∞ -topoi and parametrized homotopy theory

Jiacheng Liang

Southern University of Science and Technology

June 17, 2024

1-topoi

Proposition

Let \mathcal{C} be a category. The following conditions are equivalent:

- The category C is (equivalent to) the category of sheaves Sh(X) of sets on some Grothendieck site X.
- **2** The category C is (equivalent to) a left exact localization of the category $PSh(C_0)$ of presheaves of sets on some small category C_0 .
- **③** *Giraud's axioms are satisfied:*
 - The category C is presentable (that is, C has small colimits and a set of small generators).
 - **b** Colimits in *C* are universal.
 - Coproducts in C are disjoint.
 - Equivalence relations in C are effective.

Definition (1-topos)

If a \mathcal{C} satisfies the equivalent conditions above, we call it a (1-)topos.

Why we need ∞ -topoi

As the basis of unstable homotopy theory.

Example

- The ∞ -category of spaces S is the basic but also most important example of ∞ -topos.
- If Also the ∞ -category of *G*-spaces S_G is an ∞ -topoi.
- Although the ∞ -category of motivic spaces H(S) for a Noetherian scheme S is not an ∞ -topos, the Nisnevich sheaf involves lots of ∞ -topos techniques.
- As the basis of parametrized homotopy theory.
- S As the basis of spectral algebraic geometry.

Proposition

Let \mathcal{X} be an ∞ -category. The following conditions are equivalent:

- The ∞ -category X is an ∞ -topos: i.e. if there exists a small ∞ -category \mathcal{C} and an accessible left exact localization functor $\mathcal{P}(\mathcal{C}) \to \mathcal{X}$.
- The ∞ -category X is presentable, and colimits in which are universal, i.e. $(\operatorname{colim} X_{\alpha}) \times_Z Y \simeq \operatorname{colim}(X_{\alpha} \times_Z Y)$. And furthermore it satisfies that $\mathcal{X}_{/X} \simeq \lim \mathcal{X}_{/X_{\alpha}}$ when $X = \operatorname{colim} X_{\alpha}$.
- Solution The ∞-category X satisfies the following ∞-categorical analogues of Giraud's axioms:
 - The ∞ -category X is presentable.
 - Colimits in X are universal.
 - Coproducts in X are disjoint.
 - Every groupoid object of X is effective.

Note that an ∞ -topos is no longer necessarily the ∞ -category of sheaves on a Grothendieck topology! And we will be discussing that later.

Homotopy theory in an ∞ -topos

Since every ∞ -topos is a left localization of some presheaf ∞ -category $\operatorname{Fun}(\mathcal{C}^{op}, \mathcal{S})$, it shares lots of properties upon the \mathcal{S} .

Lemma

For an ∞ -topos \mathcal{X} , $\tau_{\leq n} \mathcal{X} \subset \mathcal{X}$ is stable under finite products.

Definition (homotopy groups)

Let $f: X \to Y$ be a morphism in an ∞ -topos \mathcal{X} . Regarding f as an object of the topos $\mathcal{X}_{/Y}$, we may take its 0-truncation $\tau_{\leq 0}^{\mathcal{X}_{/Y}} f$. This is a discrete object of $\mathcal{X}_{/Y}$, and we define $\pi_0(f) \simeq f^* \tau_{\leq 0}^{\mathcal{X}_{/Y}}(X) \simeq X \times_Y \tau_{\leq 0}^{\mathcal{X}_{/Y}}(f)$ in $\tau_{\leq 0}(\mathcal{X}_{/X})$. If n > 0, then we define $\pi_n(f) \simeq \pi_{n-1}(\delta)$, where $\delta: X \to X \times_Y X$ is the associated diagonal map.

We can identify $\delta^n(f) = (X \to X^{S^{n-1}})$ in $\mathcal{X}_{/Y}$, which makes $\pi_n(f)$ is a group object in the ordinary topos $\tau_{\leq 0}(\mathcal{X}_{/X})$ when $n \geq 1$ and an abelian group object when $n \geq 2$ by the lemma above.

Homotopy groups

Remark

If $\mathcal{X} = \mathcal{S}$ and $\eta : * \to X$ is a pointed space, then $\eta^* \pi_n(X)$ can be identified with the *n*th homotopy group of X with base point η .

