Algebraic K -theory of finite fields

Langwen Hui

University of Illinois, Urbana-Champaign

June 18, 2024

Langwen Hui (University of Illinois, Urbana-C Algebraic K[-theory of finite fields](#page-41-0) June 18, 2024 1/ 42

4 0 8

∍

This is an exposition of Quillen's paper

On the cohomology and K-theory of the general linear groups over a finite field (1972).

Among other things, it determines $\mathrm{K}_{*}(\mathsf{F}_{\rho^{n}})$ for all ρ and $n.$ This is one of the few instances where we completely understand $K_*(R)$; it also serves as input for various other computations in algebraic K-theory.

Notations:

- p is a prime and $q = p^n$ for some n.
- ℓ is a prime different from p .
- k is the finite field F_q .
- r is the least integer ≥ 1 such that $q^r \equiv 1$ mod ℓ .

For R a comutative ring, Quillen defines

$$
\Omega^{\infty}\mathrm{K}(R):=\mathrm{K}_{0}(R)\times \mathrm{BGL}(R)^{+}.
$$

where X^+ denotes the $+$ -construction of the space X .

A major result: computation of $K_i(k)$ (recall $k = \mathbf{F}_q$):

$$
K_i(k) := \pi_i(\mathbf{Z} \times \text{BGL}(k)^+) \cong \begin{cases} \mathbf{Z}, & i = 0, \\ \mathbf{Z}/(q^j - 1), & i = 2j - 1, \\ 0, & i = 2j, j > 0. \end{cases}
$$

In fact, Quillen determines the homotopy type

$$
\mathrm{BGL}(k)^+\simeq \mathrm{BU}^{\psi^q}
$$

where $\psi^\textbf{q}: {\rm BU}\to {\rm BU}$ represents the unstable 1 Adams operation, and

$$
\text{BU}^{\psi^q} := \text{hofib}(\text{BU} \xrightarrow{\psi^q-1} \text{BU}).
$$

From this, the computation of $K_i(k)$ easily follows.

 1 The map ψ^q does not preserve the \mathbb{E}_{∞} -structure on BU and hence does not lift to ku. To see this, take $L_{\mathcal{K}(1)}$ ku $\simeq \mathrm{KU}_p$ and apply to $\beta^{\pm 1}.$ Ω Langwen Hui (University of Illinois, Urbana-Champaign) Algebraic K[-theory of finite fields](#page-0-0) June 18, 2024 5 / 42

 \textbf{D} Identify $\Omega^\infty \text{K}(k) \simeq \text{K}_0(k) \times \text{BGL}(k)^+.$

 $\bullet\,$ Using \sf{Brauer} lifting, find a map $\mathrm{Br}:\mathrm{BGL}(k)\rightarrow \mathrm{BU}^{\psi^q},$ which lifts to

by the universal property of the $+$ -construction (since $\pi_1(\mathrm{BU}^{\psi^q})$ is abelian and contains no perfect subgroups).

Outline II

3 Show that

$$
f: \mathrm{BGL}(k) \to \mathrm{BU}^{\psi^q}
$$

induces isomorphism on cohomology groups

$$
H^*(BGL(k);\kappa)\cong H^*(BU^{\psi^q};\kappa),
$$

for $\kappa = \mathbf{Q}, \mathbf{F}_{\ell}$ and \mathbf{F}_{p} , hence for $\kappa = \mathbf{Z}$. Furthermore, by construction,

$$
\mathrm{H}^*(\mathrm{BGL}(k)^+;\mathbf{Z})\cong \mathrm{H}^*(\mathrm{BGL}(k);\mathbf{Z}).
$$

Since both spaces are \sf{simple}^2 and have the same cohomology,

$$
\mathrm{BGL}(k)^+\simeq \mathrm{BU}^{\psi^q}
$$

Outline III

● Compute $\mathrm{K}_i(k) = \pi_i(\mathrm{BGL}(k)^+) \cong \pi_i(\mathrm{BU}^{\psi^q})$ for $i>1$ using the fiber sequence

$$
BU^{\psi^q} \longrightarrow BU \xrightarrow{\psi^q-1} BU.
$$

Recall that

$$
\pi_{2j}(\mathrm{BU}) \cong \mathbf{Z} \{ \beta^j \}, \quad \psi^q \beta^j = q^j \beta^j.
$$

