You Could've Invented Cotangent Complexes

Xiansheng Li

March 28, 2025

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Cotangent Complex Formalism

Digression: Operadic Modules

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Derivations

Small Extensions

Differential Geometry

. . .

Eucliean spaces manifolds/orbifolds/···,etc vector bundles Algebraic Geometry

affine Schemes schemes/stacks/····,etc quasi-coherent sheaves

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Differential Geometry

Eucliean spaces manifolds/orbifolds/···,etc vector bundles

. . .

differential forms

Algebraic Geometry

affine Schemes schemes/stacks/····,etc quasi-coherent sheaves

(日) (四) (日) (日) (日)

Kähler differentials

Definition

Let A be a commutative ring and let M be an A-module. A **derivation** from A into M is a map $d : A \rightarrow M$ satisfying conditions

$$d(x+y) = d(x) + d(y) \quad d(xy) = xdy + ydx.$$

The collection of derivations of A into M forms an abelian group, which we will denote by Der(A, M).

If A is fixed, then the functor $M \mapsto Der(A, M)$ is corepresented by the A-module Ω_A , called the A-module of **absolute Kähler differentials**. Note that there exists a universal A-linear derivation from A into Ω_A .

Let $\phi: \tilde{R} \to R$ be a **square-zero extension** of a commutative ring, that is, a surjective ring homomorphism such that $ker(\phi)^2 = 0$ as an ideal of \tilde{R} . In this case, the kernel $M = ker(\phi)$ inherits the structure on *R*-module. Then there exists a ring homomorphism

$$(R \oplus M) \times_R \tilde{R} \to \tilde{R},$$

given by the formula

$$(r, m, \tilde{r}) \mapsto \tilde{r} + m.$$

Consequently, in some sense square-zero extensions of R by M can be viewed as **torsors** for the **trivial square-zero** extension $R \oplus M$.

In general, if $\phi : \tilde{R} \to R$ is a square-zero extension of R by $M \simeq ker(\phi)$, we say that \tilde{R} is trivial if ϕ admits a section. We have a bijection

{sections of ϕ } $\xrightarrow{\sim}$ {isomorphisms $\tilde{R} \xrightarrow{\sim} R \oplus M$ }.

Warning: Can be empty!

If there were sections, then any two sections of ϕ differs by a derivation from R into M, which is classified by an R-linear map $\Omega_R \to M$. Consequently, we have an isomorphism

 $\operatorname{Aut}(\phi) \xrightarrow{\sim} \operatorname{Ext}^0_R(\Omega_R, M).$

Furthermore, we have

{sections of ϕ }/isomorphism $\xrightarrow{\sim} \operatorname{Ext}^{1}_{R}(\Omega_{R}, M)$.

Indeed, given an element $\eta \in \operatorname{Ext}^1_R(\Omega_R, M)$, one can construct a square-zero extension $\tilde{R} \to R$ (by M) as follows:

Construction

Unwinding definitions, the element $\eta \in \text{Ext}^{1}_{R}(\Omega_{R}, M)$ determines a short exact sequence of *R*-modules

$$0 \rightarrow M \rightarrow \tilde{M} \rightarrow \Omega_R \rightarrow 0.$$

Now pulling back along the universal *R*-linear derivation gives us the short exact sequence

$$0 \to M \to \tilde{R} \to R \to 0$$

of abelian groups, where $\tilde{R} = \tilde{M} \times_{\Omega_R} R$.

Exercise

Define a natural multiplication on \tilde{R} such that \tilde{R} is a square-zero extension of R by M.

We can also consider the **relative Kähler differentials** $\Omega_{B/A}$ associated with a ring map $A \rightarrow B$. Moreover, given a sequence of commutative ring homomorphisms $A \rightarrow B \rightarrow C$, there exists an associated short exact sequence

$$\Omega_{B/A}\otimes_B C\to \Omega_{C/A}\to \Omega_{C/B}.$$

The module of Kähler differentials has a higher analogue, which we call the **cotangent complex**. But before we dive in, let's first look at a prototypical example.