Proposition

Let $f: X \to Y$ be an *n*-truncated morphism in an ∞ -topos \mathcal{X} . Then $\pi_k(f) \simeq *$ for all k > n. If furthermore $n \ge 0$ and $\pi_n(f) \simeq *$, then f is (n-1)-truncated.

Proposition

Given a pair of morphisms $X \xrightarrow{f} Y \xrightarrow{g} Z$ in an ∞ -topos \mathcal{X} , there is an natural exact sequence of pointed objects

$$\cdots \to f^* \pi_{n+1}(g) \xrightarrow{\delta_n} \pi_n(f) \to \pi_n(g \circ f) \to f^* \pi_n(g) \xrightarrow{\delta_n} \pi_{n-1}(f) \to \cdots$$

in the ordinary topos $\operatorname{Disc}(\mathcal{X}_{/X})$.

Let C be a presentable ∞ -category and $n \ge -2$. We define (n+1)-conn = $\perp (n$ -trun), meaning a morphism is (n+1)-connective iff it is left orthogonal with all *n*-truncated morphisms.

Proposition

For any presentable ∞ -category C and any $n \ge -2$, the pair ((n + 1)-conn, n-trun) is a factorization system.

Proposition

Let $f: X \to Y$ be a morphism in an ∞ -topos \mathcal{X} . Then

• Every morphism f in \mathcal{X} is (-1)-connective.

2 Let 0 ≤ n ≤ ∞. Then f is n-connective iff it is an effective epimorphism and π_k(f) = * for 0 ≤ k < n. We shall say that an object X is n-connective if f : X → 1_X is n-connective, where 1_X denotes the final object of X.

∞ -connective and hypercomplete

Whitehead theorem does not necessarily hold for every ∞ -topos, because there could exist non-trivial ∞ -connective morphisms.

Proposition

Let \mathcal{X} be an ∞ -topos and let S denote the collection of ∞ -connective morphisms of \mathcal{X} . Then S is strongly saturated, stable under pullback and of small generation.

We denote the $\hat{\mathcal{X}}$ as the left exact localization by inverting all ∞ -connective morphisms, which is also an ∞ -topos.

Definition

Let \mathcal{X} be an ∞ -topos. We say that it is hypercomplete if every ∞ -connective morphism of \mathcal{X} is an equivalence.

Proposition

Let \mathcal{X} be an ∞ -topos. Then the hypercompletion $\hat{\mathcal{X}}$ is a hypercomplete ∞ -topos.

Grothendieck topology

Definition (Sieve)

- Let C be an ∞ -category. A sieve on C is a full subcategory of $C^{(0)} \subseteq C$ having the property that if $f: C \to D$ is a morphism in C, and D belongs to $C^{(0)}$, then C also belongs to $C^{(0)}$.
- Solution $\{X_{\alpha}\}\$ be a collection of objects in \mathcal{C} . Then we can associate a sieve $\mathcal{C}^{(0)} \subseteq \mathcal{C}$ by $\mathcal{C}^{(0)} = \{X \in \mathcal{C} | \exists X \to X_{\alpha} \text{ for some } \alpha\}$, which is the smallest sieve containing $\{X_{\alpha}\}$.
- So If X ∈ C is an object, then a sieve on X is a sieve on the ∞-category C_{/X}. Given a morphism f : X → Y and a sieve C⁽⁰⁾_{/Y} on Y, we let f*C⁽⁰⁾_{/Y} denote the sieve on X such that $f^*C^{(0)}_{/Y} \subseteq C_{/X}$ and a morphism A → X is in $f^*C^{(0)}_{/Y}$ iff the composition A → X → Y is in C⁽⁰⁾_{/Y}.

Grothendieck topology

Definition

A Grothendieck topology on an ∞ -category \mathcal{C} consists of a specification, for each object C of \mathcal{C} , of a collection of sieves on C which we will refer to as covering sieves. The collections of covering sieves are required to possess the following properties: If C is an object of \mathcal{C} , then the $\mathcal{C}_{/C}$ itself is a covering sieve on C.

