Transchromatic Generalized Characters

Yifan Wu

12131236

17th June, 2024

References I

[HKR00] Michael Hopkins, Nicholas Kuhn, and Douglas Ravenel, Generalized group characters and complex oriented cohomology theories, Journal of the American Mathematical Society 13 (2000), no. 3, 553–594.

[Sta13] Nathaniel Stapleton, Transchromatic generalized character maps, Algebraic & Geometric Topology 13 (2013), no. 1, 171–203.

Contents

- Group characters
- Analogue in K-theory
- 2 Generalized Group Characters
 - Construction
 - Theorem

Let G be a finite group, R(G) be its complex representation ring. Let L be the minimal field over \mathbb{Q} containing all roots of unity. Let G be a finite group, R(G) be its complex representation ring. Let L be the minimal field over \mathbb{Q} containing all roots of unity.

 $\chi: R(G) \rightarrow Cl(G; L)$

Let G be a finite group, R(G) be its complex representation ring. Let L be the minimal field over \mathbb{Q} containing all roots of unity.

 $\chi: R(G) \rightarrow Cl(G; L)$

This will induce an isomorphism

$$\chi: L \otimes R(G) \xrightarrow{\sim} Cl(G; L).$$

Group characters Analogue in K-theory

Moreover, the profinite integers $\hat{\mathbb{Z}}$ acts on L and $G = Hom(\hat{\mathbb{Z}}, G)$.

It acts on $f \in Cl(G; L)$ via

 $(\phi \circ f)(g) = \phi(f(\phi^{-1}g))$

Group characters Analogue in K-theory

Moreover, the profinite integers $\hat{\mathbb{Z}}$ acts on L and $G = Hom(\hat{\mathbb{Z}}, G)$.

It acts on $f \in Cl(G; L)$ via

$$(\phi \circ f)(g) = \phi(f(\phi^{-1}g))$$

The map χ actually lands in

$$\chi: R(G) \to Cl(G; L)^{\hat{\mathbb{Z}}},$$

which induces an isomorphism

$$\chi: \mathbb{Q} \otimes R(G) \xrightarrow{\sim} Cl(G; L)^{\hat{\mathbb{Z}}}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Group characters Analogue in K-theory

Let X be a G-space and $K_G^*(X)$ be set of (virtual) G-vector bundles over X.

We have $K_G^*(*) = R(G)$ and there is a natural map

 $R(G) \rightarrow K^*(BG)$

by applying the Borel construction $EG \times_G -$.

Group characters Analogue in K-theory

Let X be a G-space and $K_G^*(X)$ be set of (virtual) G-vector bundles over X.

We have $K_G^*(*) = R(G)$ and there is a natural map

 $R(G) \rightarrow K^*(BG)$

by applying the Borel construction $EG \times_G -$.

The completion theorem tells us

 $R(G)^{\wedge}_{I} \xrightarrow{\sim} K^{*}(BG).$

Group characters Analogue in K-theory

In general, the projection map

$$\pi: EG \times X \to X$$

will induces an isomorphism

$${\mathcal K}^*_{\mathcal G}(X)^\wedge_I \xrightarrow{\sim} {\mathcal K}^*_{\mathcal G}(EG \times X) = {\mathcal K}^*\left((EG \times X)/G\right).$$

Recall that K is of height 1. Can we mimic these behaviors in a theory of height n with $K * (EG \times_G -)$ replaced by $E^*(EG \times_G -)$?

Recall that K is of height 1. Can we mimic these behaviors in a theory of height n with $K * (EG \times_G -)$ replaced by $E^*(EG \times_G -)$?

- *E*-complex oriented, with E^* complete local w.r.t \mathfrak{m} .
- The residue field E^*/\mathfrak{m} has char= p > 0 and $p^{-1}E^* \neq 0$.
- The formal group \mathbb{G}_E has height *n* over the residue field.

