Braid groups are algebraic objects that can be used to decompose knots and links into some
simple building blocks corresponding to crossings.

Definition 2 (Braid groups). The group
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Figure 1.9: Generators of the braid group from crossings.
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Figure 1.10: Inverse in the braid group corresponds to Reidemeister II in Figure 1.3.
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Figure 1.11: Relations in the braid group corresponds to Reidemeister III in Figure 1.3. The
top left crossing is passed under.



Figure 1.13: The closure of a braid.

Theorem A—1. [109, Thm. 2.3]. Every oriented link in S® is isotopic to a braid closure.

This shows that we have a surjection from the set of braids onto the set of links. The question
is then of course what equivalence relation this surjection gives 7.e. how are braids in the
preimage of a link related. To describe this equivalence relation, we need to understand how
the closure can swap a braid element from the top to the bottom, and how Reidemeister I
in Figure 1.3 can be realised with braids.
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Figure 1.14: The first Markov move implied by isotoping along the closure.
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Figure 1.15: The second Markov move implied by Reidemeister I in Figure 1.3.
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Theorem [Markov] The closure of two braids give isotopic links if and
only if they are related by Markov moves.






Definition 7 (Enhanced Yang-Baxter operator [185|). Let V' be an N dimensional vector
space over C, R: V@V =2VV, u: V=V, anda,be C. Then (R, ju,a,b) is an enhanced
Yang-Baxter operator if it satisfies

(R®1dy)(Idy @ R)Y(R®1dy) = (Idy ® R)(R® Idy)(Idy ® R) (2.8a)
Rlp@p) = (n@p)R (2.8b)
TIQ(R:t(IdV ®,u)) = aibldv (280)

where Try, : End(V®*) — End(VE*=Y) such that for f € End(V®*) and e; a basis of V with
fler) =3, fies we have Tur(f)(er) = 32, fie..



w: B, > Z

o; — 1

Theorem 1.6 (185, Thm. 3.1.2). If (R, i, a,b) is an enhanced Yang-Baxter operator, then we

get a representation of the braid group,

On: By = End (VF", V") st p(o) =ldy®@---® __Iil ®---®Idy
1 1,1 n

and

Ts:0— a @b " Tr(p, o u®")
for o € By. It's invariant under the Markov moves

Ts(o) = Ts(aaff) = TS(’7_10’7)



Theorem 1.5. ( R-matrix for sly ). Let m,n € %Z>O, R:V, @V, — V, ®V, where

Vin = Span{e_m,e—m+1," " ,em—1,€m},Vy = Span{e_y,e_ni1, -+ ,en—1,€n}, such that

min(m—i,j+n)

ek X Bg Z Z Z 5€,i+p‘5k+p,j

I=—m j=—n

« (=1yPgi—5msm—i=p=p(p+1)/2__ 4 Dm0 D)k
(@D m+i( G0 p(F9)n—

e; X ej.

and y : Vyy — Vy, such that y (e;) = qle;. Then (R, u, q" ), 1) is an enhanced Yang-Baxter
operator when restricted to Vy, for some n. More generally, this gives a representation of a ribbon

Hopf algebra associated to Uy (sly).



Lemma 1. The inverse of the R matrix in Theorem 14 is given explicitly by

n  min(m—i,j+n)

R~ €k®€g Z Z Z 5£,i—p5k—p,j

I=—m j=—n

« qii=bmen)__ Gt )i

e; X ej.
G- TDp( T Dnsj

If L is the closure of o,the for (R u,q"(n+1) 1), define J; ,(q) = Ts(0).



The Jones polynomial J;(q) € Z[qil/ 2] of an oriented link L in 3-space is uniquely

determined by the linear relations [41]

0] (q) —q  Folg) = (@ =) ele) Jole) =q"P+q 2

The Jones polynomial has a unique extension to a polynomial invariant J; .(g) of links
L together with a coloring ¢ of their components that are colored by positive natural

numbers that satisfy the following rules

JLuk,cuiN+1)(q) = Jok@,con2y (@) — Jukeoin-13(g), - N =2,
Jrukcu1y(q) = J1,c(q),
JL2,...21(q) = JL(q),

where (L UK, c U {N}) denotes a link with a distinguished component K colored by N and
K@ denotes the 2-parallel of K with zero framing. Here, a natural number N attached to

a component of a link indicates the N-dimensional irreducible representation of the Lie
algebra s((2, C).



State-sum formula for colored Jones polynomial

2.2 From alternating links to planar (Tait) graphs

Given a diagram D of a reduced alternating non-split link L, its Tait graph can be
constructed as follows: the diagram D gives rise to a polygonal complex of S* =
R? U {oo}. Since D is alternating, it is possible to label each polygon by a color
b (black) or w (white) such that at every crossing, the coloring looks as follows in
Fig. 3.