- If f: C → D is a morphism in C and $\mathcal{C}_{/C}^{(0)}$ is a covering sieve on D, then $f^*\mathcal{C}_{/C}^{(0)}$ is a covering sieve on C.
- Let C be an object of C, C⁽⁰⁾_{/C} a covering sieve on C, and C⁽¹⁾_{/C} an arbitrary sieve on C. Suppose that, for each f : D → C belonging to the sieve C⁽⁰⁾_{/C}, the pullback f*C⁽¹⁾_{/C} is a covering sieve on D. Then C⁽¹⁾_{/C} is a covering sieve on C.

Proposition

For an ∞ -category C, the collection of Grothendieck topologies on C is naturally bijective to that on the 1-category N(hC).

Example

Let X be a topological space and $\mathcal{U}(X)$ be the partially ordered set of all open subsets of X, which can be endowed with the Zariski (etale, smooth or fppf) Grothendieck topology by that a sieve $\mathcal{U} \subset \mathcal{U}(X)_{/U}$ on U is a covering sieve iff it is generated by a collection of Zariski (etale, smooth or fppf) morphisms $\{U_{\alpha} \rightarrow U\}$ with $U = \bigcup U_{\alpha}$.

Sieves and monomorphisms

For each object $U \in \mathcal{P}(\mathcal{C})$, let $\mathcal{C}^{(0)}(U) \subseteq \mathcal{C}$ be the full subcategory spanned by those objects $C \in \mathcal{C}$ such that $U(C) \neq \emptyset$. It is easy to see that $\mathcal{C}^{(0)}(U)$ is a sieve on \mathcal{C} . Conversely, given a sieve $\mathcal{C}^{(0)} \subseteq \mathcal{C}$, there is a unique map $\mathcal{C} \to \Delta^1$ such that $\mathcal{C}^{(0)}$ is the preimage of $\{0\}$. This construction determines a bijection between sieves on \mathcal{C} and functors $f : \mathcal{C} \to \Delta^1$, and we may identify $\Delta^1 \subset \mathcal{S}^{op}$ as the full subcategory spanned by the objects $\emptyset, \Delta^0 \in \mathcal{S}^{op}$. Since every (-1)-truncated Kan complex is equivalent to either \emptyset or Δ^0 , we conclude:

Proposition

For every small ∞ -category \mathcal{C} , the construction $U \mapsto \mathcal{C}^{(0)}(U)$ determines an equivalence $Sie(\mathcal{C}) \simeq \tau_{\leq -1}\mathcal{P}(\mathcal{C})$ of partially order sets between (-1)-truncated objects of $\mathcal{P}(\mathcal{C})$ and of all sieves on \mathcal{C} . Furthermore, this bijection preserves the inclusion relation, so we have a natural equivalence of partially order sets $Sie(\mathcal{C}) \simeq \tau_{\leq -1}\mathcal{P}(\mathcal{C})$.

Corollary

We have the following equivalence $Sie(\mathcal{C}_{/X}) \simeq \tau_{\leq -1} \mathcal{P}(\mathcal{C}_{/X}) \simeq \tau_{\leq -1} \mathcal{P}(\mathcal{C})_{/X}$, where the latter exactly corresponds with all monomorphisms to X in $\mathcal{P}(\mathcal{C})$.

Definition (sheaf)

Let \mathcal{C} be a small ∞ -category equipped with a Grothendieck topology. Let S be the collection of all monomorphisms $U \to j(C)$ which correspond to covering sieves $\mathcal{C}_{/C}^{(0)} \subseteq \mathcal{C}_{/C}$. An object $\mathcal{F} \in \mathcal{P}(\mathcal{C})$ is a sheaf if it is S-local. We let $\mathrm{Shv}(\mathcal{C})$ denote the full subcategory of $\mathcal{P}(\mathcal{C})$ spanned by S-local objects.

Proposition

A presheaf $\mathcal{F} \in \mathcal{P}(\mathcal{C})$ is a sheaf iff $(\mathcal{C}_{/C}^{(0)})^{\triangleright} \to \mathcal{C} \xrightarrow{\mathcal{F}^{op}} \mathcal{S}^{op}$ is a colimit for any covering sieve $\mathcal{C}_{/C}^{(0)}$.

Definition (topological localization)

Let $L: \mathcal{C} \to \mathcal{D}$ be an accessible left exact localization of presentable ∞ -categories. Then we say that it is topological if the strongly saturated class of those f sending to an equivalence by L is generated by a collection of monomorphisms.

