The Functoriality of The Postnikov Tower

Peng Huang

Here I will introduce the Moore tower, Whitehead tower and particular the Postnikov tower. I will show how to construct a Postnikov tower of a 0-connected CW complex and discuss the functoriality of the Postnikov tower. On the other hand, I will give an example to show that the Moore tower has no functoriality.

The extension lemma

Let (X, A) be a CW pair, Y be path-connected. If $\pi_{n-1}(Y) = 0$ for all n such that $X \setminus A$ has cells of dimension n, then $f : A \longrightarrow Y$ can be extended to a map $X \longrightarrow Y$. **Proof :**

Assume inductively that f has been extended over the (n-1)-skeleton X^{n-1} (containing A). Then an extension over an n-cell exists if and only if the composition of this n-cell attaching map $S^{n-1} \longrightarrow X^{n-1}$ with $f: X^{n-1} \longrightarrow Y$ is nullhomotopic.

The Postnikov Towers

For a 0-connected CW complex X , one can construct a sequence $\widetilde{X_n}$ such that $\pi_i(X) \cong \pi_i(\widetilde{X_n})$ for $i \leq n$ and $\pi_i(\widetilde{X_n}) = 0$ for i > n.

For every generator of $\langle S^{n+1}, X \rangle$ in $\pi_{n+1}(X)$, by the cellular approximation theorem one can make it to be cellular. If we attach a e^{n+2} to X by this cellular map, then one has :

- (1) $\pi_i(Y) \cong \pi_i(X)$ for $i \le n$ since the *i*-skeletons of Y and X are the same, by the cellular approximation theorem, one can make $\langle S^i, Y \rangle$ homotopic to $\langle S^i, X \rangle$.
- (2) $\pi_{n+1}(Y) = 0$ since the generators in X are nullhomotopy in Y.

Let X = Y and repeat this process, one can get a CW complex $\widetilde{X_n}$ such that $\pi_k(i) : \pi_k(X) \longrightarrow \pi_k(\widetilde{X_n})$ is an isomorphism for $k \leq n$ and $\pi_k(\widetilde{X_n}) = 0$ for k > n.

 $\underbrace{\lim}_{n} X_{n} = \{(x_{1}, x_{2}, \cdots) \mid x_{2} \longmapsto x_{1}, x_{3} \longmapsto x_{2}, \cdots\} \text{ is a subgroup of } \prod_{n} X_{n}.$

Propositon

(1) Consider $\mathcal{X} : (\mathbb{N}, \leq) \longrightarrow (\mathbf{Top})$, if for each $n, i_n : X_n \longrightarrow X_{n+1}$ is a closed inclusion and X_n is a T_1 space, then for the functor $C_{\bullet} : (\mathbf{Top}) \longrightarrow (\mathbf{Comp})$ one has $\underline{colim}_n C_{\bullet}(X_n) = C_{\bullet}(\underline{colim}_n X_n)$, moreover :

$$\underline{colim}_{n}H_{k}(X_{n}) = \underline{colim}_{n}(H_{k}(C_{\bullet}(X_{n}))) = H_{k}(\underline{colim}_{n}C_{\bullet}(X_{n})) = H_{k}(C_{\bullet}(\underline{colim}_{n}X_{n})) = H_{k}(\underline{colim}_{n}X_{n}) = H_{k}(\underline{colim}_{n}X_{n}$$

Similarly, $\underline{colim}_n \pi_1(X_n) = \pi_1(\underline{colim}_n X_n)$ since S^1 is also T_1 .

(2) Consider $(\mathbb{N}, \geq) \xrightarrow{\mathcal{X}} (\mathbf{Top}) \xrightarrow{\pi_k} (\mathbf{Gp})$, if $p_n : X_{n+1} \longrightarrow X_n$ is a fibration for each n, then the unique

map $\pi_k(\varprojlim_n X_n) \longrightarrow \varprojlim_n \pi_k(X_n)$ is surjective. And it is injective if the map $\pi_{k+1}(X_n) \longrightarrow \pi_{k+1}(X_{n-1})$ is surjective for *n* sufficiently large.

Proposition

The unique map $X \longrightarrow \underline{\lim}_n X_n$ is a weak homotopy equivalence, X is a CW approximation to $\underline{\lim}_n X_n$, since $\pi_k(X) \longrightarrow \pi_k(\underline{\lim}_n X_n) \longrightarrow \underline{\lim}_n \pi_k(X_n)$ is an isomorphism for n sufficiently large.

Principal fibrations

A fibration $p: E \longrightarrow B$ with fibre F is called equivalent to a principal fibration if there is a homotopy equivalence $E \longrightarrow M_k$ where $k: B \longrightarrow K$ such that the diagram commutes.

Thus one must have a weak homotopy equivalence $F \longrightarrow \Omega K$. The induced fibration $p': M_k \longrightarrow B$ is called the principal fibration induced by $p: E \longrightarrow B$.

Proposition

A 0-connected CW complex X has a Postnikov tower of principal fibrations. $\iff \pi_1(X)$ acts trivially on $\pi_n(X)$ for all $n \ge 2$.

Any 1-conected CW complex X has a Postnikov tower of principal fibrations.

k-invariants

If the fibration $p: X_{n+1} \longrightarrow X_n$ is principal in the Postnikov tower, then one has an induced fibration $k_n: X_n \longrightarrow K(\pi_{n+1}(X), n+2)$ with fibre M_{k_n} (homotopy equivalent to X_{n+1}).

$$K(\pi_{3}(X), 4) \xrightarrow{k_{2}} X_{1}$$

Thus there is a fibre sequence $K(\pi_n(X), n) \longrightarrow X_n \longrightarrow X_{n-1} \longrightarrow K(\pi_n, n+1)$.

