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1-topoi

Proposition
Let C be a category. The following conditions are equivalent:

1 The category C is (equivalent to) the category of sheaves Sh(X) of sets on some
Grothendieck site X .

2 The category C is (equivalent to) a left exact localization of the category PSh(C0)
of presheaves of sets on some small category C0.

3 Giraud’s axioms are satisfied:
a The category C is presentable (that is, C has small colimits and a set of small

generators).
b Colimits in C are universal.
c Coproducts in C are disjoint.
d Equivalence relations in C are effective.

Definition (1-topos)
If a C satisfies the equivalent conditions above, we call it a (1-)topos.



Why we need ∞-topoi

1 As the basis of unstable homotopy theory.

Example
i The ∞-category of spaces S is the basic but also most important example of ∞-topos.
ii Also the ∞-category of G-spaces SG is an ∞-topoi.
iii Although the ∞-category of motivic spaces H (S) for a Noetherian scheme S is not an

∞-topos, the Nisnevich sheaf involves lots of ∞-topos techniques.

2 As the basis of parametrized homotopy theory.
3 As the basis of spectral algebraic geometry.



Definition of ∞-topoi

Proposition
Let X be an ∞-category. The following conditions are equivalent:

1 The ∞-category X is an ∞-topos: i.e. if there exists a small ∞-category C and
an accessible left exact localization functor P(C) → X .

2 The ∞-category X is presentable, and colimits in which are universal, i.e.
(colim Xα)×Z Y ' colim(Xα ×Z Y ) . And furthermore it satisfies that
X/X ' limX/Xα

when X = colim Xα.
3 The ∞-category X satisfies the following ∞-categorical analogues of Giraud’s

axioms:
i The ∞-category X is presentable.
ii Colimits in X are universal.
iii Coproducts in X are disjoint.
iv Every groupoid object of X is effective.

Note that an ∞-topos is no longer necessarily the ∞-category of sheaves on a
Grothendieck topology! And we will be discussing that later.



Homotopy theory in an ∞-topos
Since every ∞-topos is a left localization of some presheaf ∞-category Fun(Cop,S), it
shares lots of properties upon the S.

Lemma
For an ∞-topos X , τ≤nX ⊂ X is stable under finite products.

Definition (homotopy groups)
Let f : X → Y be a morphism in an ∞-topos X . Regarding f as an object of the
topos X/Y , we may take its 0-truncation τ

X/Y
≤0 f . This is a discrete object of X/Y , and

we define π0(f ) ' f ∗τX/Y
≤0 (X) ' X ×Y τ

X/Y
≤0 (f ) in τ≤0(X/X ) .

If n > 0, then we define πn(f ) ' πn−1(δ), where δ : X → X ×Y X is the associated
diagonal map.

We can identify δn(f ) = (X → XSn−1
) in X/Y , which makes πn(f ) is a group object

in the ordinary topos τ≤0(X/X ) when n ≥ 1 and an abelian group object when n ≥ 2
by the lemma above.



Homotopy groups

Remark
If X = S and η : ∗ → X is a pointed space, then η∗πn(X) can be identified with the
nth homotopy group of X with base point η.

Proposition
Let f : X → Y be an n-truncated morphism in an ∞-topos X . Then πk(f ) ' ∗ for all
k > n. If furthermore n ≥ 0 and πn(f ) ' ∗, then f is (n − 1)-truncated.

Proposition

Given a pair of morphisms X f−→ Y g−→ Z in an ∞-topos X , there is an natural exact
sequence of pointed objects

· · · → f ∗πn+1(g)
δn−→ πn(f ) → πn(g ◦ f ) → f ∗πn(g)

δn−→ πn−1(f ) → · · ·

in the ordinary topos Disc
(
X/X

)
.



n-connective

Definition
Let C be a presentable ∞-category and n ≥ −2. We define
(n + 1) -conn = ⊥(n -trun), meaning a morphism is (n + 1)-connective iff it is left
orthogonal with all n-truncated morphisms.

Proposition
For any presentable ∞-category C and any n ≥ −2, the pair ((n + 1) -conn,n -trun) is
a factorization system.