Construction Theorem

$L(E^*)$ -The analogue of L

The inverse system

$$\cdots \to (\mathbb{Z}/p^{r+1})^n \to (\mathbb{Z}/p^r)^n \to \cdots$$

induces a direct system

$$\cdots \rightarrow E^*(B(\mathbb{Z}/p^r)^n) \rightarrow E^*(B(\mathbb{Z}/p^{r+1})^n) \rightarrow \cdots$$

We let $E_{cont}^*(B\mathbb{Z}_p^n)$ denote this colimit.

The inverse system

$$\cdots \to (\mathbb{Z}/p^{r+1})^n \to (\mathbb{Z}/p^r)^n \to \cdots$$

induces a direct system

$$\cdots \rightarrow E^*(B(\mathbb{Z}/p^r)^n) \rightarrow E^*(B(\mathbb{Z}/p^{r+1})^n) \rightarrow \cdots$$

We let $E^*_{cont}(B\mathbb{Z}_p^n)$ denote this colimit. For any nonzero $\alpha : (\mathbb{Z}/p^r)^n \to S^1$, we can form an element

$$c_1(\alpha) = \alpha^*(x), \alpha^* : E^*(BS^1) \to E^*(B\Lambda_r).$$

The inverse system

$$\cdots \to (\mathbb{Z}/p^{r+1})^n \to (\mathbb{Z}/p^r)^n \to \cdots$$

induces a direct system

$$\cdots \to E^*(B(\mathbb{Z}/p^r)^n) \to E^*(B(\mathbb{Z}/p^{r+1})^n) \to \cdots$$

We let $E^*_{cont}(B\mathbb{Z}_p^n)$ denote this colimit. For any nonzero $\alpha : (\mathbb{Z}/p^r)^n \to S^1$, we can form an element

$$c_1(\alpha) = \alpha^*(x), \alpha^* : E^*(BS^1) \to E^*(B\Lambda_r).$$

Let $L_r(E^*) = S^{-1}E^*(B\Lambda_r)$, with S generated by such $c_1(\alpha)$.

Construction Theorem

$L(E^*)$ -The analogue of L

The ring $L_r(E^*)$ is flat over E^* . If α is a generator of $(\mathbb{Z}/p^r)^*$, and we write x for $c_1(\alpha)$, then

$$E^*(B\mathbb{Z}/p^r) = E^*\llbracket x \rrbracket/[p^r](x).$$

Construction Theorem

$L(E^*)$ -The analogue of L

The ring $L_r(E^*)$ is flat over E^* . If α is a generator of $(\mathbb{Z}/p^r)^*$, and we write x for $c_1(\alpha)$, then

$$E^*(B\mathbb{Z}/p^r)=E^*\llbracket x\rrbracket/[p^r](x).$$

In particular p is invertible in $L_r(E^*)$.

The ring $L_r(E^*)$ is flat over E^* . If α is a generator of $(\mathbb{Z}/p^r)^*$, and we write x for $c_1(\alpha)$, then

$$E^*(B\mathbb{Z}/p^r) = E^*[[x]]/[p^r](x).$$

In particular p is invertible in $L_r(E^*)$. Note that this ring $L_r(E^*)$ can be acted by Aut(Λ_r), and the map

$$L_r(E^*) \rightarrow L_{r+1}(E^*)$$

is an Aut(Λ_{r+1}) equivariant map, via the projection $\operatorname{Aut}(\Lambda_{r+1}) \to \operatorname{Aut}(\Lambda_r)$ acting on domain.

The ring $L_r(E^*)$ is flat over E^* . If α is a generator of $(\mathbb{Z}/p^r)^*$, and we write x for $c_1(\alpha)$, then

$$E^*(B\mathbb{Z}/p^r) = E^*[[x]]/[p^r](x).$$

In particular p is invertible in $L_r(E^*)$. Note that this ring $L_r(E^*)$ can be acted by Aut(Λ_r), and the map

$$L_r(E^*) \rightarrow L_{r+1}(E^*)$$

is an Aut (Λ_{r+1}) equivariant map, via the projection Aut $(\Lambda_{r+1}) \rightarrow Aut(\Lambda_r)$ acting on domain. Taking direct limit we have $L(E^*)$ is acted by Aut (\mathbb{Z}_p^n) , and