Taking the associated long exact sequence gives

$$
0\rightarrow \pi_{2j}(\mathrm{BU}^{\psi^q})\rightarrow \pi_{2j}(\mathrm{BU})\xrightarrow{\cdot(\mathsf{q}^j-1)} \pi_{2j}(\mathrm{BU})\rightarrow \pi_{2j-1}(\mathrm{BU}^{\psi^q})\rightarrow 0.
$$

6 Conclusion:

$$
K_{2j}(k) = \pi_{2j}(BU^{\psi^q}) = 0, \quad K_{2j-1}(k) = \pi_{2j-1}(BU^{\psi^q}) \cong \mathbf{Z}/(q^j-1).
$$

²X is simple if $\pi_1(X)$ is abelian and acts trivially on higher $\pi_i(X)$. All H-spaces are simple. 4日下 QQ

Langwen Hui (University of Illinois, Urbana-C Algebraic K[-theory of finite fields](#page-0-0) June 18, 2024 8 / 42

The +-construction is an operation on topological spaces. When applied to $BGL(R)$ it magically yields a model for $(\Omega^{\infty}K(R))_{\geq 1}$.

Definition

A group P is **perfect** if

$$
P^{\rm ab}:=P/[P,P]=0.
$$

There exists a maximal perfect subgroup $P \triangleleft G$ for any G since $P_1, P_2 \triangleleft G$ perfect implies that P_1P_2 is perfect.

The +-construction II

Let X be a pointed CW-complex and $P \triangleleft \pi_1(X)$ the maximal perfect normal subgroup. There exists a space X^+ and a map $\iota: X \to X^+$, called the $+$ -construction of X, such that

- \bullet *i* induces an isomorphism on (co)homology.
- 2 ι induces a surjection on π_1 with kernel P.
- **3** Given any $g: X \rightarrow Y$ such that

$$
P<\ker(\pi_1(X)\xrightarrow{g_*}\pi_1(Y)),
$$

there exists a dotted arrow unique up to pointed homotopy

The $+$ -construction proceeds by attaching 2-cells to kill P, and then attaching 3-cells to recover the homology group. It can be made functorial.

Example ([\[6\]](#page-41-1), Proposition 1)

For $X = \text{BGL}(R)$ the maximal perfect subgroup of $\pi_1(X) \cong \text{GL}(R)$ is

 $E(R) := [\text{GL}(R), \text{GL}(R)],$

the union of all elementary matrices.

Definition (Quillen)

Define the **higher** K -groups of a ring R to be

```
\mathrm{K}_i(R):=\pi_i(\mathrm{BGL}(R)^+),\,\,\forall i\geq 1.
```
イロト イ押ト イヨト イヨトー

Why does this definition work? We illustrate its relationship to an alternative construction of $K(R)$, due to Segal in [\[7\]](#page-41-2). Denote

$$
M:={\rm Proj}_{f,g}(R)^{\simeq}.
$$

Grothendieck defined

$$
\mathrm{K}_0(R):=\pi_0(M)^{\mathrm{gp}},
$$

the group completion of the **commutative monoid** $\pi_0(M)$ under \oplus . On the other hand, since \oplus makes $\mathrm{Proj}_{\mathrm{f.g.}}(R)$ into a symmetric monoidal category, M is an \mathbb{E}_{∞} -monoid. Instead of group completing $\pi_0(M)$ we may group complete M itself. This leads to

$$
\Omega^{\infty} \mathcal{K}(R) := M^{\rm gp} \simeq \Omega \mathcal{B} M.
$$

A naive alternative approach to "group complete" M is by "inverting" f.g. projective R -modules P . Namely, we take the telescope

$$
M[P^{-1}] := \operatorname{tel}_{P}(M) \simeq \operatorname{hocolim}(M \xrightarrow{\oplus P} M \xrightarrow{\oplus P} \cdots)
$$

for all P.

