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Kähler Differential Recollection

Definition
Let A be a commutative ring and let M be an A-module. A
derivation from A into M is a map d : A → M satisfying
conditions

d(x + y) = d(x) + d(y) d(xy) = xdy + ydx .

The collection of derivations of A into M forms an abelian
group, which we will denote by Der(A, M).
If A is fixed, then the functor M 7→ Der(A, M) is
corepresented by the A-module ΩA, called the A-module of
absolute Kähler differentials. Note that there exists a
universal A-linear derivation from A into ΩA.



Kähler Differential Recollection
Let ϕ : R̃ → R be a square-zero extension of a
commutative ring, that is, a surjective ring homomorphism
such that ker(ϕ)2 = 0 as an ideal of R̃ . In this case, the kernel
M = ker(ϕ) inherits the structure on R-module. Then there
exists a ring homomorphism

(R ⊕ M) ×R R̃ → R̃ ,

given by the formula

(r , m, r̃) 7→ r̃ + m.

Consequently, in some sense square-zero extensions of R by M
can be viewed as torsors for the trivial square-zero
extension R ⊕ M.



Kähler Differential Recollection

In general, if ϕ : R̃ → R is a square-zero extension of R by
M ≃ ker(ϕ), we say that R̃ is trivial if ϕ admits a section. We
have a bijection

{sections of ϕ} ∼−→ {isomorphisms R̃ ∼−→ R ⊕ M}.

Warning: Can be empty!



Kähler Differential Recollection

If there were sections, then any two sections of ϕ differs by a
derivation from R into M, which is classified by an R-linear
map ΩR → M. Consequently, we have an isomorphism

Aut(ϕ) ∼−→ Ext0
R(ΩR , M).

Furthermore, we have

{sections of ϕ}/isomorphism ∼−→ Ext1
R(ΩR , M).

Indeed, given an element η ∈ Ext1
R(ΩR , M), one can construct

a square-zero extension R̃ → R (by M) as follows:



Kähler Differential Recollection
Construction
Unwinding definitions, the element η ∈ Ext1

R(ΩR , M)
determines a short exact sequence of R-modules

0 → M → M̃ → ΩR → 0.

Now pulling back along the universal R-linear derivation gives
us the short exact sequence

0 → M → R̃ → R → 0

of abelian groups, where R̃ = M̃ ×ΩR R.

Exercise
Define a natural multiplication on R̃ such that R̃ is a
square-zero extension of R by M.



Kähler Differential Recollection

We can also consider the relative Kähler differentials ΩB/A
associated with a ring map A → B. Moreover, given a
sequence of commutative ring homomorphisms A → B → C ,
there exists an associated short exact sequence

ΩB/A ⊗B C → ΩC/A → ΩC/B.



Modules as Tangent Vectors

The module of Kähler differentials has a higher analogue,
which we call the cotangent complex. But before we dive in,
let’s first look at a prototypical example.
Definition
Let CRing be the 1-category of commutative rings. A Beck
Module over a commutative ring R is an abelian group object
in the slice category CRing/R . Beck modules over R form an
abelian category.



Modules as Tangent Vectors

One may think of CRing as a "space" and morphisms in CRing
as paths. Then taking a Beck module over a ring is analogous
to taking a tangent vector of a path at the target.
Remark (For Geometers)
Would it make you feel better if we look in the opposite
direction–that is, affine schemes?



Modules as Tangent Vectors

Proposition
For any commutative ring R there exists a canonical
equivalence of abelian categories

ModR
∼−→ Ab(CRing/R).

Moreover, these are assembled into a category TCRing fibered
over CRing, which we call the tangent bundle over CRing.
In higher category theory, we replace abelian groups by
spectra. Thus, the tangent bundle over an ∞-category can
be defined as a family of stabilizations.



Modules as Tangent Vectors

Definition
Let C be a presentable ∞-category. A tangent bundle over C
is an ∞-category TC equipped with a map TC → Fun(∆1, C)
such that
▶ the composite p : TC → Fun(∆1, C) → C is a

biCartesian fibration, where the latter map is given by
evaluating at {1}, and

▶ for each object X ∈ C, the induced functor
Ω∞ : TC ×C {X} → C/X in PrR exhibits the source as a
stabilization of the target.

In this case, the tangent bundle TC exists and is unique up to
equivalence over C.