$$L(E^*)^{\operatorname{Aut}(\mathbb{Z}_p^n)} = p^{-1}E^*.$$

10 / 25

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

There is an 1-1 correspondence from $\operatorname{Hom}(\Lambda_r^*, \mathbb{G}_E[p^r])(R)$ to the set of maps

$$\theta: R\llbracket x \rrbracket/[p^r](x) \to R^{\Lambda_r^*}.$$

To be explicit, let $\phi : \Lambda_r^* \to \operatorname{Hom}(E^*[x]]/[p^r](x), R)$. Then

$$\theta: x \mapsto (\phi(a_1)(x), \phi(a_2)(x), \cdots)$$

There is an 1-1 correspondence from $\operatorname{Hom}(\Lambda_r^*, \mathbb{G}_E[p^r])(R)$ to the set of maps

$$\theta: R\llbracket x \rrbracket/[p^r](x) \to R^{\Lambda_r^*}.$$

To be explicit, let $\phi : \Lambda_r^* \to \operatorname{Hom}(E^*\llbracket x \rrbracket/[p^r](x), R)$. Then

$$\theta: x \mapsto (\phi(a_1)(x), \phi(a_2)(x), \cdots)$$

Proposition

 θ is an isomorphism \iff all $\phi(a_i)(x)$ are units.

Construction Theorem

$L(E^*)$ -The analogue of L

The ring $L_r(E^*)$ and $L(E^*)$ have interesting moduli interpretations.

 $E^*(B\Lambda_r)$ corepresents the functor $\operatorname{Hom}(\Lambda_r^*, \mathbb{G}_E[p^r])$

The ring $L_r(E^*)$ and $L(E^*)$ have interesting moduli interpretations.

 $E^*(B\Lambda_r)$ corepresents the functor $\operatorname{Hom}(\Lambda_r^*, \mathbb{G}_E[p^r])$

The ring $L_r(E^*)$ corepresents the functor $Iso(\Lambda_r^*, \mathbb{G}_E[p^r])$.

Which means that $L_r(E^*)$ carries a universal isomorphism between $(\mathbb{Z}/p^r)^n$ and $\mathbb{G}_E[p^r]$.

The ring $L_r(E^*)$ and $L(E^*)$ have interesting moduli interpretations.

 $E^*(B\Lambda_r)$ corepresents the functor $\operatorname{Hom}(\Lambda_r^*, \mathbb{G}_E[p^r])$

The ring $L_r(E^*)$ corepresents the functor $Iso(\Lambda_r^*, \mathbb{G}_E[p^r])$.

Which means that $L_r(E^*)$ carries a universal isomorphism between $(\mathbb{Z}/p^r)^n$ and $\mathbb{G}_E[p^r]$.

 $L(E^*)$ is the initial extension of E^* such that the base change of $\mathbb{G}_E[p^{\infty}]$ becomes trivial, i.e. $(\mathbb{Q}_p/\mathbb{Z}_p)^n$.

 $Cl_{n,p}(G, X; L(E^*))$ -The analogue of Cl(G; L)

For each $\alpha \in \operatorname{Hom}(\Lambda_r, G)$, we have an induced morphism

$$B\Lambda_r \times X^{Im(\alpha)} \to EG \times_G X.$$

 $E^*(EG \times_G X) \to E^*(B\Lambda_r \times X^{Im(\alpha)}) = L_r(E^*) \otimes_{E^*} E^*(X^{Im(\alpha)}).$

 $Cl_{n,p}(G, X; L(E^*))$ -The analogue of Cl(G; L)

For each $\alpha \in \operatorname{Hom}(\Lambda_r, G)$, we have an induced morphism

$$B\Lambda_r \times X^{Im(\alpha)} \to EG \times_G X.$$

$$E^*(EG \times_G X) \to E^*(B\Lambda_r \times X^{Im(\alpha)}) = L_r(E^*) \otimes_{E^*} E^*(X^{Im(\alpha)}).$$

For r sufficient large, $\operatorname{Hom}(\Lambda_r, G) = \operatorname{Hom}(\mathbb{Z}_p^n, G) = G_{n,p}$.

