an
R-twisted algebra if there is a twisted multiplication · : A×A→ A
and a bilinear function f : R×R→ R satisfying

(i) α · (β · γ) = (α · β) · γ for any α, β, γ ∈ A.

(ii) (λα) · (µβ) = f(λ, µ)(α · β) for any λ, µ ∈ R,α, β ∈ A.
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Further results

Cayley persistence algebra

Definition

Let R =
⊕
a∈G

Ra be a G-graded ring. A G-graded R-twisted algebra

A =
⊕
a∈G

Aa is a G-graded R-module with twisted multiplication ·

and bilinear functions fa,b : R×R→ R, a, b ∈ G satisfying

(i) α · (β · γ) = (α · β) · γ for any α, β, γ ∈ A.

(ii) (λα) · (µβ) = fa,b(λ, µ)(α ·β) for any λ, µ ∈ R,α ∈ Aa, β ∈ Ab.
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Further results

Cayley persistence algebra

Theorem (Wanying Bi, Jingyan Li, Jian Liu & Jie Wu)

Let G be an abelian group. The persistence-cup product on H
is uniquely determined by the persistence-cup product of k[LS ]-
module generators. Moreover, (H, ·) is a G-graded k[LS ]-twisted
algebra.
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Further results

Order group persistence module

Let G be an abelian order group. By endowing S with an interval
topology, we have a topological monoid S. There is a decomposition
theorem of persistent cohomology for order group grading.

Theorem

Let H be a finitely generated R-module. Then we have a finite
direct sum decomposition

H ∼=
k⊕

i=1

eixi
·R⊕

l⊕
j=1

εjyj ·R
k[Ij ]

for some k, l, where k[Ij ] = εjyj · Lwj · R and Ij is the closure of Ij
for some Ij ⊆ S, wj ∈ S, j = 1, . . . , l.

Note that k[Ij ] does not have to be a finitely generated R-module.
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Further results

The barcode for persistence-cup product

Denote
I(α) = supp(α) = {x ∈ G|αx 6= 0}

the support of α in grading G. We have a description of barcode
for the persistence-cup product

Theorem (Wanying Bi, Jingyan Li, Jian Liu, & Jie Wu)

Let G be an abelian order group. Let α, β be two of the generators
of H as R-module. If α ∪ β is nontrivial, then

min(sup(I(α)), sup(I(β))) ≤ sup(I(α ∪ β)),

max(inf(I(α)), inf(I(β))) ≤ inf(I(α ∪ β)).
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Further results

An example

Consider the filtrations of torus as follows.

(i) Grow from a rectangle to a cylinder and then to a torus.

We set K0 ' pt, K1 ' S1, K2 ' S1 × S1, and K3 ' S1 × S1.
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Further results

An example

(ii) Grow from a rectangle to an incomplete torus, and finally come
into a torus.

We set K′0 ' pt, K′1 ' S1 ∨ S1, K′2 ' S1 × S1, and K′3 ' S1 × S1.
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Further results

An example

(iii) Grow from a rectangle to an incomplete torus, and finally come
into a torus.

We set K′′0 ' S1 × S1, K′′1 ' S1 ∨ S2, K′′2 ' S2, and K ′′3 ' S2.
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Further results

An example

O t

α1

α2

α1 ∪ α2

1 2 3 O t

α1

α2

α1 ∪ α2

1 2 3 O t

α1

α2

α1 ∪ α2

1 2 3

Figure 3: The persistence-cup products on tori of different filtrations.
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Further results

Persistence products on manifolds

In this talk, all the manifolds considered are assumed to be compact
orientable n-manifold without boundary.

Let G be an abelian group, and let S ⊆ G be a monoid such
that the identity 1 is the unique invertible element in S. Let M :
cat(Cay(G,S)) → Mani be a Cayley-persistence manifold. The
homology and cohomology considered are unreduced
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Further results

Persistence products on manifolds

Recall that the Poincaré duality

D : Hp(M ;k)→ Hn−p(M ;k)

defined by D(α) = ω∩α is an isomorphism for all p. Here, ω is the
fundamental class in Hn(M ;k).

44 / 48



Further results

Persistence products on manifolds

Let

Ha,b
∗ = im(Ha

∗ (M;k)→ Hb
∗(M;k)),

H∗a,b = im(H∗b (M;k)→ H∗a(M;k)),

P ∗a,b = im(H∗b (M;k)×H∗b (M;k)
∪→ H∗b (M;k)→ H∗a(M;k))

be the (a, b)-persistent homology, cohomology, and cup-space, re-
spectively.
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Further results

Persistence products on manifolds

Theorem (Wanying Bi, Jingyan Li, Jian Liu, & Jie Wu)

For a, b ∈ G with ba−1 ∈ S, let fa,b∗ : H∗(Ma) → H∗(Mb) be a

map induced by Ma →Mb and fa,bn (ωa) = λa,bωb, λa,b ∈ k.

(i) If λa,b 6= 0, then the map

Da,b = fa,b∗ ◦D : Hp
a,b → Ha,b

n−p

is an isomorphism for all p. Moreover, we have βpa,b = βn−pa,b .

(ii) If λa,b = 0, then the (a, b)-persistent cup-space Pn
a,b = 0. More-

over, we have

βa,bp + βa,bn−p ≤ βap , βpa,b + βn−pa,b ≤ βpa.
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Further results

For more details, please refer to

Wanying Bi, Jingyan Li, Jian Liu, and Jie Wu. On the Cayley-
persistence algebra[J]. arXiv preprint arXiv:2205.10796, 2022.
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Further results

Thank you !
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