Note that it suffices to take $M[R^{-1}]$: since P is projective,

 $P \oplus Q \cong R^{\oplus n}$

for some n and some projective Q , so

$$
[-P] = [Q] - [R^{\oplus n}].
$$

If $R=k$ is a field, the telescope $\mathrm{tel}_k(M)\simeq M[k^{-1}]$ is a colimit

$$
\text{BGL}_0(k) \coprod \text{BGL}_1(k) \coprod \text{BGL}_2(k) \cdots
$$

$$
\downarrow \qquad \qquad \downarrow
$$

$$
\text{BGL}_0(k) \coprod \text{BGL}_1(k) \coprod \text{BGL}_2(k) \cdots
$$

$$
\downarrow \qquad \qquad \downarrow
$$

$$
\text{BGL}_0(k) \coprod \text{BGL}_1(k) \coprod \text{BGL}_2(k) \cdots
$$

This colimit is $BGL(k) \times Z$. For general R it gives $BGL(R) \times K_0(R)$.

 QQQ

We now have two candidates for the group completion of $M=\mathrm{Proj}(R)^\simeq$:

 Ω BM and $K_0(R) \times BGL(R)$.

These turn out to be different. In fact, $BGL(R)$ is often not an infinite loop space: $\pi_1 \text{BGL}(R) \simeq \text{GL}(R)$, which is far from commutative in general.

In a sense, the $+$ -construction is a fix for this:

 ${\rm K}_0(R)\times{\rm BGL}(R)^+\simeq\Omega{\rm B} M\simeq\Omega^\infty{\rm K}(R).$

Higher K-theory for rings VI

The following can be obtained from the "group completion theorem":

Theorem (McDuff–Segal, [\[3\]](#page-41-3))

There is a map $BGL(R) \to (\Omega BM)_0$ inducing a homology equivalence.

As a corollary,

$$
\pi_1((\Omega \text{BM})_0) \cong H_1((\Omega \text{BM})_0)
$$

\n
$$
\cong H_1(\text{BGL}(R))
$$

\n
$$
\cong \pi_1(\text{BGL}(R))/[\pi_1(\text{BGL}(R)), \pi_1(\text{BGL}(R))]
$$

\n
$$
\cong GL(R)/[GL(R), GL(R)].
$$

We conclude that $(\Omega BM)_0 \simeq \mathrm{BGL}(R)^+$: using the universal property of $(-)^{+}$, there is a map $(\Omega \text{B}M)_{0} \to \text{BGL}(R)^{+}$ inducing a homology equivalence between these simple spaces.

 QQ

Recall that

$$
BU^{\psi^q} := \text{hofib}(BU \xrightarrow{\psi^q-1} BU).
$$

We need a map

$$
\mathrm{Br}:\mathrm{BGL}(k)\to \mathrm{BU}^{\psi^q}
$$

inducing an equivalence in (co)homology groups.

4 **D F**

 \Rightarrow \rightarrow э Idea. To find a map

$$
Br: BGL(k) \to BU^{\psi^q},
$$

it suffices to find a compatible family of virtual complex representations

 $GL_n(k) \to U$

fixed by $\psi^\textsf{q} \circlearrowright \mathrm{Rep}_{\textsf{C}}(\mathrm{GL}_n(k))$, and then take colimit as $n \to \infty.$

Quillen found such a family using **Brauer lifting** to lift the standard representations $\operatorname{GL}_n(k) \circlearrowright k^n$ to *complex* representations.

 Ω

Make a **choice** of embedding of multiplicative groups

$$
\rho:\bar k^*\hookrightarrow \mathbf C^*
$$

where \overline{k} is the algebraic closure of k and the choice of ρ determines a (non-canonical) isomorphism

$$
\bar{k}^* \cong \bigoplus_{\ell \neq p} {\bf Q}_\ell/{\bf Z}_\ell.
$$

For E a finite-dimensional representation of a finite group G over \bar{k} , define the **Brauer character** of E to be the C -valued function

$$
\chi_E(g) := \sum_i \rho(\lambda_i).
$$

where $\{\lambda_i\}$ is the set of eigenvalues counted with multiplicity.

Theorem (Green)

The Brauer character χ_E is the character of a unique virtual complex representation $Br(E) \in Rep_C(G)$.

