∞-topoi and parametrized homotopy theory

Jiacheng Liang

Southern University of Science and Technology

June 17, 2024

1-topoi

Proposition

Let *C* be a category. The following conditions are equivalent:

- **1** The category C is (equivalent to) the category of sheaves $Sh(X)$ of sets on some Grothendieck site *X*.
- **2** The category C is (equivalent to) a left exact localization of the category $PSh(\mathcal{C}_0)$ of presheaves of sets on some small category *C*0.
- **3** Giraud's axioms are satisfied:
	- The category C is presentable (that is, C has small colimits and a set of small generators).
	- **b** Colimits in *C* are universal.
	- **c** Coproducts in *C* are disjoint.
	- ^d Equivalence relations in *C* are effective.

Definition (1-topos)

If a $\mathcal C$ satisfies the equivalent conditions above, we call it a $(1-)$ topos.

Why we need *∞*-topoi

1 As the basis of unstable homotopy theory.

Example

- **i** The ∞-category of spaces *S* is the basic but also most important example of ∞-topos.
- ii Also the *∞*-category of *G*-spaces *S^G* is an *∞*-topoi.
- **ii** Although the ∞-category of motivic spaces $H(S)$ for a Noetherian scheme *S* is not an *∞*-topos, the Nisnevich sheaf involves lots of *∞*-topos techniques.
- 2 As the basis of parametrized homotopy theory.
- **3** As the basis of spectral algebraic geometry.

Proposition

Let $\mathcal X$ be an ∞ -category. The following conditions are equivalent:

- ¹ The *∞*-category *X* is an *∞*-topos: i.e. if there exists a small *∞*-category *C* and an accessible left exact localization functor $\mathcal{P}(\mathcal{C}) \to \mathcal{X}$.
- ² The *∞*-category *X* is presentable, and colimits in which are universal, i.e. α (colim X_{α}) \times *z* $Y \simeq$ colim $(X_{\alpha} \times_Z Y)$. And furthermore it satisfies that $\mathcal{X}_{/X} \simeq \lim \mathcal{X}_{/X_{\alpha}}$ when $X = \operatorname{colim} X_{\alpha}$.
- ³ The *∞*-category *X* satisfies the following *∞*-categorical analogues of Giraud's axioms:
	- **i** The ∞ -category *X* is presentable.
	- \bigcirc Colimits in $\mathcal X$ are universal.
	- \bullet Coproducts in X are disjoint.
	- \bullet Every groupoid object of X is effective.

Note that an *∞*-topos is no longer necessarily the *∞*-category of sheaves on a Grothendieck topology! And we will be discussing that later.

Homotopy theory in an *∞*-topos

Since every ∞ -topos is a left localization of some presheaf ∞ -category $\mathrm{Fun}(\mathcal{C}^{op},\mathcal{S}),$ it shares lots of properties upon the *S*.

Lemma

For an ∞ -topos $\mathcal{X}, \tau \leq n$ $\mathcal{X} \subset \mathcal{X}$ is stable under finite products.

Definition (homotopy groups)

Let $f: X \to Y$ be a morphism in an ∞ -topos $\mathcal X$. Regarding f as an object of the topos $\mathcal{X}_{/Y}$, we may take its 0-truncation $\tau_{\leq 0}^{\mathcal{X}_{/Y}}f$. This is a discrete object of $\mathcal{X}_{/Y}$, and we define $\pi_0(f) \simeq f^* \tau_{\leq 0}^{\mathcal{X}/Y}(X) \simeq X \times_Y \tau_{\leq 0}^{\mathcal{X}/Y}(f)$ in $\tau_{\leq 0}(\mathcal{X}/X)$. If $n > 0$, then we define $\pi_n(f) \simeq \pi_{n-1}(\delta)$, where $\delta: X \to X \times_Y X$ is the associated $f(n) \geq 0$ diagonal map.

 $\mathsf{W}\mathsf{e}$ can identify $\delta^n(f) = (X \to X^{S^{n-1}})$ in $\mathcal{X}_{/Y}$, which makes $\pi_n(f)$ is a group object in the ordinary topos $\tau_{\leq 0}(\mathcal{X}_{/X})$ when $n \geq 1$ and an abelian group object when $n \geq 2$ by the lemma above.