Definition

Let CRing be the 1-category of commutative rings. A **Beck Module** over a commutative ring R is an abelian group object in the slice category $\text{CRing}_{/R}$. Beck modules over R form an abelian category.

One may think of CRing as a "space" and morphisms in CRing as paths. Then taking a Beck module over a ring is analogous to taking a tangent vector of a path at the target.

Remark (For Geometers)

Would it make you feel better if we look in the opposite direction-that is, **affine schemes**?

Modules as Tangent Vectors

Proposition

For any commutative ring R there exists a canonical equivalence of abelian categories

 $\operatorname{Mod}_R \xrightarrow{\sim} \operatorname{Ab}(\operatorname{CRing}_{/R}).$

Moreover, these are assembled into a category T_{CRing} fibered over CRing, which we call the tangent bundle over CRing. In higher category theory, we replace abelian groups by spectra. Thus, the tangent bundle over an ∞ -category can be defined as a family of stabilizations.

Modules as Tangent Vectors

Definition

Let \mathcal{C} be a presentable ∞ -category. A **tangent bundle** over \mathcal{C} is an ∞ -category $T_{\mathcal{C}}$ equipped with a map $T_{\mathcal{C}} \to \operatorname{Fun}(\Delta^1, \mathcal{C})$ such that

- ► the composite p : T_C → Fun(Δ¹, C) → C is a biCartesian fibration, where the latter map is given by evaluating at {1}, and
- For each object X ∈ C, the induced functor Ω[∞] : T_C ×_C {X} → C_{/X} in Pr^R exhibits the source as a stabilization of the target.

In this case, the tangent bundle $T_{\mathcal{C}}$ exists and is unique up to equivalence over \mathcal{C} .

One important fact is that, the tangent bundle respects monoidal structures on the underlying category C.

Proposition (HA 7.3.1.15)

Let C be a presentable ∞ -category equipped with an \mathbb{E}_k -monoidal structure, such that the tensor product functor $\otimes : C \times C \to C$ preserves sequential colimits. Then the tangent bundle T_c inherits an \mathbb{E}_k -monoidal structure.

Modules as Tangent Vectors

As in ordinary algebra, we may again identify modules with tangent vectors.

Theorem

Let \mathcal{O}^{\otimes} be a coherent ∞ -operad, let $\mathcal{C}^{\otimes} \to \mathcal{O}^{\otimes}$ be a stable \mathcal{O} -monoidal ∞ -category, and let $A \in \operatorname{Alg}_{\mathcal{O}}(\mathcal{C})$ be an \mathcal{O} -algebra object of \mathcal{C} . Then there is a canonical equivalence of ∞ -categories

$$\mathsf{Sp}\left(\mathsf{Alg}_{\mathcal{O}}(\mathcal{C})_{/A}\right) \xrightarrow{\sim} \mathsf{Fun}_{\mathcal{O}}\left(\mathcal{O},\mathsf{Mod}_{A}^{\mathcal{O}}(\mathcal{C})\right)$$

Corollary

Let A be an $\mathbb{E}_{\infty}\text{-ring.}$ There exists a canonical equivalence of $\infty\text{-categories}$

$$\mathsf{Sp}\left(\mathsf{CAlg}_{/\mathcal{A}}
ight) \stackrel{\sim}{ o} \mathsf{Mod}_{\mathcal{A}}$$

Now we are ready to give the definition of the **cotangent complex** construction.

Definition

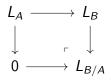
Let C be a presentable ∞ -category. Then the tangent bundle $p: T_C \to \operatorname{Fun}(\Delta^1, C) \to \operatorname{Fun}(\{1\}, C) \simeq C$ admits a left adjoint $L: C \to T_C$. For any object $A \in C$, we denote the image under L in $\operatorname{Sp}(\mathcal{C}_{/A})$ by L_A , and call it the **absolute cotangent** complex associated with A.

Cotangent Complex

we can also define the relative version of cotangent complex.