This is the Brauer lifting. It gives a homomorphism

$$
\mathrm{Rep}_{\bar{k}}(G) \to \mathrm{Rep}_{\mathsf{C}}(G).
$$

If E is a representation of G over $k < \overline{k}$, let

$$
\bar{E}:=E\otimes_k\bar{k}
$$

be its "base-change" to \bar{k} . Thus we have the bottom maps in

$$
\mathrm{Rep}_{k}(G) \xrightarrow[\overline{\epsilon \mapsto \overline{\epsilon}}] \mathrm{Rep}_{\overline{k}}(G) \xrightarrow[\overline{\mathrm{Br}}]{} \mathrm{Rep}_{\overline{c}}(G)
$$

We claim that the bottom map factors through ${\rm Rep}_{\mathsf{C}}(\mathsf{G})^{\psi^q}.$ Namely, $\psi^{\boldsymbol{q}}\circlearrowright\mathrm{Rep}_{\boldsymbol{\mathsf{C}}}(\boldsymbol{G})$ fixes $\mathrm{Br}(\bar{E})$ for any $E\in\mathrm{Rep}_k(\boldsymbol{G})$. Indeed,

$$
\chi_{\psi^q(\text{Br}(\bar{E}))}(g) = \chi_{\text{Br}(\bar{E})}(g^q) = \sum_i \rho(\lambda_i)^q = \sum_i \rho(\lambda_i^q) = \sum_i \rho(\lambda_i)
$$

since the eigenvalues $\{\lambda_i\}$ of g are in k, hence stable under the Frobenius $\text{Fr}: \mathsf{x} \mapsto \mathsf{x}^{\mathsf{q}}.$

We get a map

$$
\operatorname{Rep}_k(G) \to \operatorname{Rep}_{\mathsf{C}}(G)^{\psi^q}.
$$

which is in fact an isomorphism. Composing with 3

$$
\operatorname{Rep}_{\boldsymbol{C}}(\mathcal{G})^{\psi^q} \to [\operatorname{B}\! \mathcal{G},\operatorname{B}\! \operatorname{U}]^{\psi^q} \to [\operatorname{B}\! \mathcal{G},\operatorname{B}\! \operatorname{U}^{\psi^q}]
$$

we obtain

$$
\operatorname{Rep}_k(G) \to [\operatorname{B} G, \operatorname{B} \mathrm{U}^{\psi^q}].
$$

4 **D F**

 \Rightarrow э Take $G = GL_n$ and use the standard representations

 $\mathrm{GL}_n(k)\circlearrowright k^n$.

It gives a compatible family of maps

 $\mathrm{BGL}_n(k)\to \mathrm{BU}^{\psi^q},$

hence a map $\mathrm{Br}:\mathrm{BGL}(k)\to \mathrm{BU}^{\psi^q}$ as $n\to\infty.$ This is the desired map.

³The se[c](#page-16-0)[o](#page-23-0)nd [m](#page-24-0)ap is an isomorphism since $[{\rm B}G,{\rm U}]=0$ $[{\rm B}G,{\rm U}]=0$ $[{\rm B}G,{\rm U}]=0$ for G com[pa](#page-0-0)[ct](#page-41-0) [Lie](#page-0-0)[.](#page-41-0) Ω Langwen Hui (University of Illinois, Urbana-Champaign) Algebraic K[-theory of finite fields](#page-0-0) June 18, 2024 24 / 42

Since $\pi_{\geq 1}(\mathrm{BU}^{\psi^q})$ are torsion with order prime relative to p $(q^i-1$ or 0), the homology groups of this space with Q or F_p coefficients are all 0. So it suffices to compute $\mathrm{H}_*(\mathrm{BU}^{\psi^q};\mathsf{F}_\ell).$

Denote $H_*(X; \mathbf{F}_\ell)$ by $H_*(X)$ in this section. Recall that

r := the least integer ≥ 1 such that $q^r \equiv 1$ mod ℓ .

We will assume that $\ell \neq 2$ so that we are in the **typical case** (the **exceptional case** $\ell = 2$ needs more care)⁴.