$$\operatorname{Fix}_{n,p}(G,X) := \coprod_{\alpha \in G_{n,p}} X^{Im(\alpha)}$$

Hence we obtain a map

$$\chi_{n,p}^{G}: E^{*}(EG \times_{G} X) \rightarrow L_{r}(E^{*}) \otimes_{E^{*}} E^{*}(\operatorname{Fix}_{n,p}(G, X)).$$

Construction Theorem

$Cl_{n,p}(G, X; L(E^*))$ -The analogue of Cl(G; L)

The group $G \times \Lambda_r$ acts on $L_r(E^*) \otimes_{E^*} E^*(\operatorname{Fix}_{n,p}(G,X))$.

Construction Theorem

$Cl_{n,p}(G, X; L(E^*))$ -The analogue of Cl(G; L)

The group $G \times \Lambda_r$ acts on $L_r(E^*) \otimes_{E^*} E^*(\operatorname{Fix}_{n,p}(G,X))$.

Proposition

 $\chi^{G}_{n,p}$ actually lands in $G \times \Lambda_r$ invariants.

Proof.

Following diagrams commute, $\alpha \in G_{n,p}$ and $\phi \in Aut(\Lambda_r)$.

$$\begin{array}{c|c} B\Lambda_r \times X^{Im(\alpha \circ \phi)} \xrightarrow{\phi \circ 1} B\Lambda_r \times X^{Im(\alpha)} \\ & & & & \downarrow \alpha \\ & & & \downarrow \alpha \\ EG \times_G X = EG \times_G X \end{array}$$

ヘロト 人間 ト 人 ヨト 人 ヨト

$CI_{n,p}(G, X; L(E^*))$ -The analogue of CI(G; L)

Thus we obtain the desired generalized character map

$$\chi^{G}_{n,p}: E^{*}(EG \times_{G} X) \to Cl_{n,p}(G,X;L(E^{*}))^{\operatorname{Aut}(\mathbb{Z}_{p}^{n})}$$

where

$$Cl_{n,p}(G,X;L(E^*)) = L(E^*) \otimes_{E^*} E^*(\operatorname{Fix}_{n,p}(G,X))^G.$$

$CI_{n,p}(G, X; L(E^*))$ -The analogue of CI(G; L)

Thus we obtain the desired generalized character map

$$\chi^{G}_{n,p}: E^{*}(EG \times_{G} X) \to Cl_{n,p}(G,X; L(E^{*}))^{\operatorname{Aut}(\mathbb{Z}_{p}^{n})}$$

where

$$Cl_{n,p}(G,X;L(E^*)) = L(E^*) \otimes_{E^*} E^*(\operatorname{Fix}_{n,p}(G,X))^G.$$

Recall that $L(E^*)$ is finite faithfully flat over $p^{-1}E^*$, hence it defines a cohomology theory of height 0.

Theorem (Hopkins, Kuhn, Ravenel)

The generalized character map $\chi^{\rm G}_{\rm n,p}$ induces isomorphisms

$$\chi_{n,p}^{\mathsf{G}}: L(E^*) \otimes_{E^*} E^*(EG \times_{\mathsf{G}} X) \to Cl_{n,p}(\mathsf{G}, X; L(E^*)),$$

and

$$\chi^{G}_{n,p}: p^{-1}E^* \otimes_{E^*} E^*(EG \times_G X) \to Cl_{n,p}(G,X; L(E^*))^{\operatorname{Aut}(\mathbb{Z}_p^n)}$$

Theorem (Hopkins, Kuhn, Ravenel)

The generalized character map $\chi^{\rm G}_{\rm n,p}$ induces isomorphisms

$$\chi_{n,p}^{\mathsf{G}}: L(E^*) \otimes_{E^*} E^*(EG \times_{\mathsf{G}} X) \to Cl_{n,p}(\mathsf{G}, X; L(E^*)),$$

and

$$\chi^{G}_{n,p}:p^{-1}E^*\otimes_{E^*}E^*(EG\times_G X)\to Cl_{n,p}(G,X;L(E^*))^{\operatorname{Aut}(\mathbb{Z}_p^n)}$$

When X is a point, $\operatorname{Fix}_{n,p}(G,*) = G_{n,p}$, hence

$$Cl_{n,p}(G,*;L(E^*)) = L(E^*) \otimes_{E^*} E^*(\operatorname{Fix}_{n,p}(G,*))^G,$$

which is the orbit of $|G_{n,p}|$ copies of $L(E^*)$ under the action of G. It can also be identified with the ring of functions from $G_{n,p}$ to $L(E^*)$ stable under G-orbits.