Theorem

Let \mathcal{C} be a small ∞ -category equipped with a Grothendieck topology. Then $\operatorname{Shv}(\mathcal{C})$ is a topological localization of $\mathcal{P}(\mathcal{C})$. In particular, $\operatorname{Shv}(\mathcal{C})$ is an ∞ -topos.

Definition

Let $L : \mathcal{C} \to \mathcal{D}$ be an accessible left exact localization of presentable ∞ -categories. Then we say that it is cotopological (or homotopical) if it satisfies that any f sending to an equivalence by L is ∞ -connective.

Theorem

Let \mathcal{X} be an ∞ -topos and let $\mathcal{X}'' \subseteq \mathcal{X}$ be an accessible left exact localization of \mathcal{X} . Then there exists a unique topological localization $\mathcal{X}' \subseteq \mathcal{X}$ such that $\mathcal{X}'' \subseteq \mathcal{X}'$ is a cotopological localization of \mathcal{X}' .

(co)topological decomposition of an oc-topos

By this unique decomposition, we see that every ∞ -topos \mathcal{X} can be obtained in following way:

- **9** Begin with the ∞ -category $\mathcal{P}(\mathcal{C})$ of presheaves on some small ∞ -category \mathcal{C} .
- ② Choose a Grothendieck topology on C : this is equivalent to choosing a left exact localization of the underlying topos Disc($\mathcal{P}(\mathcal{C})$) = Set^{hC^{op}}.
- Some of the associated topological localization Shv(C) ⊆ $\mathcal{P}(C)$, which can be described as the pullback

 $\mathcal{P}(\mathcal{C}) \times_{\mathcal{P}(N(h\mathcal{C}))} Shv(N(h\mathcal{C}))$

in \mathcal{R} *Topoi*.

Form a cotopological localization of Shv(C) by inverting some subclass of ∞-connective morphisms of Shv(C).

Remarks about (co)topological localization

The hypercompletion $\hat{\mathcal{X}}$ is, in some sense, at the other extreme: it is obtained by inverting the ∞ -connective morphisms in \mathcal{X} , which are never monomorphisms unless they are already equivalences. In fact, $\hat{\mathcal{X}}$ is the maximal left exact localization of \mathcal{X} which can be obtained without inverting monomorphisms:

Proposition

Let \mathcal{X} and \mathcal{Y} be ∞ -topoi and let $f^* : \mathcal{X} \to \mathcal{Y}$ be a left exact colimit-preserving functor. The following conditions are equivalent:

- For every monomorphism u in \mathcal{X} , if f^*u is an equivalence in \mathcal{Y} , then u is an equivalence in \mathcal{X} .
- **2** For every morphism $u \in \mathcal{X}$, if f^*u is an equivalence in y, then u is ∞ -connective.

Definition (*C*-valued sheaves on a Grothendieck topology)

Let \mathcal{T} be an small ∞ -category equipped with a Grothendieck topology. Let \mathcal{C} be an arbitrary ∞ -category. Similar to sheaves valued on spaces, we will say that a functor $\mathcal{O}: \mathcal{T}^{\mathrm{op}} \to \mathcal{C}$ is a \mathcal{C} -valued sheaf on \mathcal{T} if the following condition is satisfied: for every object $U \in \mathcal{T}$ and every covering sieve $\mathcal{T}_{/U}^0 \subseteq \mathcal{T}_{/U}$, the composite map

 $\left(\mathcal{T}^{0}_{/U}\right)^{\triangleleft} \subseteq \left(\mathcal{T}_{/U}\right)^{\triangleleft} \to \mathcal{T} \xrightarrow{\mathcal{O}^{\mathsf{op}}} \mathcal{C}^{\mathsf{op}}$

is a colimit diagram in \mathcal{C}^{op} . We let $\operatorname{Shv}_{\mathcal{C}}(\mathcal{T}) \subset \operatorname{Fun}(\mathcal{T}^{op}, \mathcal{C})$ denote the full subcategory of spanned by the \mathcal{C} -valued sheaves on \mathcal{T} .