Homotopy groups

Remark

If $\mathcal{X} = \mathcal{S}$ and $\eta: * \to X$ is a pointed space, then $\eta^*\pi_n(X)$ can be identified with the *n*th homotopy group of *X* with base point *η*.

Proposition

Let $f: X \to Y$ be an *n*-truncated morphism in an ∞ -topos \mathcal{X} . Then $\pi_k(f) \simeq *$ for all $k > n$. If furthermore $n \geq 0$ and $\pi_n(f) \simeq *$, then *f* is $(n-1)$ -truncated.

Proposition

Given a pair of morphisms $X \xrightarrow{f} Y \xrightarrow{g} Z$ in an ∞ -topos $\mathcal X$, there is an natural exact sequence of pointed objects

$$
\cdots \to f^*\pi_{n+1}(g) \xrightarrow{\delta_n} \pi_n(f) \to \pi_n(g \circ f) \to f^*\pi_n(g) \xrightarrow{\delta_n} \pi_{n-1}(f) \to \cdots
$$

in the ordinary topos $\mathrm{Disc}\left(\mathcal{X}_{/X}\right)$.

n-connective

Definition

Let *C* be a presentable *∞*-category and *n ≥ −*2. We define $(n+1)$ -conn = $\perp (n-$ trun), meaning a morphism is $(n+1)$ -connective iff it is left orthogonal with all *n*-truncated morphisms.

Proposition

For any presentable ∞ -category C and any $n > -2$, the pair $((n + 1)$ -conn, n-trun) is a factorization system.

Proposition

Let $f: X \to Y$ be a morphism in an ∞ -topos \mathcal{X} . Then

¹ Every morphism *f* in *X* is (*−*1)-connective.

² Let 0 *≤ n ≤ ∞*. Then *f* is *n*-connective iff it is an effective epimorphism and $\pi_k(f) = *$ for $0 \leq k \leq n$. We shall say that an object X is *n*-connective if $f: X \to 1_X$ is *n*-connective, where 1_X denotes the final object of X.

∞-connective and hypercomplete

Whitehead theorem does not necessarily hold for every *∞*-topos, because there could exist non-trivial *∞*-connective morphisms.

Proposition

Let *X* be an *∞*-topos and let *S* denote the collection of *∞*-connective morphisms of *X* . Then *S* is strongly saturated, stable under pullback and of small generation.

We denote the $\hat{\mathcal{X}}$ as the left exact localization by inverting all ∞ -connective morphisms, which is also an *∞*-topos.

Definition

Let X be an ∞ -topos. We say that it is hypercomplete if every ∞ -connective morphism of $\mathcal X$ is an equivalence.

Proposition

Let $\mathcal X$ be an ∞ -topos. Then the hypercompletion $\mathcal X$ is a hypercomplete ∞ -topos.

Definition (Sieve)

- ¹ Let *C* be an *∞*-category. A sieve on *C* is a full subcategory of *C* (0) *⊆ C* having the property that if $f: C \rightarrow D$ is a morphism in $\mathcal C$, and D belongs to $\mathcal C^{(0)}$, then C also belongs to $\mathcal{C}^{(0)}$.
- 2 Let $\{X_\alpha\}$ be a collection of objects in $\mathcal C.$ Then we can associate a sieve $\mathcal C^{(0)}\subseteq \mathcal C$ by $\mathcal{C}^{(0)} = \{X \in \mathcal{C} | \exists X \to X_\alpha \text{ for some } \alpha\}$, which is the smallest sieve containing *{Xα}* .
- ³ If *X ∈ C* is an object, then a sieve on *X* is a sieve on the *∞*-category *C*/*^X* . Given a morphism $f: X \to Y$ and a sieve $\mathcal{C}_{/Y}^{(0)}$ $\frac{f^{(0)}}{f^{Y}}$ on Y , we let $f^* \mathcal{C}_{/Y}^{(0)}$ $\frac{d^{(0)}}{dx^{(0)}}$ denote the sieve on X such that $f^* \mathcal{C}_{/Y}^{(0)} \subseteq \mathcal{C}_{/X}$ and a morphism $A \to X$ is in $f^* \mathcal{C}_{/Y}^{(0)}$ $\frac{d}{dx}$ iff the composition $A \rightarrow X \rightarrow Y$ is in $\mathcal{C}_{/Y}^{(0)}$ /*Y* .