Definition

In the above situation, let $A \to B$ be a map in C. Then, there exists a canonical coCartesian square



in $T_{\mathcal{C}}$ such that the objects on each vertical arrow project on to A and B, respectively. We say $L_{B/A}$ is the **relative cotangent complex** associated with the map $A \rightarrow B$, regarded as an object in $\text{Sp}(\mathcal{C}_{/B})$.

Cotangent Complex

Remark

Suppose $A \simeq \emptyset$ is an initial object. Then $L_A \simeq 0 \in T_C$ and the canonical map $L_B \to L_{B/A}$ in $\text{Sp}(\mathcal{C}_{/B})$ is an equivalence.

Proposition

Given a sequence of maps $A \to B \xrightarrow{f} C$ in C, there exists an associated fiber sequence

$$f^*L_{B/A} \to L_{C/A} \to L_{C/B}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Here, $f^* : \text{Sp}(\mathcal{C}_{/B}) \to \text{Sp}(\mathcal{C}_{/C})$ is the functor induced by post-composing with f.

Let \mathcal{C} be a presentably stable \mathcal{O} -monoidal ∞ -category. According to the last section, we can think of the cotangent complex L_A associated with $A \in \operatorname{Alg}_{\mathcal{O}}(\mathcal{C})$ as an object in $\operatorname{Mod}_A^{\mathcal{O}}(\mathcal{C})$.

If $\mathcal{O} \simeq \mathbb{E}_{\infty}$, $\operatorname{Mod}_{\mathcal{A}}^{\mathcal{O}}(\mathcal{C})$ is simply the stable symmetric monoidal ∞ -category $\operatorname{Mod}_{\mathcal{A}}(\mathcal{C})$. However, for general \mathcal{O} , the ∞ -operad $\operatorname{Mod}_{\mathcal{O}}^{\mathcal{A}}(\mathcal{C})$ is mysterious.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Fortunately, we can still say something concrete for $\mathcal{O} \simeq \mathbb{E}_k$. Proposition (HA 5.1.3.2)

Let C be a \mathbb{E}_k -monoidal ∞ -category where geometric realizations exist and are preserved by tensor products. Let Abe an \mathbb{E}_k -algebra in C. Then $Mod_A^{\mathbb{E}_k}(C)$ is an \mathbb{E}_k -monoidal ∞ -category.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Digression: Operadic Modules

We can think of an object in $Mod_A^{\mathbb{E}_k}(\mathcal{C})$ as an object in \mathcal{C} equipped with a family of actions of A parametrized by rays in \mathbb{R}^k startting from the origin, hence a single left action by the **factorization homolgy** $\int_{S^{k-1}} A$, which is the "free \mathbb{E}_k -A-module" on the unit $\mathbf{1} \in \mathcal{C}$.

Example

- When k = 1, the monoidal ∞-category Mod^{E₁}_A(C) is equivalent to the category of A-A-bimodules _A BMod_A(C), which can also be identified with LMod_{A⊗A^{op}}(C).
- When k = 2, Mod^{E₂}_A(C) is a braided monoidal category and is equivalent to LMod_{HH(A/C)}(C). Note that when C ≃ Sp, we usually write HH(−/C) as THH(−) and call it the **topological Hochschild homology**.

Digression: Operadic Modules

Let R be an commutative k-algebra over some field k. Denote the kernel of the multiplication $R \otimes R \to R$ by I. Then there exists a canonical isomorphism of R-modules $I/I^2 \xrightarrow{\sim} \Omega_{R/k}$. The following result can be viewed as a generalization of the above statement.

Theorem (HA 7.3.5.1)

Let C^{\otimes} be a presentably stable symmetric monoidal ∞ -category and let $k \geq 0$. For every \mathbb{E}_k -algebra object $A \in Alg_{\mathbb{E}_k}(C)$, there is a canonical fiber sequence

$$\int_{S^{k-1}} A \to A \to \Sigma^k L_A$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

in the stable ∞ -category $\operatorname{Mod}_{\mathcal{A}}^{\mathbb{E}_k}(\mathcal{C})$.