Construction Theorem

Part of the proof

Consider both side as cohomology theory from the category of pairs (G, X).

Part of the proof

Consider both side as cohomology theory from the category of pairs (G, X).

Under some technical conditions, reduce to show the case G is abelian and X is a point.

$$\chi^{\mathcal{A}}_{n,p}: L(E^*) \otimes_{E^*} E^*(B\mathcal{A}) \to L(E^*)^{|\operatorname{Hom}(\Lambda,\mathcal{A})|}$$

Can we do the similar things, starting from a height *n* theory, namely E_n , but end up with a height n - t > 0 theory?

Can we do the similar things, starting from a height *n* theory, namely E_n , but end up with a height n - t > 0 theory?

The ring $L(E^*)$ should be replaced by an $L_t = L_{K(t)}E_n^0$ algebra, such that the base change of the *p*-divisible group $\mathbb{G}_{E_n}[p^{\infty}]$ becomes constant (partly).

Suppose \mathbb{G}_{E_n} be the formal/*p*-divisible group over E_n^* and $\mathbb{G} = L_t \otimes \mathbb{G}$. Let \mathbb{G}_0 be the formal/*p*-divisible group $\mathbb{G}_{L_{K(t)}E_n}$.

Suppose \mathbb{G}_{E_n} be the formal/*p*-divisible group over E_n^* and $\mathbb{G} = L_t \otimes \mathbb{G}$. Let \mathbb{G}_0 be the formal/*p*-divisible group $\mathbb{G}_{L_{K(t)}E_n}$.

By Weierstrass preparation, we have

$$[p^{k}]_{\mathbb{G}_{E_{n}}}(x) = f_{k}(x) \cdot unit \in E^{0}[\![x]\!]$$
$$[p^{k}]_{\mathbb{G}_{L_{K(t)}E_{n}}}(x) = g_{k}(x) \cdot unit \in L_{t}[\![x]\!]$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

19/25

with deg $f_k = p^{kn}$ and deg $g_k = p^{kt}$.

Suppose \mathbb{G}_{E_n} be the formal/*p*-divisible group over E_n^* and $\mathbb{G} = L_t \otimes \mathbb{G}$. Let \mathbb{G}_0 be the formal/*p*-divisible group $\mathbb{G}_{L_{K(t)}E_n}$.

By Weierstrass preparation, we have

$$[p^{k}]_{\mathbb{G}_{E_{n}}}(x) = f_{k}(x) \cdot unit \in E^{0}\llbracket x \rrbracket$$
$$[p^{k}]_{\mathbb{G}_{L_{K(t)}E_{n}}}(x) = g_{k}(x) \cdot unit \in L_{t}\llbracket x \rrbracket$$

with deg $f_k = p^{kn}$ and deg $g_k = p^{kt}$.

It follows that g_k divides f_k , hence \mathbb{G}_0 is a sub *p*-divisible group of \mathbb{G} .

In fact, we have an exact sequence

$$0
ightarrow \mathbb{G}_0
ightarrow \mathbb{G}
ightarrow \mathbb{G}_{\acute{e}t}
ightarrow 0$$

between *p*-divisible groups over $\text{Spf}(L_t)$, with height $\mathbb{G}_{\acute{e}t} = n - t$.

In fact, we have an exact sequence

$$0 \to \mathbb{G}_0 \to \mathbb{G} \to \mathbb{G}_{\acute{e}t} \to 0$$

between *p*-divisible groups over $\text{Spf}(L_t)$, with height $\mathbb{G}_{\acute{e}t} = n - t$.