Modules as Tangent Vectors

One important fact is that, the tangent bundle respects
monoidal structures on the underlying category C.
Proposition (HA 7.3.1.15)
Let C be a presentable ∞-category equipped with an
Ek-monoidal structure, such that the tensor product functor
⊗ : C × C → C preserves sequential colimits. Then the tangent
bundle TC inherits an Ek-monoidal structure.



Modules as Tangent Vectors
As in ordinary algebra, we may again identify modules with
tangent vectors.
Theorem
Let O⊗ be a coherent ∞-operad, let C⊗ → O⊗ be a stable
O-monoidal ∞-category, and let A ∈ AlgO(C) be an
O-algebra object of C. Then there is a canonical equivalence
of ∞-categories

Sp
(
AlgO(C)/A

) ∼−→ FunO
(
O, ModO

A (C)
)

Corollary
Let A be an E∞-ring. There exists a canonical equivalence of
∞-categories

Sp
(
CAlg/A

) ∼−→ ModA



Cotangent Complex

Now we are ready to give the definition of the cotangent
complex construction.
Definition
Let C be a presentable ∞-category. Then the tangent bundle
p : TC → Fun(∆1, C) → Fun({1}, C) ≃ C admits a left adjoint
L : C → TC. For any object A ∈ C, we denote the image under
L in Sp(C/A) by LA, and call it the absolute cotangent
complex associated with A.



Cotangent Complex
we can also define the relative version of cotangent complex.
Definition
In the above situation, let A → B be a map in C. Then, there
exists a canonical coCartesian square

LA LB

0 LB/A

⌟

in TC such that the objects on each vertical arrow project on
to A and B, respectively. We say LB/A is the relative
cotangent complex associated with the map A → B,
regarded as an object in Sp(C/B).



Cotangent Complex

Remark
Suppose A ≃ ∅ is an initial object. Then LA ≃ 0 ∈ TC and the
canonical map LB → LB/A in Sp(C/B) is an equivalence.

Proposition
Given a sequence of maps A → B f−→ C in C, there exists an
associated fiber sequence

f ∗LB/A → LC/A → LC/B.

Here, f ∗ : Sp(C/B) → Sp(C/C) is the functor induced by
post-composing with f .



Digression: Operadic Modules

Let C be a presentably stable O-monoidal ∞-category.
According to the last section, we can think of the cotangent
complex LA associated with A ∈ AlgO(C) as an object in
ModO

A (C).
If O ≃ E∞, ModO

A (C) is simply the stable symmetric monoidal
∞-category ModA(C). However, for general O, the ∞-operad
ModA

O(C) is mysterious.



Digression: Operadic Modules

Fortunately, we can still say something concrete for O ≃ Ek.
Proposition (HA 5.1.3.2)
Let C be a Ek-monoidal ∞-category where geometric
realizations exist and are preserved by tensor products. Let A
be an Ek-algebra in C. Then ModEk

A (C) is an Ek-monoidal
∞-category.



Digression: Operadic Modules
We can think of an object in ModEk

A (C) as an object in C
equipped with a family of actions of A parametrized by rays in
Rk startting from the origin, hence a single left action by the
factorization homolgy

∫
Sk−1 A , which is the "free

Ek-A-module" on the unit 1 ∈ C.
Example
▶ When k = 1, the monoidal ∞-category ModE1

A (C) is
equivalent to the category of A-A-bimodules A BModA(C),
which can also be identified with LModA⊗Aop(C).

▶ When k = 2, ModE2
A (C) is a braided monoidal category

and is equivalent to LModHH(A/C)(C). Note that when
C ≃ Sp, we usually write HH(−/C) as THH(−) and call
it the topological Hochschild homology.



Digression: Operadic Modules
Let R be an commutative k-algebra over some field k . Denote
the kernel of the multiplication R ⊗ R → R by I . Then there
exists a canonical isomorphism of R-modules I/I2 ∼−→ ΩR/k .
The following result can be viewed as a generalization of the
above statement.
Theorem (HA 7.3.5.1)
Let C⊗ be a presentably stable symmetric monoidal
∞-category and let k ≥ 0. For every Ek-algebra object
A ∈ AlgEk

(C), there is a canonical fiber sequence∫
Sk−1

A → A → ΣkLA

in the stable ∞-category ModEk
A (C).