Let R be a commutative ring. Recall that we assign to each extension class $\eta \in \operatorname{Ext}^1_R(\Omega_R, M)$ a square-zero extension $\tilde{R} \to R$ of R by M.

As homotopy theorists, we'd love to write

$$\operatorname{Ext}^{1}_{R}(\Omega_{R}, M) \simeq \pi_{0}(\operatorname{Map}_{\operatorname{Mod}_{R}}(\Omega_{R}, \Sigma M)).$$

Under this interpretation, an extension class is represented by a map $\Omega_R \to \Sigma M$ in Mod_R. Note that the zero map corresponds to the trivial square-zero extension $R \oplus M$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The goal of this section:

 define the notion of derivations for higher algebra, as well as square-zero extensions

describe the relationship between them

In fact, we can do this for arbitrary presentable C (which we still refer to as algebras) with T_C (which we call modules).

The idea is simple, and is the same as the example we gave for ordinary algebra. First, we define a derivation to be a module map of the form $\eta : L_A \to M$. Given such a derivation, we may construct a algebra map as follows:

- find the extension of modules classified by η ,
- pullback along the universal derivation and
- write down the multiplicative structure on the module obtained in this way

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The idea is simple, and is the same as the example we gave for ordinary algebra. First, we define a derivation to be a module map of the form $\eta : L_A \to M$. Given such a derivation, we may construct a algebra map as follows:

- find the extension of modules classified by η ,
- pullback along the universal derivation and
- write down the multiplicative structure on the module obtained in this way (impossible!!!)

In higher algebra, we cannot write down all data for the ring structure as they are infinite.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

One solution: replace the cotangent complex functor L with the inclusion into the "mapping cylinder".

Definition

Let ${\mathcal C}$ be a presentabe $\infty\text{-category.}$ Then there exists a coCartesian fibration

$$q:\mathcal{M} o\Delta^1$$

with $\mathcal{M} \times_{\Delta^1} \{0\} \simeq \mathcal{C}$ and $\mathcal{M} \times_{\Delta^1} \{1\} \simeq \mathcal{T}_{\mathcal{C}}$ such that the corresponding functor can be identified with the cotangent complex $L : \mathcal{C} \to \mathcal{T}_{\mathcal{C}}$. We will refer to $\mathcal{M}^{\mathcal{T}}(\mathcal{C}) := \mathcal{M}$ as a **tangent correspondence** to \mathcal{C} .

Definition

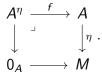
A **derivation** from A into M is a map $\eta : A \to M$ in the tangent correspondence $\mathcal{M}^{\mathsf{T}}(\mathcal{C})$, where $A \in \mathcal{C} \subseteq \mathcal{M}^{\mathsf{T}}(\mathcal{C})$ and $M \in \mathcal{T}_{\mathcal{C}} \times_{\mathcal{C}} \{A\} \simeq \operatorname{Sp}(\mathcal{C}_{/A})$. We denote the ∞ -category of derivations in \mathcal{C} by $\operatorname{Der}(\mathcal{C})$.

Remark

Let $L : \mathcal{C} \to T_{\mathcal{C}}$ be the cotangent complex functor. A derivation $\eta : A \to M$ can be identified with a map $d : L_A \to M$ in Sp($\mathcal{C}_{/A}$). We will abuse of terminology by identifying η with d, and call d a derivation from A into M.

Square-zero Extensions

We may assign to each derivation $\eta : A \to M$ a map $f : A^{\eta} \to A$ in C, such that f fits into a Cartesian diagram in $\mathcal{M}^{T}(C)$:



Here 0_A is a zero object in the fiber $\operatorname{Sp}(\mathcal{C}_{/A})$. Moreover, this assignment assembles to a functor $\Phi : \operatorname{Der}(\mathcal{C}) \to \operatorname{Fun}(\Delta^1, \mathcal{C})$. In this case, the map f being a map of "algebras" is by construction!!!

・ロト・西ト・山田・山田・山口・

Definition

We say a map $f : \tilde{A} \to A$ in C a **square-zero extension** if there exists a derivation $\eta : A \to M$ together with an equivalence $\tilde{A} \xrightarrow{\sim} A^{\eta}$ over A. In this case, we also say that $\tilde{A} \to A$ is a square-zero extension by $\Sigma^{-1}M$.