Proposition
Let f : X → Y be a morphism in an ∞-topos X . Then

1 Every morphism f in X is (−1)-connective.
2 Let 0 ≤ n ≤ ∞. Then f is n-connective iff it is an effective epimorphism and

πk(f ) = ∗ for 0 ≤ k < n. We shall say that an object X is n-connective if
f : X → 1X is n-connective, where 1X denotes the final object of X .



∞-connective and hypercomplete
Whitehead theorem does not necessarily hold for every ∞-topos, because there could
exist non-trivial ∞-connective morphisms.

Proposition
Let X be an ∞-topos and let S denote the collection of ∞-connective morphisms of
X . Then S is strongly saturated, stable under pullback and of small generation.

We denote the X̂ as the left exact localization by inverting all ∞-connective
morphisms, which is also an ∞-topos.

Definition
Let X be an ∞-topos. We say that it is hypercomplete if every ∞-connective
morphism of X is an equivalence.

Proposition

Let X be an ∞-topos. Then the hypercompletion X̂ is a hypercomplete ∞-topos.



Grothendieck topology

Definition (Sieve)
1 Let C be an ∞-category. A sieve on C is a full subcategory of C(0) ⊆ C having the

property that if f : C → D is a morphism in C, and D belongs to C(0), then C
also belongs to C(0).

2 Let {Xα} be a collection of objects in C. Then we can associate a sieve C(0) ⊆ C
by C(0) = {X ∈ C|∃X → Xα for someα}, which is the smallest sieve containing
{Xα} .

3 If X ∈ C is an object, then a sieve on X is a sieve on the ∞-category C/X . Given
a morphism f : X → Y and a sieve C(0)

/Y on Y , we let f ∗C(0)
/Y denote the sieve on

X such that f ∗C(0)
/Y ⊆ C/X and a morphism A → X is in f ∗C(0)

/Y iff the composition
A → X → Y is in C(0)

/Y .



Grothendieck topology

Definition
A Grothendieck topology on an ∞-category C consists of a specification, for each
object C of C, of a collection of sieves on C which we will refer to as covering sieves.
The collections of covering sieves are required to possess the following properties:

1 If C is an object of C, then the C/C itself is a covering sieve on C .
2 If f : C → D is a morphism in C and C(0)

/C is a covering sieve on D, then f ∗C(0)
/C is

a covering sieve on C .
3 Let C be an object of C, C(0)

/C a covering sieve on C , and C(1)
/C an arbitrary sieve on

C . Suppose that, for each f : D → C belonging to the sieve C(0)
/C , the pullback

f ∗C(1)
/C is a covering sieve on D. Then C(1)

/C is a covering sieve on C .

Proposition
For an ∞-category C, the collection of Grothendieck topologies on C is naturally
bijective to that on the 1-category N(hC).



Grothendieck topology

Example
Let X be a topological space and U(X) be the partially ordered set of all open subsets
of X , which can be endowed with the Zariski (etale, smooth or fppf) Grothendieck
topology by that a sieve U ⊂ U(X)/U on U is a covering sieve iff it is generated by a
collection of Zariski (etale, smooth or fppf) morphisms {Uα → U} with U =

∪
Uα .



Sieves and monomorphisms
For each object U ∈ P(C), let C(0)(U ) ⊆ C be the full subcategory spanned by those
objects C ∈ C such that U (C ) 6= ∅. It is easy to see that C(0)(U ) is a sieve on C.
Conversely, given a sieve C(0) ⊆ C, there is a unique map C → ∆1 such that C(0) is the
preimage of {0}. This construction determines a bijection between sieves on C and
functors f : C → ∆1, and we may identify ∆1 ⊂ Sop as the full subcategory spanned
by the objects ∅,∆0 ∈ Sop. Since every (−1)-truncated Kan complex is equivalent to
either ∅ or ∆0, we conclude:
Proposition
For every small ∞-category C, the construction U 7→ C(0)(U ) determines an
equivalence Sie(C) ' τ≤−1P(C) of partially order sets between (−1)-truncated objects
of P(C) and of all sieves on C. Furthermore, this bijection preserves the inclusion
relation, so we have a natural equivalence of partially order sets Sie(C) ' τ≤−1P(C).

Corollary
We have the following equivalence Sie(C/X ) ' τ≤−1P(C/X ) ' τ≤−1P(C)/X , where the
latter exactly corresponds with all monomorphisms to X in P(C).