Derivations

Let R be a commutative ring. Recall that we assign to each
extension class η ∈ Ext1

R(ΩR , M) a square-zero extension
R̃ → R of R by M.
As homotopy theorists, we’d love to write

Ext1
R(ΩR , M) ≃ π0(MapModR

(ΩR , ΣM)).

Under this interpretation, an extension class is represented by
a map ΩR → ΣM in ModR . Note that the zero map
corresponds to the trivial square-zero extension R ⊕ M.



Derivations

The goal of this section:
▶ define the notion of derivations for higher algebra, as well

as square-zero extensions
▶ describe the relationship between them

In fact, we can do this for arbitrary presentable C(which we
still refer to as algebras) with TC(which we call modules).



Derivations

The idea is simple, and is the same as the example we gave for
ordinary algebra. First, we define a derivation to be a module
map of the form η : LA → M. Given such a derivation, we may
construct a algebra map as follows:
▶ find the extension of modules classified by η,
▶ pullback along the universal derivation and
▶ write down the multiplicative structure on the module

obtained in this way

(impossible!!!)
In higher algebra, we cannot write down all data for the ring
structure as they are infinite.
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Derivations

One solution: replace the cotangent complex functor L with
the inclusion into the "mapping cylinder".
Definition
Let C be a presentabe ∞-category. Then there exists a
coCartesian fibration

q : M → ∆1

with M ×∆1 {0} ≃ C and M ×∆1 {1} ≃ TC such that the
corresponding functor can be identified with the cotangent
complex L : C → TC. We will refer to MT (C) := M as a
tangent correspondence to C.



Derivations

Definition
A derivation from A into M is a map η : A → M in the
tangent correspondence MT (C), where A ∈ C ⊆ MT (C) and
M ∈ TC ×C {A} ≃ Sp(C/A). We denote the ∞-category of
derivations in C by Der(C).

Remark
Let L : C → TC be the cotangent complex functor. A
derivation η : A → M can be identified with a map
d : LA → M in Sp(C/A). We will abuse of terminology by
identifying η with d , and call d a derivation from A into M.



Square-zero Extensions

We may assign to each derivation η : A → M a map
f : Aη → A in C, such that f fits into a Cartesian diagram in
MT (C):

Aη A

0A M

f

⌟
η .

Here 0A is a zero object in the fiber Sp(C/A). Moreover, this
assignment assembles to a functor Φ : Der(C) → Fun(∆1, C).
In this case, the map f being a map of "algebras" is by
construction!!!



Square-Zero Extensions

Definition
We say a map f : Ã → A in C a square-zero extension if
there exists a derivation η : A → M together with an
equivalence Ã ∼−→ Aη over A. In this case, we also say that
Ã → A is a square-zero extension by Σ−1M.
Exercise:explain to yourself why there is a degree shifting.



Square-zero Extensions

The name "square-zero extension" seems abusive, as we simply
define it as given by a derivation. However, the name will
justfied by the rest of the talk. We first show that these
square-zero extensions are really "square-zero":
Proposition (HA 7.4.1.14)
Let C be a presentably stable monoidal ∞-category. Let
f : Aη → A be a square-zero extension in Alg(C), and let I
denote the fiber of f . Then the multiplication map

θ : I ⊗Aη I → I

is nullhomotopic (as a map of Aη-bimodules).



Square-zero Extensions

Remark
Let η : LA → M be a derivation. Let A ⊕ M denote the image
of M under Ω∞ : Sp(C/A) → C. There exists a Cartesian
square in C as follows:

Aη A

A A ⊕ M

⌟
dη

d0

.



Square-zero Extensions
Remark (continue)

Aη A

A A ⊕ M

⌟
dη

d0

.

Here we identify d0 with the map associated with the zero
derivation LA → M. Given any map ϕ : B → A in C, it
determines a map η′ : ϕ∗LB → LA → M in Sp(C/A). It follows
that the anima

MapC(B, Aη) ×MapC(B,A) {ϕ}

of lifts of ϕ to Aη is equivalent to the anima of homotopies
from 0 to η′ in Sp(C/A).



Small Extensions

In this section, we fix a presentably stable Ek-monoidal
∞-category C with a t-structure compatible with the monoidal
structure. Our goal is to study the square-zero extensions of
Ek-algebras in this category.
Notation:Let D ≃ AlgEk

(C) denote the category of
Ek-algebras. Remember, we have made an identification
Sp(D/A) ≃ ModEk

A (C), and we can talk about t-structure
homotopy groups as we always do in Sp!