Grothendieck topology

Definition

A Grothendieck topology on an *∞*-category *C* consists of a specification, for each object *C* of *C*, of a collection of sieves on *C* which we will refer to as covering sieves. The collections of covering sieves are required to possess the following properties:

1 If *C* is an object of *C*, then the C/C itself is a covering sieve on *C*.

 2 If $f: C \rightarrow D$ is a morphism in $\cal C$ and ${\cal C}^{(0)}_{/C}$ $\frac{d^{(0)}}{dC}$ is a covering sieve on D , then $f^* \mathcal{C}_{/C}^{(0)}$ $\frac{1}{\sqrt{C}}$ is a covering sieve on *C*.

 \bullet Let C be an object of ${\cal C}, {\cal C}^{(0)}_{/C}$ $\frac{\rho(0)}{\rho C}$ a covering sieve on C , and $\mathcal{C}^{(1)}_{/C}$ $\hat{C}/C}^{(1)}$ an arbitrary sieve on

C. Suppose that, for each $f: D \to C$ belonging to the sieve $\mathcal{C}_{/C}^{(0)}$ $\chi^{(0)}_{C}$, the pullback

 $f^*{\cal C}^{(1)}_{\,\prime\, C}$ $\frac{d^{(1)}}{dC}$ is a covering sieve on $D.$ Then $\mathcal{C}_{/C}^{(1)}$ $\frac{d^{(1)}}{C}$ is a covering sieve on $C.$

Proposition

For an *∞*-category *C*, the collection of Grothendieck topologies on *C* is naturally bijective to that on the 1-category N(h*C*).

Example

Let X be a topological space and $U(X)$ be the partially ordered set of all open subsets of *X*, which can be endowed with the Zariski (etale, smooth or fppf) Grothendieck topology by that a sieve $U \subset U(X)_{/U}$ on *U* is a covering sieve iff it is generated by a \mathcal{L} collection of Zariski (etale, smooth or fppf) morphisms $\{U_\alpha\to U\}$ with $U=\bigcup U_\alpha$.

Sieves and monomorphisms

For each object $\,U\in \mathcal{P}(\mathcal{C}),$ let $\mathcal{C}^{(0)}(\,U)\subseteq \mathcal{C}$ be the full subcategory spanned by those $\mathsf{objects}\,\,C\in\mathcal{C}$ such that $\,U(C)\neq\emptyset.$ It is easy to see that $\mathcal{C}^{(0)}(U)$ is a sieve on $\mathcal{C}.$ Conversely, given a sieve $\mathcal{C}^{(0)}\subseteq \mathcal{C}$, there is a unique map $\mathcal{C}\to \Delta^1$ such that $\mathcal{C}^{(0)}$ is the preimage of *{*0*}*. This construction determines a bijection between sieves on *C* and functors $f:\mathcal{C}\to \Delta^1_{_}$, and we may identify $\Delta^1\subset \mathcal{S}^{op}$ as the full subcategory spanned by the objects \emptyset , $\Delta^0 \in \mathcal{S}^{op}$. Since every (-1) -truncated Kan complex is equivalent to either \emptyset or Δ^0 , we conclude:

Proposition

For every small ∞ -category $\mathcal C$, the construction $U \mapsto \mathcal C^{(0)}(U)$ determines an equivalence *Sie*(*C*) *' τ≤−*1*P*(*C*) of partially order sets between (*−*1)-truncated objects of $P(C)$ and of all sieves on C. Furthermore, this bijection preserves the inclusion relation, so we have a natural equivalence of partially order sets $Sie(\mathcal{C}) \simeq \tau_{\leq -1} \mathcal{P}(\mathcal{C})$.

Corollary

We have the following equivalence $Sie(C/X) \simeq \tau \langle 1P(C/X) \simeq \tau \langle 1P(C)/X \rangle$, where the latter exactly corresponds with all monomorphisms to X in $\mathcal{P}(\mathcal{C})$.

Definition (sheaf)

Let *C* be a small *∞*-category equipped with a Grothendieck topology. Let *S* be the collection of all monomorphisms $U \rightarrow j(C)$ which correspond to covering sieves $\mathcal{C}_{/C}^{(0)} \subseteq \mathcal{C}_{/C}.$ An object $\mathcal{F} \in \mathcal{P}(\mathcal{C})$ is a sheaf if it is S -local. We let $\mathrm{Shv}(\mathcal{C})$ denote the full subcategory of $P(C)$ spanned by *S*-local objects.