Definition (C-valued sheaves on an ∞ -topos)

Let \mathcal{X} be an ∞ -topos and let \mathcal{C} be an arbitrary ∞ -category. A \mathcal{C} -valued sheaf on \mathcal{X} is a functor $\mathcal{X}^{op} \to \mathcal{C}$ which preserves small limits. We let $\operatorname{Shv}_{\mathcal{C}}(\mathcal{X})$ denote the full subcategory of $\operatorname{Fun}(\mathcal{X}^{op}, \mathcal{C})$ spanned by the \mathcal{C} -valued sheaves on \mathcal{X} .

Proposition

Let \mathcal{T} be a small ∞ -category equipped with a Grothendieck topology. Let $j: \mathcal{T} \to \mathcal{P}(\mathcal{T})$ denote the Yoneda embedding and $L: \mathcal{P}(\mathcal{T}) \to Shv(\mathcal{T})$ a left adjoint to the inclusion. Let \mathcal{C} be an arbitrary ∞ -category which admits small limits. Then composition with $L \circ j$ induces an equivalence of ∞ -categories $Shv_{\mathcal{C}}(Shv(\mathcal{T})) \to Shv_{\mathcal{C}}(\mathcal{T})$.

proof: It follows from the composition $\frac{\operatorname{Shv}_{\mathcal{C}}(\operatorname{Shv}(\mathcal{T})) \to \operatorname{Fun}^{\lim}(\mathcal{P}(\mathcal{T})^{\operatorname{op}}, \mathcal{C}) \to \operatorname{Fun}(\mathcal{T}^{\operatorname{op}}, \mathcal{C}) \text{ is fully faithful, and its essential image is the full subcategory } \operatorname{Shv}(\mathcal{T}).$

Remark

Let \mathcal{C} be a presentable ∞ -category and \mathcal{X} an ∞ -topos. Then the ∞ category $\operatorname{Shv}_{\mathcal{C}}(\mathcal{X})$ can be identified with the tensor product $\mathcal{C}\otimes\mathcal{X}$ introduced in § HA.4.8.1 . In particular, $\operatorname{Shv}_{\mathcal{C}}(\mathcal{X})$ is a presentable ∞ -category.

Parametrized homotopy theory

Example

Parametrized over a space:

Let \mathcal{C} be a ∞ -category and let T be an ∞ -groupoid. The ∞ -category $\operatorname{Fun}(T^{\operatorname{op}}, \mathcal{C})$ of \mathcal{C} -valued presheaves on T is naturally equivalent to the ∞ -category $\operatorname{Shv}(\mathcal{S}_{/T})$ of \mathcal{C} -valued sheaves on $\mathcal{S}_{/T}$ via the natural equivalences $\operatorname{Fun}(T^{\operatorname{op}}, \mathcal{C}) \simeq \operatorname{Fun}^{\lim}(\mathcal{P}(T)^{\operatorname{op}}, \mathcal{C}) \simeq \operatorname{Fun}^{\lim}(\mathcal{S}_{/T}^{\operatorname{op}}, \mathcal{C}) \simeq \operatorname{Shv}_{\mathcal{C}}(\mathcal{S}_{/T}).$

 Parametrized over a compact Lie group (equivariant homotopy): For a compact Lie group G, we set S_G := Fun(O^{op}_G, C) as the category of G-spaces, where O_G is the orbit category of G. This is a (presheaf) ∞-topos.

Recall that the full subcategory of (CGWH)-spaces on the homogeneous G-spaces, that is Hausdorff spaces with a transitive G-action, is equivalent to the full subcategory spanned by the orbits G/H, where $H \leq G$ is a closed subgroup. By \mathcal{O}_G we denote the associated ∞ -category which we call the orbit category of G. For any ∞ -category \mathcal{C} , we call an object in $\operatorname{Fun}(\mathcal{O}_G^{\operatorname{op}}, \mathcal{C}) \simeq \operatorname{Shv}_{\mathcal{C}}(\mathcal{S}_G)$ by a G-object.

Let \mathcal{X} be an ∞ -topos. A sheaf of spectra on \mathcal{X} is a sheaf on \mathcal{X} with values in the ∞ -category Sp of spectra. We let $\operatorname{Shv}_{\operatorname{Sp}}(\mathcal{X})$ denote the full subcategory of $\operatorname{Fun}(\mathcal{X}^{\operatorname{op}},\operatorname{Sp})$ spanned by the sheaves of spectra on \mathcal{X} .