Cohomology of BU^{ψ^q} II

First a crude computation. Using that BU^{ψ^q} is the homotopy pullback

$$
\begin{array}{ccc}\n\text{BU}^{\psi^q} & \longrightarrow & \text{BU} \\
\downarrow & & \downarrow \\
\text{BU} & & \downarrow \Delta \\
\text{BU} & & \text{BU} \times \text{BU}\n\end{array}
$$

we obtain

$$
H^*(BU^{\psi^q}) \longleftarrow H^*(BU)
$$

$$
\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \Delta^*
$$

$$
H^*(BU) \stackrel{(id, \psi^q)^*}{\longleftarrow} H^*(BU)^{\otimes 2}.
$$

This is not a pushout square, but we have the Eilenberg–Moore spectral sequence with E_2 -page

$$
\mathcal{E}^{s,t}_2 = \mathrm{Tor}_{\mathrm{H}^*(\mathrm{BU})^{\otimes 2}}^{\mathfrak{s},t}(\mathrm{H}^*(\mathrm{BU}),\mathrm{H}^*(\mathrm{BU})) \Rightarrow \mathrm{H}^*(\mathrm{BU}^{\psi^q}).
$$

Recall that

$$
\mathrm{H}^*(\mathrm{BU})\cong\mathrm{P}[c_1,c_2,\dots]
$$

We completely understand all rings and maps in the E_2 -page (by the splitting principle, $(\psi^q)^*(\mathsf{c}_i) = \mathsf{q}^i \mathsf{c}_i$). It follows that

$$
\textit{E}^{*,*}_{2}=\mathrm{Tor}^{*,*}_{H^*(\mathrm{BU}\times \mathrm{BU})}(\mathrm{H}^*(\mathrm{BU}),\mathrm{H}^*(\mathrm{BU}))\cong \mathrm{P}[\textit{c}_r,\textit{c}_{2r},\dots]\otimes \textit{A}[\textit{e}_r,\textit{e}_{2r},\dots]
$$

where $\left|c_{jr}\right| = (0,2jr)$ and $\left|e_r\right| = (-1,2jr).$ The spectral sequence degenerates at the E_2 -page for degree reasons.

Lemma

For a suitable filtration of $\mathrm{H}^*(\mathrm{BU}^{\psi^q})$,

$$
\mathrm{Gr}(\mathrm{H}^*(\mathrm{B}\mathrm{U}^{\psi^q}))\cong \mathrm{P}[c_r,c_{2r},\dots]\otimes\Lambda[e_r,e_{2r},\dots]
$$

where $|c_{ir}| = 2ir$ and $|e_{ir}| = 2ir - 1$ for all $i \ge 1$.

This determines $\mathrm{H}^*(\mathrm{BU}^{\psi^q})$ as an F_ℓ -vector space, but not as an algebra. Explicit generators $\{c_{ir}\}$ and $\{e_{ir}\}$ are found in [\[6\]](#page-41-1) so that this determines the **algebra** structure on $\mathrm{H}^*(\mathrm{B}\mathrm{U}^{\psi^q}).$

- The generators $\{\epsilon_{jr}\in\mathrm{H}^*(\mathrm{BU}^{\psi^q})\}$ are pullbacks of the mod- ℓ Chern classes ${c_{ir}}$ of BU. (We abuse notation to denote both by ${c_{ir}}$).)
- The generators $\{e_{jr} \in \mathrm{H}^* (\mathrm{BU}^{\psi^q})\}$ are the reduction mod ℓ of certain classes $\tilde{e}_i \in \mathrm{H}^{2i-1}(\mathrm{BU}^{\psi^q}; \mathbf{Z}/(q^i-1)).$

K ロ ト K 御 ト K 君 ト K 君 ト 一君

We sketch a proof that $\{c_{jr}\}$ and $\{e_{jr}\}$ generate $\mathrm{H}^*(\mathrm{BU}^{\psi^q}).$ Denote

\n- $$
C := \mathbf{Z}/(q^r - 1),
$$
\n- $\zeta : C \to \mathbf{C}^*, 1 \mapsto e^{\frac{2\pi i}{p^r - 1}},$
\n- $W := \zeta \oplus \zeta^{\otimes q} \oplus \cdots \oplus \zeta^{\otimes q^{r-1}} \in \text{Rep}_{\mathbf{C}}(\mathbf{C})^{\psi^q}.$
\n