Proposition

A presheaf $\mathcal{F} \in \mathcal{P}(\mathcal{C})$ is a sheaf iff $(\mathcal{C}_{\mathcal{C}\mathcal{C}}^{(0)})$ /*C*) *[▷] → C ^Fop −−→ S op* is a colimit for any covering sieve ${\cal C}^{(0)}_{\scriptscriptstyle\cal M}$ $\frac{1}{C}$

Definition (topological localization)

Let $L: \mathcal{C} \to \mathcal{D}$ be an accessible left exact localization of presentable ∞ -categories. Then we say that it is topological if the strongly saturated class of those *f* sending to an equivalence by *L* is generated by a collection of monomorphisms.

Theorem

Let C be a small ∞ -category equipped with a Grothendieck topology. Then $\text{Shv}(\mathcal{C})$ is a topological localization of $\mathcal{P}(\mathcal{C})$. In particular, $\text{Shv}(\mathcal{C})$ is an ∞ -topos.

Definition

Let $L: \mathcal{C} \to \mathcal{D}$ be an accessible left exact localization of presentable ∞ -categories. Then we say that it is cotopological (or homotopical) if it satisfies that any *f* sending to an equivalence by L is ∞ -connective.

Theorem

Let $\mathcal X$ be an ∞ -topos and let $\mathcal X''\subseteq \mathcal X$ be an accessible left exact localization of $\mathcal X$. Then there exists a unique topological localization $X' \subseteq X$ such that $X'' \subseteq X'$ is a cotopological localization of *X ′* .

(co)topological decomposition of an *∞*-topos

By this unique decomposition, we see that every *∞*-topos *X* can be obtained in following way:

- ¹ Begin with the *∞*-category *P*(*C*) of presheaves on some small *∞*-category *C*.
- 2 Choose a Grothendieck topology on \mathcal{C} : this is equivalent to choosing a left exact localization of the underlying topos $\text{Disc}(\mathcal{P}(\mathcal{C})) = \text{Set}^{h\mathcal{C}^{op}}$.
- ³ Form the associated topological localization Shv(*C*) *⊆ P*(*C*), which can be described as the pullback

 $P(C) \times_{P(N(hC))} \text{Shv}(N(hC))$

in *RTopoi*.

4 Form a cotopological localization of $\text{Shv}(\mathcal{C})$ by inverting some subclass of *∞*-connective morphisms of Shv(*C*).

Remarks about (co)topological localization

The hypercompletion \mathcal{X} is, in some sense, at the other extreme: it is obtained by inverting the ∞ -connective morphisms in \mathcal{X} , which are never monomorphisms unless they are already equivalences. In fact, $\hat{\mathcal{X}}$ is the maximal left exact localization of \mathcal{X} which can be obtained without inverting monomorphisms:

Proposition

Let $\mathcal X$ and $\mathcal Y$ be ∞ -topoi and let $f^*:\mathcal X\to \mathcal Y$ be a left exact colimit-preserving functor. The following conditions are equivalent:

- ¹ For every monomorphism *u* in *X* , if *f ∗u* is an equivalence in *Y*, then *u* is an equivalence in *X* .
- ² For every morphism *u ∈ X* , if *f ∗u* is an equivalence in *y*, then *u* is *∞*-connective.

Definition (*C*-valued sheaves on a Grothendieck topology)

Let *T* be an small *∞*-category equipped with a Grothendieck topology. Let *C* be an arbitrary *∞*-category. Similar to sheaves valued on spaces, we will say that a functor $\mathcal{O}:\mathcal{T}^{\mathrm{op}}\to\mathcal{C}$ is a $\mathcal{C}\text{-valued sheaf}$ on \mathcal{T} if the following condition is satisfied: for every object $\ U\in\mathcal T$ and every covering sieve $\mathcal T_{/U}^0\subseteq\mathcal T_{/U}$, the composite map

> $\left(\mathcal{T}_{/U}^0\right)$ $\left(\mathcal{T}_{fU}\right)^{\triangleleft} \to \mathcal{T} \xrightarrow{\mathcal{O}^{\text{op}}} \mathcal{C}^{\text{op}}$

is a colimit diagram in C^{op} . We let $\text{Shv}_\mathcal{C}(\mathcal{T}) \subset \text{Fun}(\mathcal{T}^{op}, \mathcal{C})$ denote the full subcategory of spanned by the *C*-valued sheaves on *T* .