∞-Sheaves and Topological localization

Definition (sheaf)
Let C be a small ∞-category equipped with a Grothendieck topology. Let S be the
collection of all monomorphisms U → j(C ) which correspond to covering sieves
C(0)
/C ⊆ C/C . An object F ∈ P(C) is a sheaf if it is S-local. We let Shv(C) denote the

full subcategory of P(C) spanned by S-local objects.

Proposition

A presheaf F ∈ P(C) is a sheaf iff (C(0)
/C )▷ → C Fop

−−→ Sop is a colimit for any covering
sieve C(0)

/C .

Definition (topological localization)
Let L : C → D be an accessible left exact localization of presentable ∞-categories.
Then we say that it is topological if the strongly saturated class of those f sending to
an equivalence by L is generated by a collection of monomorphisms.



(co)topological decomposition of an ∞-topos

Theorem
Let C be a small ∞-category equipped with a Grothendieck topology. Then Shv(C) is
a topological localization of P(C). In particular, Shv(C) is an ∞-topos.

Definition
Let L : C → D be an accessible left exact localization of presentable ∞-categories.
Then we say that it is cotopological (or homotopical) if it satisfies that any f sending
to an equivalence by L is ∞-connective.

Theorem
Let X be an ∞-topos and let X ′′ ⊆ X be an accessible left exact localization of X .
Then there exists a unique topological localization X ′ ⊆ X such that X ′′ ⊆ X ′ is a
cotopological localization of X ′.



(co)topological decomposition of an ∞-topos
By this unique decomposition, we see that every ∞-topos X can be obtained in
following way:

1 Begin with the ∞-category P(C) of presheaves on some small ∞-category C.
2 Choose a Grothendieck topology on C : this is equivalent to choosing a left exact

localization of the underlying topos Disc(P(C)) = SethCop .
3 Form the associated topological localization Shv(C) ⊆ P(C), which can be

described as the pullback

P(C)×P(N(hC)) Shv(N(hC))

in RTopoi.
4 Form a cotopological localization of Shv(C) by inverting some subclass of

∞-connective morphisms of Shv(C).



Remarks about (co)topological localization
The hypercompletion X̂ is, in some sense, at the other extreme: it is obtained by
inverting the ∞-connective morphisms in X , which are never monomorphisms unless
they are already equivalences. In fact, X̂ is the maximal left exact localization of X
which can be obtained without inverting monomorphisms:

Proposition
Let X and Y be ∞-topoi and let f ∗ : X → Y be a left exact colimit-preserving functor.
The following conditions are equivalent:

1 For every monomorphism u in X , if f ∗u is an equivalence in Y, then u is an
equivalence in X .

2 For every morphism u ∈ X , if f ∗u is an equivalence in y, then u is ∞-connective.



Parametrized homotopy theory

Definition (C-valued sheaves on a Grothendieck topology)
Let T be an small ∞-category equipped with a Grothendieck topology. Let C be an
arbitrary ∞-category. Similar to sheaves valued on spaces, we will say that a functor
O : T op → C is a C-valued sheaf on T if the following condition is satisfied: for every
object U ∈ T and every covering sieve T 0

/U ⊆ T/U , the composite map(
T 0
/U

)◁
⊆

(
T/U

)◁ → T Oop
−−→ Cop

is a colimit diagram in Cop . We let ShvC(T ) ⊂ Fun (T op , C) denote the full
subcategory of spanned by the C-valued sheaves on T .

Definition (C-valued sheaves on an ∞-topos)
Let X be an ∞-topos and let C be an arbitrary ∞-category. A C-valued sheaf on X is
a functor X op → C which preserves small limits. We let ShvC(X ) denote the full
subcategory of Fun(X op , C) spanned by the C-valued sheaves on X .



Comparison of 2 definitions

Proposition
Let T be a small ∞-category equipped with a Grothendieck topology. Let
j : T → P(T ) denote the Yoneda embedding and L : P(T ) → Shv(T ) a left adjoint
to the inclusion. Let C be an arbitrary ∞-category which admits small limits. Then
composition with L ◦ j induces an equivalence of ∞-categories
ShvC(Shv(T )) → ShvC(T ).

proof: It follows from the composition
ShvC(Shv(T )) → Funlim (P(T )op, C) → Fun (T op, C) is fully faithful, and its essential
image is the full subcategory Shv(T ).