There are exactly two ways to color the regions of D with black and white colors.
In this note, we will work with the one whose unbounded region has color w. In each

Fig. 3 The checkerboard w b

coloring of a link diagram \ /
w



2.1. Downward link diagram. Recall that a link diagram D C R? is alternating if walking
along it, the sequence of crossings alternates from overcrossings to undercrossings. A diagram

D is reduced if it is not of the form
C

where Dy and D, are diagrams with at least one crossing.

A downward link diagrams of links is an oriented link diagram in the standard plane in
general position (with its height function) such that at every crossing the orientation of
both strands of the link is downward. A usual link diagram may not satisfy the downward
requirement on the orientation at a crossing. However, it is easy to convert a link diagram
into a downward one by rotating the non-downward crossings as follows:

X~




2.2. Link diagrams and states. Fix a downward link diagram D of an oriented link K
with ¢p crossing. Considering D as a 4-valent graph, it has 2¢p edges. A state of D is a map

r:{edges of D} — R
such that at every crossing we have
a+b=c+d,

where a, b, c,d are the values of s of the edges incident to the crossing as in the following
figure

(11) X x

a b a b
The set Sp g of all states of D is a vector space. For a state r € Spr and a crossing v of D
define
r(v) = sign(v) (a — d),

where as usual the sign of the crossing on the left hand side of (11) is positive and the sign
of the one on the right hand side is negative. For a positive integer n, a state r € Spg is
called n-admissible if the values of r are integers in [0,n] and r(v) > 0 for every crossing v.
Let Sp,, be the set of all n-admissible states.



2.4. Local weights, the colored Jones polynomial, and their factorization. Consider
the monoid

Z»[q) =1+ qZlg].
Fix a natural number n > 1 and a downward link diagram D.
A local part of D is a small neighborhood of a crossing or a local extreme of D. There are

six types of local parts of D: two types of crossings (positive or negative) and four types of
local extrema (minima or maxima, oriented clockwise, or counterclockwise):

13 /\/ S "N N N

For an n-admissible state r and a local part X, the weight w(X,r) is defined by
w(X,r) = wy(X,r)w. (X, r),

where wy(X,7) € {+¢™*|m € Z} is a monomial, w, (X,r) € Z.[q], and wy(X,r) and
w, (X, r) are given by Table 1.

Table 1. The local weights wy; and w.. of a state.
c d c d

b
Wit q(n+nd+nb—ab—dc)/2 (_1) q(—n nb—nd+bd+ac—b+c) /2 q—(2a—n)/4 q—(2a—n)/4 q(2a—n)/4 q(2a—n)/4

wr | @0e-s(-0) (.5, (@ 0-c(5-0)  (a%4), 1 1 1 1




Let the weight of a state be defined by

w(r) = [ [w(X,r),

where the product is over all the local parts of D. Then the unframed version of the colored
Jones polynomial of the link K, each component of which is colored by the n+ 1-dimensional
slo-module, is given by

(14) Jnlq) = D w(r),

TESDyn
where Sp ,, is the set of all n-admissible states of D. For example, the value of the unknot is
(n+1)/2 __ q—(n+1)/2
g2 — q-1/2
Note that Jx o(¢) =1 for all links and J1(¢™")/ Junknot,1 (¢ ") is the Jones polynomial of K

[Jon&7]. Since we could not find a reference for the state sum formula (14) in the literature,
we will give a proof in the Appendix.

q

JUnknot,n(q) — [n + 1] =



Nahm sum is of the form

(1) ®(q) = (=1)*" gan'-Antbn
' nE%r;NT (q)nl s (Q)nr

where C is a rational polyhedral cone in R", b,a € Z" and A is a symmetric (possibly
indefinite) symmetric matrix. We will say that the generalized Nahm sum (1) is regular if
the function

, 1
nECﬂNTH§nt-A-n+b-n

is proper and bounded below. Regularity ensures that the series (1) is a well-defined element
of the Novikov ring
Z((q)) = {Zanqn | a, =0, n <0}
nez
of power series in ¢ with integer coeflicients and bounded below minimum degree. In the
remaining of the paper, by Nahm sum we will mean a generalized Nahm sum. The paper is
concerned with a new source of Nahm sums that originate in Quantum Knot Theory.



1.2. Stability of a sequence of polynomials. For f(q) = > a;¢’ € Z((q)) let mindeg, f(q)
denote the smallest j such that a; # 0 and let coeff(f(q),¢’) = a; denote the coefficient of

¢ in f(q).
Definition 1.1. Suppose f,.(q), f(q) € Z((q)). We write that
lim f,.(q) = f(q)
if
e there exists C' such that mindeg,(f.(¢q)) > C for all n, and
e for every j € Z,

(2) lim coeff(f.(q),q’) = coeff(f(q), ¢’).

n—oo

Since Equation (2) involves a limit of integers, the above definition implies that for each
J, there exists NV; such that

fala) — f(a) € PZ[[q]
(and in particular, coeff(f,(q), ¢’) = coeft(f(q),¢’)) for all n > N;.