Definition (*C*-valued sheaves on an *∞*-topos)

Let *X* be an *∞*-topos and let *C* be an arbitrary *∞*-category. A *C*-valued sheaf on *X* is a functor $\mathcal{X}^{\text{op}}\to\mathcal{C}$ which preserves small limits. We let $\mathrm{Shv}_\mathcal{C}(\mathcal{X})$ denote the full subcategory of $\operatorname{Fun}(\mathcal X^{\mathsf{op}},\mathcal C)$ spanned by the $\mathcal C$ -valued sheaves on $\mathcal X.$

Proposition

Let $\mathcal T$ be a small ∞ -category equipped with a Grothendieck topology. Let $j: \mathcal{T} \to \mathcal{P}(\mathcal{T})$ denote the Yoneda embedding and $L: \mathcal{P}(\mathcal{T}) \to Shv(\mathcal{T})$ a left adjoint to the inclusion. Let $\mathcal C$ be an arbitrary ∞ -category which admits small limits. Then composition with *L ◦ j* induces an equivalence of *∞*-categories $\text{Shv}_\mathcal{C}(\text{Shv}(\mathcal{T})) \to \text{Shv}_\mathcal{C}(\mathcal{T})$.

proof: It follows from the composition $\mathrm{Shv}_\mathcal{C}(\mathrm{Shv}(\mathcal{T})) \to \mathrm{Fun}^\mathrm{lim}\left(\mathcal{P}(\mathcal{T})^\mathrm{op},\mathcal{C}\right) \to \mathrm{Fun}\left(\mathcal{T}^\mathrm{op},\mathcal{C}\right)$ is fully faithful, and its essential image is the full subcategory $\text{Shv}(\mathcal{T})$.

Remark

Let C be a presentable ∞ -category and X an ∞ -topos. Then the ∞ category Shv $c(\mathcal{X})$ can be identified with the tensor product $\mathcal{C} \otimes \mathcal{X}$ introduced in \S HA.4.8.1 . In particular, $\text{Shv}_\mathcal{C}(\mathcal{X})$ is a presentable ∞ -category.

Parametrized homotopy theory

Example

G-object.

1 Parametrized over a space:

Let $\mathcal C$ be a ∞ -category and let T be an ∞ -groupoid. The ∞ -category $\operatorname{Fun}(T^{\rm op},\mathcal{C})$ of $\mathcal{C}\text{-}\mathsf{valued}$ presheaves on $\ T$ is naturally equivalent to the *∞*-category Shv(*S*/*^T*) of *C*–valued sheaves on *S*/*^T* via the natural equivalences $\text{Fun}(T^{\text{op}}, \mathcal{C}) \simeq \text{Fun}^{\text{lim}}(\mathcal{P}(T)^{\text{op}}, \mathcal{C}) \simeq \text{Fun}^{\text{lim}}(\mathcal{S}_{/T}^{\text{op}})$ $\frac{C_{P}}{T}$, C) \simeq Shv $_{C}$ ($S_{/T}$).

² Parametrized over a compact Lie group (equivariant homotopy): For a compact Lie group \overline{G} , we set $\overline{\mathcal{S}}_G:=\mathrm{Fun}(\mathcal{O}_G^{\mathrm{op}})$ $G^{\mathrm{op}}(G,\mathcal{C})$ as the category of *G*-spaces, where \mathcal{O}_G is the orbit category of *G*. This is a (presheaf) ∞ -topos.