Proposition

By identification $\operatorname{Shv}_{\operatorname{Sp}}(\mathcal{X}) \simeq \operatorname{Sp} \otimes \mathcal{X}$, we conclude that it is a stable ∞ -category and that the natural functor $\operatorname{Shv}_{\operatorname{Sp}}(\mathcal{X}) \to \mathcal{X}$ represents as the stabilization of \mathcal{X} .

Let \mathcal{X} be an ∞ -topos and let $\mathcal{X}^{\heartsuit} = \tau_{\leqslant 0} \mathcal{X}$ denote its underlying topos. Composing the forgetful functor functor $\operatorname{Shv}_{\operatorname{Sp}}(\mathcal{X}) \to \operatorname{Shv}_{\mathcal{S}}(\mathcal{X}) \simeq \mathcal{X}$ with the truncation $\mathcal{X} \to \tau_{\leqslant 0} \mathcal{X}$, we obtain a functor $\pi_0 : \operatorname{Shv}_{\operatorname{Sp}}(\mathcal{X}) \to \tau_{\leqslant 0} \mathcal{X}$.

More generally, for any integer n, we let $\pi_n : \operatorname{Shv}_{\operatorname{Sp}}(\mathcal{X}) \to \tau_{\leq 0}\mathcal{X}$ denote the composition of the functor π_0 with the shift functor $\Omega^n : \operatorname{Shv}_{\operatorname{Sp}}(\mathcal{X}) \to \operatorname{Shv}_{\operatorname{Sp}}(\mathcal{X})$.

Note that π_n preserves finite products and that $\operatorname{Shv}_{\operatorname{Sp}}(\mathcal{X})$ is stable. It follows that π_n can be regarded as a functor from $\operatorname{Shv}_{\operatorname{Sp}}(\mathcal{X})$ to the category of abelian groups objects of \mathcal{X}^{\heartsuit} .

Lemma

If C is a 1-topos, then the category of its abelian groups objects Ab(C) is a Grothendieck abelian category, meaning that it is presentable and that monomorphisms in it are closed under small filtered colimits.

For every integer n, the functor $\Omega^{\infty-n} : \operatorname{Sp} \to \mathcal{S}$ induces a functor $\operatorname{Shv}_{\operatorname{Sp}}(\mathcal{X}) \to \operatorname{Shv}_{\mathcal{S}}(\mathcal{X}) \simeq \mathcal{X}$, which we will also denote by $\Omega^{\infty-n}$. We will say that an object $\mathcal{F} \in \operatorname{Shv}_{\operatorname{Sp}}(\mathcal{X})$ is *n*-truncated if $\Omega^{\infty+n}\mathcal{F}$ is a discrete object of \mathcal{X} . We will say that a sheaf of spectra $\mathcal{F} \in \operatorname{Shv}_{\operatorname{Sp}}(\mathcal{X})$ is *n*-connective if the homotopy groups $\pi_m \mathcal{F}$ vanish for m < n.

We will say that M is connective if it is 0-connective (equivalently, M is connective if the object $\Omega^{\infty-m}\mathcal{F} \in \mathcal{X}$ is *m*-connective for every $m \geq 0$). We let $\operatorname{Shv}_{\operatorname{Sp}}(\mathcal{X})_{\geq n}$ denote the full subcategory of $\operatorname{Shv}_{\operatorname{Sp}}(\mathcal{X})$ spanned by the *n*-connective objects, and $\operatorname{Shv}_{\operatorname{Sp}}(\mathcal{X})_{\leq n}$ the full subcategory of $\operatorname{Shv}_{\operatorname{Sp}}(\mathcal{X})$ spanned by the *n*-truncated objects.

Stable homotopy theory on an ∞ -topos

Theorem

Let \mathcal{X} be an ∞ -topos.

