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Cup-i products

Cup-i products encode the communications of the coherently
commutative multiplication structures.

Definition

A cochain complex C∗ has cup-i products if it is equipped with
operations (x, y) → x ⌣i y for i ≥ 0 such that

if x ∈ Cp, y ∈ Cq, then x ⌣i y ∈ Cp+q−i

(x+ x′) ⌣i y = x ⌣i y + x′ ⌣i y and the same result is true
for y.

δ(x ⌣0 y) = (δx) ⌣0 y + x ⌣0 (δy)

for i ≥ 0,
δ(x ⌣i y) = (δx) ⌣i y + x ⌣i (δy) + x ⌣i−1 y + y ⌣i−1 x.
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Some facts about cup-i products
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Some history about the possible E∞-structures on BP

Baas-Suillvan theory

Get En-structures by killing the obstructions in
En−1-structures.

If not? E∞-structures support power operations

Find a (secondary) operation such that H∗BP is not close
under this operation.
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Ingredient

Operations on (mod-p) homology: Dyer-Lashof operations

Calculating some secondary operations on it by some spectral
sequences.
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Secondary opeartions

0

0

X1 X2 X3 X4

f01 f12 f23
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Secondary opeartions

The associated secondary composite is the element of
π1(MapD(X0, X3), f03) represented by the path composite
(h023)

−1 · (f23h012)−1 · (h123f01) · h013
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Secondary opeartions
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Secondary opeartions

Definition

A tethering of this composite is a homotopy class of nullhomotopy
of gf : a homotopy class of path h : gf ⇒ ∗ in MapC(X0, X2).
We will write h : g ↭ f to indicate such a tethering.
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Secondary opeartions

Definition

For the above diagram, if we have a tethering h : f12 ◦ f23 ↭ 0
and f12 ◦ f01 is nullhomotopic, we write

⟨f23 ↭ f12, f01⟩ ⊂ π1(MapC(X0, X3), ∗)

for the set of all elements ⟨f23 ↭ f12 ↭ f01⟩, where the later
tethering k ranges over possible tetherings. This also decides an
operation for f01 such that f12 ◦ f01 is nullhomotopic, which is
called the secondary operation determined by the tethering.
The set of maps f01 such that f12 ◦ f01 is nullhomotopic is referred
to as the domain of definition of this secondary operation, and the
possibly multivalued nature of this function is referred to as the
indeterminacy of the secondary operation.
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Zero and Indeterminacy

Theorem

Changing the tethering and homotopy class of maps alters the
value of a secondary composite by multiplication by loops.

A secondary operation ⟨f23 ↭ f12,−⟩ determines a
well-defined map Φ on kerf12 ⊂ π0MapC(X0, X1) whose
values are right cosets:

kerf12 → (f23π1MapC(X0, X2))\π1MapC(X0, X3)

If two tetherings h, h′ give rise to operations Φ, Φ′, then
there exists an element u ∈ π1MapC(X1, X3) such that
Φx = Φ′x · (ux) for all x ∈ kerf12 ⊂ π0MapC(X0, X1).
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Example: A secondary operation on CP∞
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Homotopy operations

Homotopy operations can be represented by maps between spheres
and their dot unions.

Definition

Given a commutative ring spectrum A, we let PEn
A be the left

adjoint to the forgetful functor from En A-algebras to spectra; if
n = ∞, we simply write PA, and if A = S, then we will omit A
from the notation. What’s more,

PEn
A (X) ∼=

∨
A ∧ (En(k)+ ∧Σk

X∧k)

where the spaces En(k) are the terms in our chosen En-operad
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Homotopy operations

Definition

A homotopy operation on En A-algebras is a natural
transformation of functors∏

πki(−) → πj(−)

represented by a homotopy class of map of En A-algebras

PEn
A (Sj) → PEn

A (∨Ski)

.
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Homotopy operations
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Dyer-Lashof operations

Theorem

For any commutative H-algebra A, there are homotopy operations

Qs : πk → πk+s

for En A-algebras when s < k + n− 1, called the Dyer-Lashof
operations. These satisfy the following relations:

the additivity relation: Qs(x+ y) = Qs(x) +Qs(y);

the instability relations: Qsx = x2 when |x| = s, Qsx = 0
when |x| > s;

the Cartan formula: Qs(xy) = Σp+q=sQ
p(x)Qq(y);

the Adem relations: If r > 2s, then
QrQs(x) =

(
i−s−1
2i−r

)
Qr+s−iQi.

For m ≤ n,the forgetful map from En-algebras to
Em-algebras preserves Dyer-Lashof operations.
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Dyer-Lashof operations

Theorem

For any commutative H-algebra A, all homotopy operations for
E∞ A-algebras C are composites of the following types:

the constant operation associated to an element α ∈ πnA
which takes no arguments and whose value on C is the image
of α under the map π∗A → π∗C.

the Dyer-Lashof operations Qs : πn(C) → πn+s(C)

the binary addition operations πn(C)× πn(C) → πn(C)

the binary multiplication operations
πn(C)× πm(C) → πn+m(C).
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Dyer-Lashof operations

Theorem

The suspension operator , on homotopy operations for En

A-algebras under B, takes zero-preserving homotopy operations∏
πls → πk to homotopy operations

∏
πls+1 → πk+1. Suspension

preserves addition, composition, and multiplication by scalars from
B. Suspension also takes Qs to Qs and takes the binary
multiplication operation πp × πq → πp+q to the trivial operations.
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Geometric realization of some secondary operations

Some secondary operations can be detected by spectral sequences.