Recall that the full subcategory of (CGWH)-spaces on the homogeneous *G*-spaces, that is Hausdorff spaces with a transitive *G*-action, is equivalent to the full subcategory spanned by the orbits G/H , where $H \leq G$ is a closed subgroup. By O_G we denote the associated ∞ -category which we call the orbit category of *G*. For any ∞ -category $\mathcal C$, we call an object in $\text{Fun}(\mathcal O_G^{\text{op}})$ C_G^{op}, C \simeq $\text{Shv}_\mathcal{C}(\mathcal{S}_G)$ by a

Let *X* be an *∞*-topos. A sheaf of spectra on *X* is a sheaf on *X* with values in the *∞*-category Sp of spectra. We let Shv_{Sp}(*X*) denote the full subcategory of $\operatorname{Fun}\left(\mathcal{X}^{\mathrm{op}}, \mathrm{Sp}\right)$ spanned by the sheaves of spectra on $\mathcal{X}.$

Proposition

By identification $\text{Shv}_{\text{Sn}}(\mathcal{X}) \simeq \text{Sp} \otimes \mathcal{X}$, we conclude that it is a stable ∞ -category and that the natural functor $\text{Shv}_{\text{Sn}}(\mathcal{X}) \to \mathcal{X}$ represents as the stabilization of \mathcal{X} .

Let $\mathcal X$ be an ∞ -topos and let $\mathcal X^\vee=\tau_{\leqslant 0}\mathcal X$ denote its underlying topos. Composing the forgetful functor functor $\text{Shv}_{\text{Sn}}(\mathcal{X}) \to \text{Shv}_{\mathcal{S}}(\mathcal{X}) \simeq \mathcal{X}$ with the truncation $\mathcal{X} \to \tau_{\leq 0} \mathcal{X}$, we obtain a functor $\pi_0 : \operatorname{Shv}_{\operatorname{Sn}}(\mathcal{X}) \to \tau_{\leq 0} \mathcal{X}$.

More generally, for any integer *n*, we let $\pi_n : \text{Shv}_{\text{Sn}}(\mathcal{X}) \to \tau_{\leq 0} \mathcal{X}$ denote the $\text{composition of the functor } \pi_0 \text{ with the shift functor } \Omega^n : \text{Shv}_{\text{Sp}}(\mathcal{X}) \to \text{Shv}_{\text{Sp}}(\mathcal{X}).$

Note that π_n preserves finite products and that $\text{Shv}_{\text{Sn}}(\mathcal{X})$ is stable. It follows that π_n can be regarded as a functor from $\text{Shv}_{\text{Sn}}(\mathcal{X})$ to the category of abelian groups objects of \mathcal{X}^\heartsuit .

Lemma

If C is a 1-topos, then the category of its abelian groups objects $Ab(C)$ is a Grothendieck abelian category, meaning that it is presentable and that monomorphisms in it are closed under small filtered colimits.

For every integer *n*, the functor Ω*∞−ⁿ* : Sp *→ S* induces a functor $\text{Shv}_{\text{Sp}}(\mathcal{X}) \to \text{Shv}_{\mathcal{S}}(\mathcal{X}) \simeq \mathcal{X}$, which we will also denote by $\Omega^{\infty-n}$. We will say that an object $\mathcal{F} \in \text{Shv}_{\text{Sn}}(\mathcal{X})$ is *n*-truncated if $\Omega^{\infty+n} \mathcal{F}$ is a discrete object of \mathcal{X} . We will say that a sheaf of spectra $\mathcal{F} \in \text{Shv}_{\text{Sn}}(\mathcal{X})$ is *n*-connective if the homotopy groups $\pi_m \mathcal{F}$ vanish for $m < n$.

We will say that *M* is connective if it is 0-connective (equivalently, *M* is connective if the object $\Omega^{\infty-m} \mathcal{F} \in \mathcal{X}$ is *m*-connective for every $m \geq 0$). We let $\text{Shv}_{\text{Sn}}(\mathcal{X})_{\geq n}$ denote the the full subcategory of $\text{Shv}_{\text{SD}}(\mathcal{X})$ spanned by the *n*-connective objects, and $\text{Shv}_{\text{Sn}}(\mathcal{X})_{\leq n}$ the full subcategory of $\text{Shv}_{\text{Sn}}(\mathcal{X})$ spanned by the *n*-truncated objects.

Stable homotopy theory on an *∞*-topos

Theorem

Let X be an ∞ -topos.