- The full subcategories (Shv_{Sp}(X)≥0, Shv_{Sp}(X)≤0) determine a t-structure on Shv_{Sp}(X).
- The t-structure on Shv_{Sp}(X) is compatible with filtered colimits (that is, the full subcategory Shv_{Sp}(X)_{≤0} ⊆ Shv_{Sp}(X) is closed under filtered colimits).
- **③** The *t*-structure on $\operatorname{Shv}_{\operatorname{Sp}}(\mathcal{X})$ is Postnikov complete.
- The functor π_0 determines an equivalence of categories from $\operatorname{Shv}_{\operatorname{Sp}}(\mathcal{X})^{\heartsuit} \xrightarrow{\sim} \operatorname{Ab}(\mathcal{X}^{\heartsuit}).$

Proposition

Let $g^* : \mathcal{X} \to \mathcal{Y}$ be a geometric functor of ∞ -topoi (that is, a functor which preserves small colimits and finite limits). Then g^* induces a functor

 $\operatorname{Shv}_{\operatorname{Sp}}(\mathcal{X}) \simeq \operatorname{Sp}(\mathcal{X}) \to \operatorname{Sp}(\mathcal{Y}) \simeq \operatorname{Shv}_{\operatorname{Sp}}(\mathcal{Y}).$

It is a left adjoint to the pushforward functor $g_* : \operatorname{Shv}_{\operatorname{Sp}}(\mathcal{Y}) \to \operatorname{Shv}_{\operatorname{Sp}}(\mathcal{X})$, given by pointwise composition with $g^* : \mathcal{X} \to \mathcal{Y}$. Since the functor $g^* : \mathcal{X} \to \mathcal{Y}$ preserves *n*-truncated objects and *n*-connective objects for every integer *n*, we conclude that the functor $g^* : \operatorname{Shv}_{\operatorname{Sp}}(\mathcal{X}) \to \operatorname{Shv}_{\operatorname{Sp}}(\mathcal{Y})$ is *t*-exact: that is, it carries $\operatorname{Shv}_{\operatorname{Sp}}(\mathcal{X})_{\geq n}$ into $\operatorname{Shv}_{\operatorname{Sp}}(\mathcal{Y})_{\geq n}$ and $\operatorname{Shv}_{\operatorname{Sp}}(\mathcal{X})_{\leq n}$ into $\operatorname{Shv}_{\operatorname{Sp}}(\mathcal{Y})_{\leq n}$. It follows that *t*-exact.

∞-Connective Sheaves of Spectra

The t-structure on $\operatorname{Shv}_{\operatorname{Sp}}(\mathcal{X})$ is not Whitehead complete in general. For example, there may exist nonzero objects $\mathcal{F} \in \operatorname{Shv}_{\operatorname{Sp}}(\mathcal{X})$ whose all homotopy groups $\pi_n \mathcal{F}$ vanish.

Definition

Let \mathcal{X} be an ∞ -topos and let $\mathcal{F} \in \operatorname{Shv}_{\operatorname{Sp}}(\mathcal{X})$ be a sheaf of spectra on \mathcal{X} . We will say that \mathcal{F} is ∞ -connective if it is *n*-connective for every integer *n*. In other words, \mathcal{F} is ∞ -connective if $\pi_n \mathcal{F} \simeq 0$ for every integer *n*.

Remark

Let \mathcal{X} be an ∞ -topos and let $\mathcal{X}^{hyp} \subseteq \mathcal{X}$ be the full subcategory spanned by the hypercomplete objects. Then the inclusion map $f_* : \mathcal{X}^{hyp} \to \mathcal{X}$, which admits a left exact left adjoint $f^* : \mathcal{X} \to \mathcal{X}^{hyp}$. Hence we obtain a pair of adjoint functors

 $\operatorname{Shv}_{\operatorname{Sp}}(\mathcal{X}) \rightleftarrows \operatorname{Shv}_{\operatorname{Sp}}(\mathcal{X}^{\mathsf{hyp}}).$

Note that an object $\mathcal{F} \in \operatorname{Shv}_{\operatorname{Sp}}(\mathcal{X})$ is ∞ -connective if and only if $f^*\mathcal{F} \simeq 0$. Since the faithful, the $f_* : \operatorname{Shv}_{\operatorname{Sp}}(\mathcal{X}^{\mathsf{hyp}}) \to \operatorname{Shv}_{\operatorname{Sp}}(\mathcal{X})$ is also fully faithful.