Idea. Taking $\bigoplus_{i=1}^m W_i$ gives a detection map

$$
\textnormal{H}^*(\textnormal{BU}^{\psi^q})\xrightarrow{\bigoplus_{i=1}^m W_i}\textnormal{H}^*(\textnormal{B}\mathcal{C}^m)
$$

We completely understand $\mathrm{H}^*(\mathrm{B} \mathcal{C}^m)$ and the image of c_{jr} and e_{jr} under this map (denote these by \bar{c}_{jr} and \bar{e}_{jr})⁵.

Cohomology of BU^{ψ^q} VI

Lemma

•
$$
\bar{c}_{jr} = \bar{e}_{jr} = 0
$$
 for $j > m$.

$$
2\;\; (\bar{e}_{jr})^2=0.
$$

3 The monomials $(\alpha_i \geq 0, 0 \leq \beta_i \leq 1)$

$$
\bar{c}_r^{\alpha_1} \bar{c}_{2r}^{\alpha_2} \cdots \bar{c}_{mr}^{\alpha_m} \bar{e}_r^{\beta_1} \bar{e}_{2r}^{\beta_2} \cdots \bar{e}_{mr}^{\beta_m}
$$

are linearly independent.

Taking $m \to \infty$ we conclude:

Theorem

$$
\mathrm{P}[c_r,c_{2r},\dots]\otimes\Lambda[e_r,e_{2r},\dots]\xrightarrow{\cong}\mathrm{H}^*(\mathrm{BU}^{\psi^q}).
$$

4 **D F**

化重 经一 造

Conclusion. We have

$$
\mathrm{H}^*(\mathrm{BU}^{\psi^q};\kappa)=\begin{cases}0, & \kappa=\mathbf{Q} \text{ or } \kappa=\mathbf{F}_p,\\ \mathrm{P}[c_r,c_{2r},\dots]\otimes\Lambda[e_r,e_{2r},\dots], & \kappa=\mathbf{F}_\ell.\end{cases}
$$

We next turn to the (co)homology of the space $BGL(k)$.

 $^4\mathsf{T}$ he essential difference between these two cases is in the ring $\mathrm{H}^*(\mathrm{B}\mathcal{C}).$ ${}^5H^*(BC) \cong {\rm P}[u] \otimes \Lambda(v)$ for $|u| = 2$ and $|v| = 1$ since we are in the typical case. Let $\chi := (-1)^{r-1}u^r$ and $y := (-1)^{r-1}u^{r-1}$ v. We have

$$
\bar{c}_{jr} = \sum_{i_1 < \cdots < i_j} x_{i_1} \cdots x_{i_j} = \sigma_j, \quad \bar{e}_{jr} = \sum_{i_1 < \cdots < i_j} \sum_{1 \leq k \leq j} x_{i_1} \cdots \hat{x}_{i_k} \cdots x_{i_j} y_{i_k} = d \sigma_j
$$

where σ_j is the j^{th} j^{th} j^{th} j^{th} j^{th} symmetric polynomial in the variables $\{ \varkappa_i \}.$ Langwen Hui (University of Illinois, Urbana-C Algebraic K[-theory of finite fields](#page-0-0) June 18, 2024 31 / 42 Rational (co)homology of finite groups are trivial. We have

$$
\tilde{\mathrm{H}}_*(\mathrm{BGL}(k);\mathbf{Q})\cong \mathrm{colim}\,\tilde{\mathrm{H}}_*(\mathrm{BGL}_n(k);\mathbf{Q})=0.
$$

So it suffices to determine the cohomology of $BGL(k)$ with \mathbf{F}_{ℓ} and \mathbf{F}_{p} coefficients.

4 0 F

Cohomology of $BGL(k)$ II

We deal with \mathbf{F}_p -coefficients first. The cohomology of $\mathrm{GL}_n(k)$ with \mathbf{F}_p coefficients is hard in general. However, in the present situation we have:

Theorem (Quillen, [\[6\]](#page-41-1))

Let $k = \mathbf{F}_q = \mathbf{F}_{p^d}$. $\textbf{D} \;\; \text{H}^i(\text{BGL}_n(k)) = 0 \; \text{for} \; 0 < i < \textit{d}(p-1)$ and all $n.$ $\mathbf{P} \ \mathbf{H}^i(\mathrm{BGL}(k)) = 0$ for all $i > 0$.