- \bullet The full subcategories $(\mathrm{Shv}_{\mathrm{Sp}}(\mathcal{X})_{\geqslant 0}, \mathrm{Shv}_{\mathrm{Sp}}(\mathcal{X})_{\leqslant 0})$ determine a t -structure on $\text{Shv}_{\text{Sn}}(\mathcal{X})$.
- **2** The *t*-structure on $\text{Shv}_{\text{Sp}}(\mathcal{X})$ is compatible with filtered colimits (that is, the full subcategory $\text{Shv}_{\text{Sp}}(\mathcal{X})_{\leq 0} \subseteq \text{Shv}_{\text{Sp}}(\mathcal{X})$ is closed under filtered colimits).
- **3** The *t*-structure on $\text{Shv}_{\text{Sp}}(\mathcal{X})$ is Postnikov complete.
- The functor π_0 determines an equivalence of categories from $\text{Shv}_{\text{Sp}}(\mathcal{X})^{\heartsuit} \overset{\sim}{\rightarrow} \text{Ab}(\mathcal{X}^{\heartsuit}).$

Proposition

Let *g ∗* : *X → Y* be a geometric functor of *∞*-topoi (that is, a functor which preserves small colimits and finite limits). Then *g ∗* induces a functor

 $\text{Shv}_{\text{Sn}}(\mathcal{X}) \simeq \text{Sp}(\mathcal{X}) \to \text{Sp}(\mathcal{Y}) \simeq \text{Shv}_{\text{Sn}}(\mathcal{Y}).$

It is a left adjoint to the pushforward functor g_* : $\text{Shv}_{\text{Sn}}(\mathcal{Y}) \to \text{Shv}_{\text{Sn}}(\mathcal{X})$, given by pointwise composition with $g^*:\mathcal{X}\rightarrow\mathcal{Y}.$ Since the functor *g ∗* : *X → Y* preserves *n*-truncated objects and *n*-connective objects for every integer n , we conclude that the functor $g^*: \mathrm{Shv}_{\mathrm{Sp}}(\mathcal{X}) \to \mathrm{Shv}_{\mathrm{Sp}}(\mathcal{Y})$ is t-exact: that is, it carries $\text{Shv}_{\text{Sn}}(\mathcal{X})_{\geq n}$ into $\text{Shv}_{\text{Sn}}(\mathcal{Y})_{\geq n}$ and $\text{Shv}_{\text{Sn}}(\mathcal{X})_{\leq n}$ into $\text{Shv}_{\text{Sp}}(\mathcal{Y})_{\leq n}$. It follows that t-exact.

∞-Connective Sheaves of Spectra

The t-structure on $\text{Shv}_{\text{SD}}(\mathcal{X})$ is not Whitehead complete in general. For example, there may exist nonzero objects $\mathcal{F} \in \text{Shv}_{\text{Sp}}(\mathcal{X})$ whose all homotopy groups $\pi_n \mathcal{F}$ vanish.

Definition

Let $\mathcal X$ be an ∞ -topos and let $\mathcal F \in \text{Shv}_{\text{Sn}}(\mathcal X)$ be a sheaf of spectra on $\mathcal X$. We will say that *F* is *∞*-connective if it is *n*-connective for every integer *n*. In other words, *F* is ∞ -connective if $\pi_n \mathcal{F} \simeq 0$ for every integer *n*.

Remark

Let *X* be an *∞*-topos and let *X* hyp *⊆ X* be the full subcategory spanned by the hypercomplete objects. Then the inclusion map $f_* : \mathcal{X}^{\text{hyp}} \to \mathcal{X}$, which admits a left exact left adjoint $f^*:\mathcal{X}\rightarrow \mathcal{X}^{\mathsf{hyp}}$. Hence we obtain a pair of adjoint functors

 $\mathrm{Shv}_{{\mathrm{Sp}}}(\mathcal{X})\rightleftarrows \mathrm{Shv}_{{\mathrm{Sp}}}(\mathcal{X}^{\mathsf{hyp}}).$

Note that an object $\mathcal{F}\in\text{Shv}_{\text{Sp}}(\mathcal{X})$ is ∞ -connective if and only if $f^*\mathcal{F}\simeq 0.$ Since the $\mathsf{faithful}, \ \mathsf{the} \ f_*: \mathrm{Shv}_{\mathrm{Sp}}(\mathcal{X}^\mathsf{hyp}) \to \mathrm{Shv}_{\mathrm{Sp}}(\mathcal{X})$ is also fully faithful.