Exercise:explain to yourself why there is a degree shifting.

Square-zero Extensions

The name "square-zero extension" seems abusive, as we simply define it as given by a derivation. However, the name will justfied by the rest of the talk. We first show that these square-zero extensions are really "square-zero":

Proposition (HA 7.4.1.14)

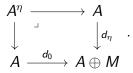
Let C be a presentably stable monoidal ∞ -category. Let $f : A^{\eta} \to A$ be a square-zero extension in Alg(C), and let I denote the fiber of f. Then the multiplication map

$$\theta: I \otimes_{A^{\eta}} I \to I$$

is nullhomotopic (as a map of A^{η} -bimodules).

Remark

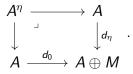
Let $\eta : L_A \to M$ be a derivation. Let $A \oplus M$ denote the image of M under $\Omega^{\infty} : \text{Sp}(\mathcal{C}_{/A}) \to \mathcal{C}$. There exists a Cartesian square in \mathcal{C} as follows:



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Square-zero Extensions

Remark (continue)



Here we identify d_0 with the map associated with the zero derivation $L_A \to M$. Given any map $\phi : B \to A$ in C, it determines a map $\eta' : \phi^* L_B \to L_A \to M$ in $\operatorname{Sp}(\mathcal{C}_{/A})$. It follows that the anima

$$\mathsf{Map}_{\mathcal{C}}(\mathcal{B}, \mathcal{A}^{\eta}) imes_{\mathsf{Map}_{\mathcal{C}}(\mathcal{B}, \mathcal{A})} \{\phi\}$$

of lifts of ϕ to A^{η} is equivalent to the anima of homotopies from 0 to η' in Sp($C_{/A}$).

In this section, we fix a presentably stable \mathbb{E}_k -monoidal ∞ -category $\mathcal C$ with a t-structure compatible with the monoidal structure. Our goal is to study the square-zero extensions of \mathbb{E}_k -algebras in this category.

Notation:Let $\mathcal{D} \simeq \operatorname{Alg}_{\mathbb{E}_k}(\mathcal{C})$ denote the category of \mathbb{E}_k -algebras. Remember, we have made an identification $\operatorname{Sp}(\mathcal{D}_{/A}) \simeq \operatorname{Mod}_A^{\mathbb{E}_k}(\mathcal{C})$, and we can talk about *t*-structure homotopy groups as we always do in Sp!

Recall that we have a functor $\Phi : Der(\mathcal{D}) \to Fun(\Delta^1, \mathcal{D})$ sending an derivation $\eta : A \to M$ to a map $f : A^{\eta} \to A$ of \mathbb{E}_k -algebras in \mathcal{C} .

Warning: The functor Φ is neither full nor faithful!!! Given a square-zero extension

$$f: \tilde{A} \to A,$$

there exists a derivation $\eta : A \to M$ and an equivalence $\tilde{A} \xrightarrow{\sim} A^{\eta}$. However, neither η nor M are determined uniquely by f.

However, we can define subcategories on both sides, where the restrictions on each side induce equivalences. Moreover, each subcategorie has a relatively simple characterization.

Definition

Let $f: A \to B$ be a map of \mathbb{E}_k -algebras in \mathcal{C} and let $n \ge 0$. We say that f is an *n*-small extension if:

►
$$A \in \mathcal{C}_{\geq 0}$$
,

- ▶ $\operatorname{fib}(f) \in \mathcal{C}_{\geq n, \leq 2n}$ and moreover,
- ► the multiplication map fib(f) ⊗_A fib(f) → fib(f) is nullhomotopic.

We denote by $\operatorname{Fun}_{n-\operatorname{sm}}(\Delta^1, \mathcal{D})$ the full subcategory of $\operatorname{Fun}(\Delta^1, \mathcal{D})$ spanned by the *n*-small extensions.