The first item is obtained by a comparison map

$$
\mathrm{H}^*(\mathrm{BGL}_n(k))\hookrightarrow \mathrm{H}^*(B_n)^{T_n}.
$$

where $B_n < GL_n(k)$ denotes the upper-triangular matrices, and T_n denotes the diagonal matrices. The second item follows from the first using a transfer argument (tensor up $E: G \to GL(k)$ to some $E'=E\otimes_k k'$ where $[k':k]=d'$ is large enough so that the corresponding ch[a](#page-30-0)ra[c](#page-31-0)teristic class vanish and $(d', p) = 1$. Restr[ict](#page-31-0) [b](#page-33-0)ac[k](#page-41-0) [t](#page-39-0)[o](#page-0-0) k [co](#page-0-0)[ncl](#page-41-0)[ud](#page-0-0)[e\).](#page-41-0)

Cohomology of $BGL(k)$ III

We will next focus on mod- ℓ cohomology. Denote $\mathrm{H}^*(-; \mathsf{F}_\ell)$ by $\mathrm{H}^*(-)$ from now on.

Recall that in computing $\mathrm{H}^{\ast}(\mathrm{BU}^{\psi^q})$ we crucially used

$$
W:=\zeta\oplus\zeta^{\otimes q}\oplus\cdots\oplus\zeta^{\otimes q^{r-1}}\in\mathrm{Rep}_{\mathsf{C}}(\mathsf{C})^{\psi^q},
$$

and detected $\mathrm{H}^*(\mathrm{BU}^{\psi^q})$ by

$$
\mathrm{B} \mathcal{C}^m \xrightarrow{\bigoplus_{i=1}^m W_i} \mathrm{B} \mathrm{U}^{\psi^q}.
$$

It turns out that we can explicitly find a modular representation L of C whose Brauer lift is W! We will detect $\mathrm{H}^*(\mathrm{BGL}(k))$ by

$$
\mathrm{B} \mathcal{C}^m \xrightarrow{\bigoplus_{i=1}^m L_i} \mathrm{BGL}(k) \xrightarrow{\mathrm{Br}} \mathrm{B} \mathrm{U}^{\psi^q}.
$$

Cohomology of $BGL(k)$ IV

Let $k(\mu_{\ell})$ denote k with a primitive ℓ th root of unity adjoined. Recall that

 $r:=$ the least integer ≥ 1 such that $q^r\equiv 1$ mod $\ell.$

Then $[\,k(\mu_\ell):k]=r$ since $\mathrm{Gal}(k(\mu_\ell)/k)$ is generated by $\mathrm{Fr}(x)=x^q$ and has order r.

The group $k(\mu_\ell)^*$ is non-canonically isomorphic to $C:=\mathsf{Z}/(q^r-1)$. But we made a chocie $\rho:\bar k^*\hookrightarrow {\bf C}^*.$

There is thus a canonical isomorphism $C \cong k(\mu_\ell)^*$ making the above diagram commute.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『 콘 │ ◆ 9,9,0*

Cohomology of $BGL(k)$ V

Denote by $L \in {\rm Rep}_k(\mathcal{C})$ the modular representation

 $C \cong k(\mu_{\ell})^* \circlearrowright k(\mu_{\ell}),$

where $k(\mu_{\ell})^*$ acts by multiplication.