 $k_n: X_n \longrightarrow K(\pi_{n+1}(X), n+2)$ is a class in $H^{n+2}(X_n; \pi_{n+1}(X))$ called the *n*-th *k*-invariant (Postnikov invariant) of X (By the Brown representation theorem, $H^{n+2}(X_n; \pi_{n+1}(X)) \cong \langle X_n, K(\pi_{n+1}(X), n+2) \rangle$).

The Whitehead tower

For a 0-connected CW complex X , one has the commutative diagram such that $W_n \longrightarrow W_{n-1}$ is a fibration with fibre $K(\pi_n(X), n-1)$ for each n

where $\pi_k(W_n) \longrightarrow \pi_k(X)$ is an isomorphism for $k \ge n+1$ and $\pi_k(W_n) = 0$ for $k \le n$.

Proposition

For CW pairs (X, A) where cells in $X \setminus A$ have dimension $k \ge n+2$, then there is an induced map $\langle A, Y \rangle \longrightarrow \langle X, Y \rangle$.

If $\pi_m(Y) = 0$ for $n \ge n+2$, then $\langle A, Y \rangle \longrightarrow \langle X, Y \rangle$ is injective. If $\pi_m(Y) = 0$ for $n \ge n+1$, then $\langle A, Y \rangle \longrightarrow \langle X, Y \rangle$ is surjective.

The functoriality of the Postnikov tower in $Ho(Top_*)$

Consider the category of the tower-like diagrams, the object is the Postnikov tower $\mathcal{P}(X)$ of space X, the morphism is $f \prod_{n} f_n$ where $f: X \longrightarrow Y$, $f_n: X_n \longrightarrow Y_n$ (assume that all are 1-connected).

Consider the inclusion $i_n : X \longrightarrow \widetilde{X_n}$, then there is a unique $[\widetilde{f_n}]$ such that $[i'_n \circ f] \longmapsto [\widetilde{f_n}]$ where $i'_n : Y \longrightarrow \widetilde{Y_n}$, $\widetilde{f_n} : \widetilde{X_n} \longrightarrow \widetilde{Y_n}$, thus $f_n : X_n \longrightarrow Y_n$ is well defined.

Proposition

If f is a homotopy equivalence, then f_n is a homotopy equivalence. For the homotopy inverse g , one has

 $f_n \circ g_n \simeq (fg)_n \simeq \mathbb{1}_{Y_n} , \ g_n \circ f_n \simeq (gf)_n \simeq \mathbb{1}_{X_n} .$

Take $f = \mathbbm{1}_X$, Y = X, then for two section X_n and X'_n they are homotopy equivalent.

Commutativity with k-invariant

For two Postnikov towers of X , one has X_n and X'_n are homotopy equivalent, then one has the diagram commutes.

Thus $H^{n+2}(X_n; \pi_{n+1}(X)) \cong \langle X_n, K(\pi_{n+1}(X), n+2) \rangle = \langle X'_n, K(\pi_{n+1}(X), n+2) \rangle \cong H^{n+2}(X'_n; \pi_{n+1}(X))$.

The Universal Coefficient Theorem for Homotopy

Define the homotopy group with coefficient $\pi_n(X;G) = \langle M(G,n),X \rangle$, for $n \ge 2$ there is an exact sequence of Abelian groups

$$0 \longrightarrow \operatorname{Ext}^{1}_{\mathbb{Z}}(G, \pi_{n+1}(X)) \longrightarrow \pi_{n}(X; G) \longrightarrow \operatorname{Hom}(G, \pi_{n}(X)) \longrightarrow 0 .$$

The Moore tower

If X is 1-connected, then X has a Moore tower (commutative diagram) of principal cofibrations.

 $i_n : X_n \longrightarrow X_{n+1}$ is a principal cofibration inducing the cofibration $k'_n : M(H_{n+1}(X), n) \longrightarrow X_n$ with cofibre $C_{k'_n}$ (homotopy equivalent to X_3).

Thus there is a cofibre sequence $M(H_{n+1}(X), n) \longrightarrow X_n \longrightarrow X_{n+1} \longrightarrow M(H_{n+1}(X), n+1)$.

The Moore tower has no factoriality

Take an 1-connected $X = M(\mathbb{Z}_2, n) \vee S^{n+1}$, take $X_n = M(\mathbb{Z}_2, n)$, $X_{n+1} = M(\mathbb{Z}_2, n) \vee S^{n+1} = X$. By the universal coefficient theorem one has $\langle M(\mathbb{Z}_2, n), S^{n+1} \rangle = \pi_n(X; \mathbb{Z}_2) \cong \text{Ext}_{\mathbb{Z}_2}^1(\mathbb{Z}_2, \mathbb{Z}) = \mathbb{Z}_2$ since $\text{Hom}(\mathbb{Z}_2, \mathbb{Z}_2) = 0$. Thus there is a nonconstant map $q : M(\mathbb{Z}_2, n) \longrightarrow S^{n+1}$. Consider $f = i_2 \circ \text{fold} \circ (q \vee 1) : X \longrightarrow X$.

 $f = i_2 \circ \text{fold} \circ (q \vee \mathbb{1})$

If $f \circ i_1 \simeq i_1 \circ f_n$, then $q = (q \lor c) \circ i_2 \circ q = (q \lor c) \circ f \circ i_1 \simeq (q \lor c) \circ i_1 \circ f_n = c$ makes a contradiction.