Remark
Let C be a presentable ∞-category and X an ∞-topos. Then the ∞ category
ShvC(X ) can be identified with the tensor product C ⊗X introduced in § HA.4.8.1 . In
particular, ShvC(X ) is a presentable ∞-category.



Parametrized homotopy theory

Example
1 Parametrized over a space:

Let C be a ∞-category and let T be an ∞-groupoid. The ∞-category
Fun(T op, C) of C-valued presheaves on T is naturally equivalent to the
∞-category Shv(S/T ) of C–valued sheaves on S/T via the natural equivalences

Fun(T op, C) ' Funlim(P(T )op, C) ' Funlim(Sop
/T , C) ' ShvC(S/T ).

2 Parametrized over a compact Lie group (equivariant homotopy):
For a compact Lie group G, we set SG := Fun(Oop

G , C) as the category of
G-spaces, where OG is the orbit category of G. This is a (presheaf) ∞-topos.
Recall that the full subcategory of (CGWH)-spaces on the homogeneous G-spaces,
that is Hausdorff spaces with a transitive G-action, is equivalent to the full
subcategory spanned by the orbits G/H , where H ≤ G is a closed subgroup. By
OG we denote the associated ∞-category which we call the orbit category of G.
For any ∞-category C, we call an object in Fun(Oop

G , C) ' ShvC(SG) by a
G-object.



Spectrum-valued sheaves on an ∞-topos

Definition
Let X be an ∞-topos. A sheaf of spectra on X is a sheaf on X with values in the
∞-category Sp of spectra. We let ShvSp(X ) denote the full subcategory of
Fun (X op, Sp) spanned by the sheaves of spectra on X .

Proposition
By identification ShvSp(X ) ' Sp ⊗X , we conclude that it is a stable ∞-category and
that the natural functor ShvSp(X ) → X represents as the stabilization of X .



Stabilization of an ∞-topos

Definition
Let X be an ∞-topos and let X♡ = τ⩽0X denote its underlying topos. Composing the
forgetful functor functor ShvSp(X ) → ShvS(X ) ' X with the truncation X → τ⩽0X ,
we obtain a functor π0 : ShvSp(X ) → τ⩽0X .
More generally, for any integer n, we let πn : ShvSp(X ) → τ⩽0X denote the
composition of the functor π0 with the shift functor Ωn : ShvSp(X ) → ShvSp(X ).

Note that πn preserves finite products and that ShvSp(X ) is stable. It follows that πn
can be regarded as a functor from ShvSp(X ) to the category of abelian groups objects
of X♡.
Lemma
If C is a 1-topos, then the category of its abelian groups objects Ab(C) is a
Grothendieck abelian category, meaning that it is presentable and that monomorphisms
in it are closed under small filtered colimits.



Stable homotopy theory on an ∞-topos

Definition
For every integer n, the functor Ω∞−n : Sp → S induces a functor
ShvSp(X ) → ShvS(X ) ' X , which we will also denote by Ω∞−n . We will say that an
object F ∈ ShvSp(X ) is n-truncated if Ω∞+nF is a discrete object of X . We will say
that a sheaf of spectra F ∈ ShvSp(X ) is n-connective if the homotopy groups πmF
vanish for m < n.
We will say that M is connective if it is 0-connective (equivalently, M is connective if
the object Ω∞−mF ∈ X is m-connective for every m ≥ 0). We let ShvSp(X )⩾n
denote the the full subcategory of ShvSp(X ) spanned by the n-connective objects, and
ShvSp(X )⩽n the full subcategory of ShvSp(X ) spanned by the n-truncated objects.



Stable homotopy theory on an ∞-topos

Theorem
Let X be an ∞-topos.

1 The full subcategories
(
ShvSp(X )⩾0, ShvSp(X )⩽0

)
determine a t-structure on

ShvSp(X ).
2 The t-structure on ShvSp(X ) is compatible with filtered colimits (that is, the full

subcategory ShvSp(X )⩽0 ⊆ ShvSp(X ) is closed under filtered colimits).
3 The t-structure on ShvSp(X ) is Postnikov complete.
4 The functor π0 determines an equivalence of categories from

ShvSp(X )♡
∼−→ Ab(X♡).