Lemma

The Brauer lift of L equals W , making the following diagram commute:

K □ ▶ K @ ▶ K 로 ▶ K 로 ▶ _ 로 _ K) Q Q @

Cohomology of $BGL(k)$ VI

We show that $Br(L) \cong W$ by directly computing its character. There is a ring isomorphism

$$
L\otimes_k \bar{k}=k(\mu_\ell)\otimes_k \bar{k}\cong \bar{k}^r, \quad z\otimes w\mapsto (zw, z^qw,\ldots,z^{q^{r-1}}w).
$$

Therefore, the $\mathcal{C} \cong k(\mu_\ell)^*$ -action on $L \otimes_k \bar{k}$ has Brauer character

$$
z\mapsto \sum_{i=0}^{r-1}\rho(z^{q^i})
$$

which is equal to the character of

$$
W=\zeta\oplus\zeta^q\oplus\cdots\oplus\zeta^{q^{r-1}}.
$$

We may now detect $\mathrm{H}^*(\mathrm{BGL}(k))$ by L. Let $n=mr+e$ with $0\leq e < r.$ Then $L^{\oplus m}$ extends to a representation of

$$
(C\rtimes\pi)^m\rtimes\Sigma_m
$$

where $\pi := \text{Gal}(k(\mu_\ell)/k)$. Further taking e copies of the trivial representation, this gives an embedding

$$
L^{\oplus m} \oplus k^{\oplus e} : (C \rtimes \pi)^m \rtimes \Sigma_m \hookrightarrow \mathrm{GL}_n(k),
$$

and hence a map⁶

$$
\mathrm{H}^*(\mathrm{BGL}_n(k))\to \mathrm{H}^*(\mathcal{C}^m)^{\pi^m\rtimes \Sigma_m}.
$$

Cohomology of $BGL(k)$ VIII

Theorem

We have

$$
\mathrm{H}^*(\mathrm{BGL}_n(k))\cong \mathrm{H}^*(\mathcal{C}^m)^{\pi^m\rtimes \Sigma_m}
$$

in the typical case. Furthermore, $\mathrm{H}^*(\mathsf{C}^m)^{\pi^m \rtimes \Sigma_m}$ is also the image of

$$
\textnormal{H}^*(\textnormal{BU}^{\psi^q})\xrightarrow{(\bigoplus_i W_i)^*} \textnormal{H}^*(\mathcal{C}^m).
$$

Take *n*, $m \rightarrow \infty$ in

$$
\mathrm{H}^*(\mathrm{B}\mathrm{U}^{\psi^q}) \to \mathrm{H}^*(\mathrm{B}\mathrm{GL}(k)) \to \mathrm{H}^*(\mathrm{B}\mathrm{GL}_n(k)) \xrightarrow{\cong} \mathrm{H}^*(\mathcal{C}^m)^{\pi^m \rtimes \Sigma_m}.
$$

Note that this composition is the same as $(\bigoplus_i W_i)^*.$ We get

$$
\operatorname{H}^*(\mathrm{BGL}(k)) \cong \operatorname{H}^*(\mathrm{B} \mathrm{U}^{\psi^q}).
$$

This concludes our computation of $K_*(\mathbf{F}_q)$.

⁶We use that inner automorphisms induce identity ma[p o](#page-37-0)[n](#page-39-0) [gr](#page-30-0)[o](#page-31-0)[u](#page-38-0)[p](#page-39-0) [\(c](#page-0-0)[o\)h](#page-41-0)[om](#page-0-0)[ol](#page-41-0)[ogy](#page-0-0) Ω How could one guess that

$$
\mathrm{H}^*(\mathrm{BGL}(k);\mathbf{Z})\cong \mathrm{H}^*(\mathrm{BU}^{\psi^q};\mathbf{Z})
$$

in the first place? Here are some speculations. Quillen considered the map

$$
\mathrm{BGL}(\bar k)\to \mathrm{BU}
$$

in proving the Adams conjecture. He showed that this induces an isomorphism in cohomology with \mathbf{F}_{ℓ} coefficients.

つへへ

The Adams operation $\psi^{\bm{q}}$ is a "Frobenius lift". The Frobenius ${\rm Fr}$ acts on $GL(\overline{k})$ and we have a commutative diagram

It is perhaps a natural next step to think about what the left vertical map does to (co)homology groups.

つへへ

References

Adams, J., Infinite loop spaces.

Clausen, D., MathOverflow answer to the question "plus construction considerations", available [here.](https://mathoverflow.net/questions/121340/plus-construction-considerations/121351)

McDuff, D. and Segal, G., Homology fibrations and the "group-completion" theorem.

Segal, G., Catgories and cohomology theories.

4 **D F**