Small Extensions

Recall that we have a functor Φ : Der(D) → Fun(∆1, D)
sending an derivation η : A → M to a map f : Aη → A of
Ek-algebras in C.
Warning: The functor Φ is neither full nor faithful!!! Given a
square-zero extension

f : Ã → A,

there exists a derivation η : A → M and an equivalence
Ã ∼−→ Aη. However, neither η nor M are determined uniquely
by f .
However, we can define subcategories on both sides, where the
restrictions on each side induce equivalences. Moreover, each
subcategorie has a relatively simple characterization.



Small Extensions

Definition
Let f : A → B be a map of Ek-algebras in C and let n ≥ 0.
We say that f is an n-small extension if:
▶ A ∈ C≥0,
▶ fib(f ) ∈ C≥n,≤2n and moreover,
▶ the multiplication map fib(f ) ⊗A fib(f ) → fib(f ) is

nullhomotopic.
We denote by Funn−sm(∆1, D) the full subcategory of
Fun(∆1, D) spanned by the n-small extensions.



Small Extensions

Remark
Given a map f such that all but the last conditions are
satisfied. Then

fib(f ) ⊗A fib(f ) → fib(f )

being nullhomotopic is equivalent to the vanishing of

πn(fib(f )) ⊗ πn(fib(f )) → π2n(fib(f )).

It follows that all conditions listed above can be determined
once the homotopy groups are known.



Small Extensions

Also, we consider subcategories on the right-hand side.
Definition
We denote Dern−sm(D) the full subcategory of Der(D)
spanned by those pairs (A, η : LA → ΣM) such that:
▶ A ∈ C≥0 and
▶ M ∈ C≥n,≤2n.



Small Extensions

Now we are ready to state our main story:
Theorem (HA 7.4.1.26)
For each n ≥ 0, the functor Φ : Der(D) → Fun(∆1, D)
induces an equivalence of ∞-categories

Φn−sm : Dern−sm(D) ∼−→ Funn−sm(∆1, D).

It follows that, if we only focus on an extension given by a
"small" object (for example, concentrated in a single degree),
then it is necessarily uniquely given by a derivation!



Postnikov Tower

Let us describe an application of the previous result, which is
extremely useful in higher algebra.
Corollary
Let A ∈ AlgEk

(C) ∩ C≥0 be a connective Ek-algebra. Then
each arrow in the Postnikov tower

· · · → τ≤3A → τ≤2A → τ≤1A → τ≤0A

is a square-zero extension, that is, by definition, classified by a
derivation.



Postnikov Tower

As the corollary suggests, for an Ek-algebra B there exists a
Cartesian square

Bτ≤n Bτ≤n−1

Bτ≤n−1 Bτ≤n−1 ⊕ Σn+1πn(B)

⌟

It follows that studying Ek-algebra maps Map(A, B) can be
reduced to studying the set Hom(π0(A), π0(B)) and the groups
Extn+1(LA, πnB) representing "linear problems" for all n ≥ 0.



Étale Morphism

In the last section, we briefly state an application of this
theory. In HA 7.5, Lurie generalized the notion of étale
morphism to higher algebra.
Definition
Let f : A → B be a map of Ek-ring spectra, k ≥ 2. We say f
is étale if the following conditions hold:
▶ the induced map π0(f ) : π0(A) → π0(B) in CAlg♡ is étale

in the ordinary sense
▶ the canonical maps πn(A) ⊗π0(A) π0(B) → πn(B) in

Ab ≃ Sp♡ are isomorphisms for all n ≥ 0



Étale Morphism

Theorem (HA 7.5.0.6)
Let 2 ≤ k ≤ ∞, let R be a Ek+1-ring, and let A be a
Ek-algebra over R. Let (Alg(k)

R )ét
A/ denote the full subcategory

of (Alg(k)
R )A/ spanned by the étale morphisms. Then the

construction B 7→ π0(B) induces an equivalence of
∞-categories:

(Alg(k)
R )ét

A/
∼−→ CAlg♡,ét

π0(A) .

Here, the right-hand side denotes (the nerve of) the category
of ordinary étale π0(A)-algebras.
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