∞-Connective Sheaves of Spectra

Proposition

Let \mathcal{X} be an ∞ -topos and let $\mathcal{F} \in \operatorname{Shv}_{\operatorname{Sp}}(\mathcal{X})$. The following conditions are equivalent:

- **1** The object $\Omega^{\infty} \mathcal{F} \in \mathcal{X}$ is hypercomplete.
- **2** The sheaf of spectra \mathcal{F} belongs to the essential image of the fully faithful embedding $\operatorname{Shv}_{\operatorname{Sp}}(\mathcal{X}^{\operatorname{hyp}}) \to \operatorname{Shv}_{\operatorname{Sp}}(\mathcal{X})$
- For every ∞-connective object G ∈ Shv_{Sp}(X), the mapping space Map_{Shv_{Sp}(X)}(G, F) is contractible.
- Solution For every ∞-connective object G ∈ Shv_{Sp}(X), every map u : G → F is nullhomotopic.

Corollary

The left adjoint functor $f^* : \operatorname{Shv}_{\operatorname{Sp}}(\mathcal{X}) \to \operatorname{Shv}_{\operatorname{Sp}}(\mathcal{X}^{\operatorname{hyp}})$ represents the $\operatorname{Shv}_{\operatorname{Sp}}(\mathcal{X}^{\operatorname{hyp}})$ as the Whitehead completion of the $\operatorname{Shv}_{\operatorname{Sp}}(\mathcal{X})$.

Symmetric monoidal structure on sheaves of spectra

For an ∞ -topos \mathcal{X} , since small colimits commute with pullback in it, it admits a cartesian closed symmetric monoidal structure \mathcal{X}^{\times} . Therefore the stabilization $\operatorname{Shv}_{\operatorname{Sp}}(\mathcal{X})$ admits a natural symmetric monoidal structure $\operatorname{Shv}_{\operatorname{Sp}}(\mathcal{X})^{\otimes}$ (similar to that from \mathcal{S} to Sp).

We now come to sheaves with values in the ∞ -category CAlg of \mathbb{E}_{∞} -rings.

Proposition

For any ∞ -topos \mathcal{X} , we have a canonical equivalence of ∞ -categories (even an isomorphism of simplicial sets)

 $\operatorname{Shv}_{\operatorname{CAlg}}(\mathcal{X}) \simeq \operatorname{CAlg}(\operatorname{Shv}_{\operatorname{Sp}}(\mathcal{X})).$

Composing with the forgetful functor CAlg \rightarrow Sp, we obtain a sheaf of spectra on \mathcal{X} . In particular, we can define homotopy groups $\pi_n \mathcal{O}$ as previous. These homotopy groups have a bit more structure in this case: $\pi_0 \mathcal{O}$ is a commutative ring object in the underlying topos of \mathcal{X} , while each $\pi_n \mathcal{O}$ has the structure of a $\pi_0 \mathcal{O}$ -module.

We say that a sheaf of \mathbb{E}_{∞} -rings is connective if it is connective when regarded as a sheaf of spectra on \mathcal{X} : that is, if the homotopy groups $\pi_n \mathcal{O}$ vanish for n < 0. We let $\operatorname{Shv}_{\operatorname{CAlg}}(\mathcal{X})^{\operatorname{cn}}$ denote the full subcategory of $\operatorname{Shv}_{\operatorname{CAlg}}(\mathcal{X})$ spanned by the connective sheaves of \mathbb{E}_{∞} -rings on \mathcal{X} .

Proposition

Let \mathcal{X} be an ∞ -topos. Then composition with the truncation functor $\tau_{\geq 0} : \operatorname{Sp} \to \operatorname{Sp}^{\operatorname{cn}}$ induces an equivalence of (symmetric monoidal) ∞ -categories $\operatorname{Shv}_{\operatorname{Sp}}(\mathcal{X})^{\operatorname{cn}} \to \operatorname{Shv}_{\operatorname{Sp}^{\operatorname{cn}}}(\mathcal{X}).$

Corollary

Let \mathcal{X} be an ∞ -topos. Then composition with the functor $\tau_{\geq 0}$: CAlg \rightarrow CAlg^{cn} induces an equivalence of ∞ -categories $\operatorname{Shv}_{\operatorname{CAlg}}(\mathcal{X})^{\operatorname{cn}} \rightarrow \operatorname{Shv}_{\operatorname{CAlg}^{\operatorname{cn}}}(\mathcal{X})$.