Remark 1.2. Although for every integer 5 we have lim,, ., coeff (q_"2, ¢’) = 0, it is not true
that lim, .. ¢~ = 0.

Definition 1.3. A sequence f,(q) € Z|[q]] is k-stable if there exist ®,(q) € Z((q)) for
7 =0,...,k such that

(3) lim ¢ *+Y (fn(CJ) ~ Z@j(q)qj(”+1)) =0

n—:o0 :
J=0



We say that (f,(q)) is stable if it is k-stable for all k. Notice that if f,(q) is k-stable, then
it is k'-stable for all k' < k and moreover ®;(q) for j = 0,...,k is uniquely determined by

fulq). We call ®,(q) the k-limit of (f.(q)). For a stable sequence (f,(q)), its associated
series is given by

Fi(z,q) =) ®i(q)z* € Z((q))[2]].

It is easy to see that the pointwise sum and product of k-stable sequences are k-stable.

Theorem 4.1. For every alternating link K, the sequence (Jx ,(q)) is stable and its associated

k-limit @y x(q) and series Fx(x,q) can be effectively computed from any reduced, alternating
diagram D of K.



An admissible state (a, b) of G is an integer assignment a, for each face p of

G and b, for each vertex v of G such thata, + b, > 0 for all pairs (v, p), where visa

vertex of p. For the unbounded face p, we set aso = 0, and thus b, = doc + by > 0

for all v € poo. We also set b, = O for a fixed vertex v of p,. In the formulas below,

v and w will denote vertices of G, and p is the face of G and po i1s the unbounded
face. We also write v € p, vw € p 1f v 1s a vertex and vw 1s an edge of p.

For a polygon p with [(p) edges and vertices by, ..., bj,) In counterclockwise

order,

we define
y(p) =1(p)ay, +2a,(by +ba+ -+ byp)) .
Let
A(a,b) = Zy<p>+2 > byby,, (1)

€= (Ulv])



where the p-summation (here and throughout the paper) 1s over the set of bounded
faces of G and the e-summation is over the set of edges e = (v;v;) of p, and

B(a,b) =2 by + > (I(p) — ap, 2)
v p

where the v-summation 1s over the set of vertices of G and the p-summation is over
the set of bounded faces of G.

Definition 1.1 [13] With the above notation, we define

B g 1A@b)+3B@b)
P6(q) = (@) (=D~ ,
’ (p,v):vep

3)

where the sum 1s over the set of all admissible states (a, b) of G, and 1n the product
(p,v) : v € p means a pair of face p and vertex v such that p contains v. Here, ¢; 1s
the number of edges of G and

©.8)
@Deo=[]0-0)"=1—g—a*+a°+q" —q"? —q" ...

n=1



When L is an alternating link, the colored Jones polynomial J; ,(q) € Z[qi%]
(normalized to be 1 at the unknot, and colored by the n-dimensional irreducible
representation of sl [13]) has the lowest g-monomial with coefficient 1, and
after dividing by this monomial, we obtain the shifted colored Jones polynomial

Jion(q) € 1+ qZlq).

Theorem 2.1 [13, Theorem 1.10] Let L be an alternating link projection and G be
its Tait graph. Then, the following limit exists:

1im_J1.n(q) = ®6(q) € Zlq]l. (6)



Application in Rogers—Ramanujan Identities

q oo
nz_;)(l_Q)(l_q ) 1—q k1;[() 1_q5k+1 1_q5k+4) (01)
> qn2+n 00
Z I-a)1-¢*)-(1-q") H (1— q5k+2 1 — ¢ok+3) (0.2)



In recent years, g-series identities have arisen in topology; specifically in
knot theory.

For example, in [GL15], Stavros Garoufalidis and Thang T. Q. Lé prove
the multisum g-series to infinite product identity

(_1)iqz'(37;+1)/2+ij+ik+jk+j+k 1

> — = — (6.21)

2o @il@)i(@r(@)ir ()i (¢:9)%"

which is related to the 3; knot, and the identity

(—1)i+lqi" /240 /24 keik-tiltgmeti /24 ktm /2 1

i,j,k%go (0)i+£@0i(@;@Dr @D @Dm@Derr (0)% (6.22)
i+j=l+m

which is related to the 41 knot, where we use the standard abbreviation (q),, for
(¢; @)n, in order to save space. For the amphicheiral knot 63, they conjectured
(and Andrews proved in [And14]) the identity