∞-Connective Sheaves of Spectra

Proposition

Let *X* be an ∞ -topos and let $\mathcal{F} \in \text{Shv}_{\text{Sn}}(\mathcal{X})$. The following conditions are equivalent:

- **1** The object $\Omega^{\infty} \mathcal{F} \in \mathcal{X}$ is hypercomplete.
- **2** The sheaf of spectra *F* belongs to the essential image of the fully faithful $\mathsf{embedding} \ \mathrm{Shv}_{\mathrm{Sp}}(\mathcal{X}^{\mathrm{hyp}}) \to \mathrm{Shv}_{\mathrm{Sp}}(\mathcal{X})$
- **3** For every ∞ -connective object $\mathcal{G} \in \text{Shv}_{\text{Sn}}(\mathcal{X})$, the mapping space $\mathrm{Map}_{\mathrm{Shv}_\mathrm{Sp}(\mathcal{X})}(\mathcal{G},\mathcal{F})$ is contractible.
- \bigcirc For every ∞ -connective object $\mathcal{G} \in \text{Shv}_{\text{Sn}}(\mathcal{X})$, every map $u : \mathcal{G} \to \mathcal{F}$ is nullhomotopic.

Corollary

The left adjoint functor $f^*: {\rm Shv}_{{\rm Sp}}(\mathcal X)\to {\rm Shv}_{{\rm Sp}}(\mathcal X^{\rm hyp})$ represents the ${\rm Shv}_{{\rm Sp}}(\mathcal X^{\rm hyp})$ as the Whitehead completion of the $\text{Shv}_{\text{Sn}}(\mathcal{X})$.

Symmetric monoidal structure on sheaves of spectra

For an *∞*-topos *X* , since small colimits commute with pullback in it, it admits a cartesian closed symmetric monoidal structure \mathcal{X}^{\times} . Therefore the stabilization $\mathrm{Shv}_\mathrm{Sp}(\mathcal{X})$ admits a natural symmetric monoidal structure $\mathrm{Shv}_\mathrm{Sp}(\mathcal{X})^\otimes$ (similar to that from S to Sp).

We now come to sheaves with values in the *∞*-category CAlg of E*∞*-rings.

Proposition

For any *∞*-topos *X* , we have a canonical equivalence of *∞*-categories (even an isomorphism of simplicial sets)

 $\text{Shv}_{\text{CAlg}}(\mathcal{X}) \simeq \text{CAlg}(\text{Shv}_{\text{Sp}}(\mathcal{X})).$

Composing with the forgetful functor $CAlg \rightarrow Sp$, we obtain a sheaf of spectra on \mathcal{X} . In particular, we can define homotopy groups *πnO* as previous. These homotopy groups have a bit more structure in this case: $\pi_0 \mathcal{O}$ is a commutative ring object in the underlying topos of \mathcal{X} , while each $\pi_n \mathcal{O}$ has the structure of a $\pi_0 \mathcal{O}$ -module.

We say that a sheaf of E*∞*-rings is connective if it is connective when regarded as a sheaf of spectra on \mathcal{X} : that is, if the homotopy groups $\pi_n \mathcal{O}$ vanish for $n < 0$. We let $\mathrm{Shv}_\mathrm{CAlg}(\mathcal{X})^\mathrm{cn}$ denote the full subcategory of $\mathrm{Shv}_\mathrm{CAlg}(\mathcal{X})$ spanned by the connective sheaves of \mathbb{E}_{∞} -rings on \mathcal{X} .

Proposition

Let *X* be an ∞ -topos. Then composition with the truncation functor $\tau_{\geq 0} : \text{Sp} \to \text{Sp}^{\text{cn}}$ induces an equivalence of (symmetric monoidal) *∞*-categories $\mathrm{Shv}_{\mathrm{Sp}}(\mathcal{X})^{\mathrm{cn}} \to \mathrm{Shv}_{\mathrm{Sp}^{\mathrm{cn}}}(\mathcal{X}).$

Corollary

Let *X* be an ∞ -topos. Then composition with the functor $\tau_{\geq 0}$: CAlg \rightarrow CAlg^{cn} $\text{induces an equivalence of } \infty\text{-categories } \overline{\text{Shv}}_{\text{CAlg}}(\mathcal{X})^{\text{cn}} \to \overline{\text{Shv}}_{\text{CAlg}^{\text{cn}}}(\mathcal{X}).$