Let
$$\Lambda_r = (\mathbb{Z}/p^r)^{n-t}$$
, recall that over E^0 algebras,
 $\operatorname{Hom}_{E^0}(E^0(B\Lambda_r), -) = \operatorname{Hom}(\Lambda_r^*, \mathbb{G}_{E_n}[p^r]).$

Hence over L_t algebras, we have

$$\operatorname{Hom}_{L_t}(L_t \otimes_{E^0} E^0(B\Lambda_r), -) = \operatorname{Hom}(\Lambda_r^*, \mathbb{G}[p^r]).$$

Let C'_r denote the ring $L_t \otimes_{E^0} E^0(B\Lambda_r)$. Over C'_r we have a canonical morphism

 $\mathbb{G}_0[p^r] \oplus (\mathbb{Z}/p^r)^{n-t} \to \mathbb{G}[p^r],$

Let C'_r denote the ring $L_t \otimes_{E^0} E^0(B\Lambda_r)$. Over C'_r we have a canonical morphism

$$\mathbb{G}_0[p^r] \oplus (\mathbb{Z}/p^r)^{n-t} \to \mathbb{G}[p^r],$$

which induces a canonical morphism

$$\phi: \Lambda_r^* = (\mathbb{Z}/p^r)^{n-t} \to \mathbb{G}_{\acute{e}t}[p^r].$$

Let C'_r denote the ring $L_t \otimes_{E^0} E^0(B\Lambda_r)$. Over C'_r we have a canonical morphism

$$\mathbb{G}_0[p^r] \oplus (\mathbb{Z}/p^r)^{n-t} \to \mathbb{G}[p^r],$$

which induces a canonical morphism

$$\phi: \Lambda_r^* = (\mathbb{Z}/p^r)^{n-t} \to \mathbb{G}_{\acute{e}t}[p^r].$$

Let S be the multiplicative closed subset generated by $\phi(\Lambda_r^*) \subset \mathbb{G}_{\acute{e}t}[p^r](C'_r)$ and denote $S^{-1}C'_r$ by C_r .

The L_t algebra C_r is the initial object which carries an isomorphism

$$\mathbb{G}_0[p^r] \oplus (\mathbb{Z}/p^r)^{n-t} \xrightarrow{\sim} \mathbb{G}[p^r],$$

and $C_t = \operatorname{colim}_r C_r$ is the initial object which carries an isomorphism

 $\mathbb{G}_0 \oplus (\mathbb{Q}_p/\mathbb{Z}_p)^{n-t} \xrightarrow{\sim} \mathbb{G}.$

Let X be a G-space.

$$\operatorname{Fix}_{n-t}(G,X) = \coprod_{\alpha \in \operatorname{Hom}(\mathbb{Z}_p^{n-t},G)} X^{\operatorname{Im}(\alpha)}.$$

Each α induces $B\Lambda_r \times X^{Im(\alpha)} \to EG \times_G X$, and hence

$$B\Lambda_r \times \operatorname{Fix}_{n-t}(G, X) \to EG \times_G X,$$

$$E_n^*(EG \times_G X) \to E_n^*(B\Lambda_r) \otimes_{E_n^*} E_n^*(EG \times_G \operatorname{Fix}_{n-t}(G,X)) \\ \to C_r^* \otimes_{L_t^*} L_{K(t)} E_n^*(EG \times_G \operatorname{Fix}_{n-t}(G,X)).$$

Let $C_t^*(X)$ denote $C_t^* \otimes_{L_t^*} L_{\mathcal{K}(t)} E_n^*(X)$

Theorem (Stapleton)

There is a character map Φ_t^G

$$\Phi^G_t: E^*_n(EG \times_G X) \to C^*_t(EG \times_G \operatorname{Fix}_{n-t}(G, X))$$

which induces an isomorphism

$$\Phi^G_t: C_t \otimes_{E^0_n} E^*_n(EG \times_G X) \to C^*_t(EG \times_G \operatorname{Fix}_{n-t}(G, X))$$

Motivation Generalized Group Characters Transchromatic Generalized Characters

Thank You!

< □ ト < □ ト < ≧ ト < ≧ ト < ≧ ト ≧ の Q (C 25 / 25