Stable homotopy theory on an ∞-topos

Proposition
Let g∗ : X → Y be a geometric functor of ∞-topoi (that is, a functor which preserves
small colimits and finite limits). Then g∗ induces a functor

ShvSp(X ) ' Sp(X ) → Sp(Y) ' ShvSp(Y).

It is a left adjoint to the pushforward functor g∗ : ShvSp(Y) → ShvSp(X ), given by
pointwise composition with g∗ : X → Y.
Since the functor g∗ : X → Y preserves n-truncated objects and n-connective objects
for every integer n, we conclude that the functor g∗ : ShvSp(X ) → ShvSp(Y) is
t-exact: that is, it carries ShvSp(X )⩾n into ShvSp(Y)⩾n and ShvSp(X )⩽n into
ShvSp(Y)⩽n . It follows that t-exact.



∞-Connective Sheaves of Spectra
The t-structure on ShvSp(X ) is not Whitehead complete in general. For example, there
may exist nonzero objects F ∈ ShvSp(X ) whose all homotopy groups πnF vanish.

Definition
Let X be an ∞-topos and let F ∈ ShvSp(X ) be a sheaf of spectra on X . We will say
that F is ∞-connective if it is n-connective for every integer n. In other words, F is
∞-connective if πnF ' 0 for every integer n.

Remark
Let X be an ∞-topos and let X hyp ⊆ X be the full subcategory spanned by the
hypercomplete objects. Then the inclusion map f∗ : X hyp → X , which admits a left
exact left adjoint f ∗ : X → X hyp . Hence we obtain a pair of adjoint functors

ShvSp(X ) ⇄ ShvSp(X hyp ).

Note that an object F ∈ ShvSp(X ) is ∞-connective if and only if f ∗F ' 0. Since the
faithful, the f∗ : ShvSp(X hyp ) → ShvSp(X ) is also fully faithful.



∞-Connective Sheaves of Spectra

Proposition
Let X be an ∞-topos and let F ∈ ShvSp(X ). The following conditions are equivalent:

1 The object Ω∞F ∈ X is hypercomplete.
2 The sheaf of spectra F belongs to the essential image of the fully faithful

embedding ShvSp(X hyp) → ShvSp(X )

3 For every ∞-connective object G ∈ ShvSp(X ), the mapping space
MapShvSp(X )(G,F) is contractible.

4 For every ∞-connective object G ∈ ShvSp(X ), every map u : G → F is
nullhomotopic.

Corollary
The left adjoint functor f ∗ : ShvSp(X ) → ShvSp(X hyp) represents the ShvSp(X hyp) as
the Whitehead completion of the ShvSp(X ).



Symmetric monoidal structure on sheaves of spectra
For an ∞-topos X , since small colimits commute with pullback in it, it admits a
cartesian closed symmetric monoidal structure X×. Therefore the stabilization
ShvSp(X ) admits a natural symmetric monoidal structure ShvSp(X )⊗ (similar to that
from S to Sp).
We now come to sheaves with values in the ∞-category CAlg of E∞-rings.

Proposition
For any ∞-topos X , we have a canonical equivalence of ∞-categories (even an
isomorphism of simplicial sets)

ShvCAlg(X ) ' CAlg
(
ShvSp(X )

)
.

Composing with the forgetful functor CAlg → Sp, we obtain a sheaf of spectra on X .
In particular, we can define homotopy groups πnO as previous. These homotopy
groups have a bit more structure in this case: π0O is a commutative ring object in the
underlying topos of X , while each πnO has the structure of a π0O-module.



Sheaves of E∞-rings

Definition
We say that a sheaf of E∞-rings is connective if it is connective when regarded as a
sheaf of spectra on X : that is, if the homotopy groups πnO vanish for n < 0. We let
ShvCAlg(X )cn denote the full subcategory of ShvCAlg(X ) spanned by the connective
sheaves of E∞-rings on X .

Proposition
Let X be an ∞-topos. Then composition with the truncation functor τ⩾0 : Sp → Spcn

induces an equivalence of (symmetric monoidal) ∞-categories
ShvSp(X )cn → ShvSpcn(X ).

Corollary
Let X be an ∞-topos. Then composition with the functor τ⩾0 : CAlg → CAlgcn

induces an equivalence of ∞-categories ShvCAlg(X )cn → ShvCAlgcn(X ).