Theorem

Suppose X, Y , and Z are spectra, X
f−→ Y

g−→ Z is
nullhomotopic, and that α ∈ ker(f) ⊂ πn(X) is represented by a

map Sn → X. Given any extension X → Cf
h−→ Z from the

mapping cone representing a tethering, the secondary operation
⟨g ↭ f, α⟩ is (up to sign) the set h(∂−1α), where
∂ : πn+1Cf → πnX is the connecting homomorphism in the long
exact sequence of homotopy groups.
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Geometric realization of some secondary operations

Corollary

Suppose that X∗ is a simplicial spectrum with geometric
realization X and that F is the homotopy fiber in the sequence

F
j−→ X1

d0−→ X0. Then the composite F
d1j−−→ X0

i−→ |X∗| has a
canonical tethering. If α ∈ πn(F ) ⊂ πnX1 is in the kernel of d1,
then in the geometric realization spectral sequence

Hp(πqX∗) ⇒ πp+q|X∗|

the secondary operation ⟨i ↭ d1j, α⟩ is represented (up to sign)
by the element [α] ∈ H1(πnX) in the spectral sequence.
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Geometric realization of some secondary operations
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Geometric realization of some secondary operations

Theorem

Suppose f : R → S is a map of commutative ring spectra, and let
i = 1 ∧ f : S ∧R → S ∧ S. Then, in the (pointed) category of
augmented commutative S-algebras, there is a canonical tethering
p ↭ i for the composite

S ∧R
i−→ S ∧ S

p−→ S ∧R S

Let x ∈ πn(S ∧R) map to zero in πn(S ∧ S), so that
σx = ⟨p ↭ i, x⟩ ∈ πn+1(S ∧R S) is defined. Then σx is detected
by the image of x under πn(S ∧R) → πn(S ∧R ∧ S) in the
two-sided bar construction spectral sequence

Hp(πq(S ∧R∧∗ ∧ S)) ⇒ πp+q(S ∧R S)
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Geometric realization of some secondary operations
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Geometric realization of some secondary operations

If π∗(S ∧R) is flat over S, we can identify the E2-term in the
two-sided bar construction spectral sequence:

E2
∗∗ = Tor

π∗(S∧R)
∗∗ (π∗(S ∧ S), π∗(S)) ⇒ π∗(S ∧R S)

The element x gives rise to the corresponding element in Tor1,n.
In particular, we have the following result when the target is the
mod-2 Eilenberg-Mac Lane spectrum.
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Geometric realization of some secondary operations

Theorem

Suppose R → H is a map of E∞-algebras and x ∈ HnR maps to
zero in the dual Steenrod algebra H∗H. Then there is an element
σx = ⟨p ↭ i, x⟩ ∈ πn+1(S ∧R S) in the R-dual Steenrod algebra
π∗(H ∧R H) that is detected by the image of x in homological
filtration 1 of the spectral sequence

TorH∗R
∗∗ (H∗, H∗H) ⇒ π∗(H ∧R H)
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Geometric realization of some secondary operations

We now specialize this result to the case where MU is the
complex bordism spectrum.

Theorem

Let n be an integer that is not of the form 2k − 1 for any k, so
that the corresponding generator bn ∈ H2nMU ∼= F2[b1, b2, · · · ] in
mod-2 homology is the Hurewicz image of the generator
xn ∈ π2nMU ∼= Z[x1, x2, · · · ]. Then the diagram of E∞
H-algebras

PHS2n bn−→ H ∧MU
p−→ H ∧H

i−→ H ∧MU H

determines a bracket, and σxn ≡ ⟨p ↭ i, bn⟩ mod decomposables.
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Actions of Dyer-Lashof operations on MU

Theorem

The Dyer-Lashof operations in H∗MU = H∗BU are determined by
the following identity:

∑
Qjbk = (

∞∑
n=k

k∑
u=0

(
n− k + u− 1

u

)
bn+ubk−u)(

∞∑
n=0

bn)
−1

Here b0 = 1 by convention. In particular, we have

∑
Qjb1 = (

∞∑
n=1

(bnb1 + (n− 1)bn+1))(
∞∑
n=0

bn)
−1
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Actions of Dyer-Lashof operations on MU
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Actions of Dyer-Lashof operations on H

Theorem

The 2-primary Dyer-Lashof operations in the dual Steenrod algebra
satisfy the following identities:

1 + ξ1 +Q1ξ1 +Q2ξ1 +Q3ξ1 + · · · = (1 + ξ1 + ξ2 · · · )−1

Qsξ̄i = Qs+2i−2ξ1 if s ≡ 0,−1mod2i 0 otherwise

Q2i ξ̄i = ¯ξi+1
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Functional operations for MU → ßHZ/2

Theorem

Consider the maps

PH(x, z14)
Q̄−→ PH(x, y4)

f−→ H ∧MU
p−→ H ∧H

in the category C, where Q̄ sends z14 to Q10y4 + x2Q6y4 and f
sends (x, y4) to (b1, b2). Then a functional homotopy operation
⟨p, f, Q̄⟩ is defined in PH(x)-algebras and satisfies ⟨p, f, Q̄⟩ ≡ ξ4
mod decomposables.
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Functional operations for MU → ßHZ/2
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A secondary operation in the dual Steenrod algebra
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A secondary operation in the dual Steenrod algebra
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A secondary operation in the dual Steenrod algebra

In the dual Steenrod algebra, any element in the bracket ⟨ξ21 , Q,R⟩
is congruent to ξ5 mod decomposables.
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A secondary operation in the dual Steenrod algebra

Theorem

The Brown–Peterson spectrum BP is connective, with
π0BP ∼= Z(2). The map BP → HF2 induces an inclusion
H∗BP ↪→ H∗HF2 whose image is the subalgebra

F2[ξ
2
1 , ξ

2
2 , · · · ] ⊂ F2[ξ1, ξ2, · · · ]

of the dual Steenrod algebra. The image in positive degrees
consists entirely of decomposables.
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The End
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