Remark

Given a map f such that all but the last conditions are satisfied. Then

$\operatorname{fib}(f) \otimes_A \operatorname{fib}(f) \to \operatorname{fib}(f)$

being nullhomotopic is equivalent to the vanishing of

 $\pi_n(\mathrm{fib}(f)) \otimes \pi_n(\mathrm{fib}(f)) \to \pi_{2n}(\mathrm{fib}(f)).$

It follows that all conditions listed above can be determined once the homotopy groups are known.

Also, we consider subcategories on the right-hand side.

Definition

We denote $\text{Der}_{n-\text{sm}}(\mathcal{D})$ the full subcategory of $\text{Der}(\mathcal{D})$ spanned by those pairs $(A, \eta: L_A \to \Sigma M)$ such that:

•
$$A \in \mathcal{C}_{\geq 0}$$
 and

►
$$M \in C_{\geq n, \leq 2n}$$
.

Now we are ready to state our main story:

Theorem (HA 7.4.1.26)

For each $n \ge 0$, the functor $\Phi : Der(\mathcal{D}) \to Fun(\Delta^1, \mathcal{D})$ induces an equivalence of ∞ -categories

$$\Phi^{n-\operatorname{sm}}$$
: $\operatorname{Der}^{n-\operatorname{sm}}(\mathcal{D}) \xrightarrow{\sim} \operatorname{Fun}^{n-\operatorname{sm}}(\Delta^1, \mathcal{D}).$

It follows that, if we only focus on an extension given by a "small" object (for example, concentrated in a single degree), then it is necessarily uniquely given by a derivation!

Postnikov Tower

Let us describe an application of the previous result, which is extremely useful in higher algebra.

Corollary

Let $A \in Alg_{\mathbb{E}_k}(\mathcal{C}) \cap \mathcal{C}_{\geq 0}$ be a connective \mathbb{E}_k -algebra. Then each arrow in the Postnikov tower

$$\cdots \to \tau_{\leq 3} A \to \tau_{\leq 2} A \to \tau_{\leq 1} A \to \tau_{\leq 0} A$$

is a square-zero extension, that is, by definition, classified by a derivation.

Postnikov Tower

As the corollary suggests, for an \mathbb{E}_k -algebra B there exists a Cartesian square

It follows that studying \mathbb{E}_k -algebra maps Map(A, B) can be reduced to studying the set $Hom(\pi_0(A), \pi_0(B))$ and the groups $Ext^{n+1}(L_A, \pi_n B)$ representing "linear problems" for all $n \ge 0$.

Étale Morphism

In the last section, we briefly state an application of this theory. In HA 7.5, Lurie generalized the notion of étale morphism to higher algebra.

Definition

Let $f : A \to B$ be a map of \mathbb{E}_k -ring spectra, $k \ge 2$. We say f is étale if the following conditions hold:

the induced map π₀(f) : π₀(A) → π₀(B) in CAlg[♡] is étale in the ordinary sense

▶ the canonical maps $\pi_n(A) \otimes_{\pi_0(A)} \pi_0(B) \to \pi_n(B)$ in $Ab \simeq Sp^{\heartsuit}$ are isomorphisms for all $n \ge 0$

Étale Morphism

Theorem (HA 7.5.0.6)

Let $2 \leq k \leq \infty$, let R be a \mathbb{E}_{k+1} -ring, and let A be a \mathbb{E}_{k} -algebra over R. Let $(\operatorname{Alg}_{R}^{(k)})_{A/}^{\acute{e}t}$ denote the full subcategory of $(\operatorname{Alg}_{R}^{(k)})_{A/}$ spanned by the étale morphisms. Then the construction $B \mapsto \pi_{0}(B)$ induces an equivalence of ∞ -categories:

$$(\operatorname{Alg}_{R}^{(k)})_{A/}^{\acute{e}t} \xrightarrow{\sim} \operatorname{CAlg}_{\pi_{0}(A)}^{\heartsuit,\acute{e}t}.$$

Here, the right-hand side denotes (the nerve of) the category of ordinary étale $\pi_0(A)$ -algebras.