Picard ∞ -groupoids, Picard groups of \mathbb{E}_{∞} -rings and generalized Thom spectra

Jiacheng Liang

Southern University of Science and Technology

April 23, 2024

Picard categories and Picard spaces

Let \mathcal{C} be an (ordinary) monoidal category.

Definition (invertible objects)

An object X is invertible iff there exists $Y \in \mathcal{C}$ such that $X \otimes Y \simeq 1 \simeq Y \otimes X$.

The monoidal structure makes the equivalence classes $\pi_0 \mathcal{C}$ a monoid set. So equivalently, $X \in \mathcal{C}$ is invertible iff $[X] \in \pi_0 \mathcal{C}$ is an invertible element.

Definition (Classical)

- (i) The Picard category $\mathcal{P}IC(\mathcal{C})$ is the full monoidal subcategory that consists of invertible objects in \mathcal{C} .
- (ii) The Picard groupoid $\mathcal{P}ic(\mathcal{C})$ is the maximal groupoid (also named the core) $\mathcal{P}IC(\mathcal{C})^{\simeq} \subset \mathcal{P}IC(\mathcal{C})$. The $\mathcal{P}ic(\mathcal{C})$ also admits a natural monoidal structure. (iii) The Picard group of \mathcal{C} is the $\pi_0 \mathcal{P}ic(\mathcal{C})$, which is exactly the maximal subgroup $\pi_0 \mathcal{P}ic(\mathcal{C}) \subset \pi_0 \mathcal{C}$.

Apparently, when \mathcal{C} is symmetric monoidal, the $\pi_0 \mathcal{P}ic(\mathcal{C})$ and $\pi_0 \mathcal{C}$ are abelian.

Picard ∞-groupoids

Let C^{\otimes} be an \mathbb{E}_k -monoidal ∞ -category, where $1 \leq k \leq \infty$. Our most cared cases are k=1 and $k=\infty$ which correspond monoidal and symmetric monoidal respectively.

Definition

- (i) The Picard category $\mathcal{P}IC(\mathcal{C})^{\otimes}$ is the full \mathbb{E}_k -monoidal subcategory that consists of invertible objects in \mathcal{C} .
- (ii) The Picard ∞ -groupoid (Picard space) $\mathcal{P}ic(\mathcal{C})$ is the core of $\mathcal{P}IC(\mathcal{C})$. The $\mathcal{P}ic(\mathcal{C})$ also admits a natural \mathbb{E}_k -monoidal structure $\mathcal{P}ic(\mathcal{C})^{\otimes}$.
- (iii) The Picard group of \mathcal{C}^{\otimes} is the $\pi_0 \mathcal{P}ic(\mathcal{C})$.

Proposition (*)

By straightening-unstraightening equivalence, we have a natural equivalence of ∞ -categories $\mathrm{Alg}_{\mathbb{E}_k}(\mathcal{S}) \simeq \mathrm{Grpd}_{\mathbb{E}_k, \otimes}$. That means we can identify \mathbb{E}_k -monoidal ∞ -groupoids with \mathbb{E}_k -spaces!

So we can identify $\mathcal{P}ic(\mathcal{C})^{\otimes}$ as an \mathbb{E}_k -space. Even more, it is a **group-like** \mathbb{E}_k -space, meaning its π_0 is a group. Besides, when $k \geq 2$ the group $\operatorname{Pic}(\mathcal{C})$ is abelian.

Higher Picard groups

We can also describe the higher homotopy groups of the $\mathcal{P}ic(\mathcal{C})$ for a symmetric monoidal ∞ -category \mathcal{C}^{\otimes} .

Definition

Since \mathcal{C} is symmetric monoidal, the full subcategory $B\operatorname{End}(1)\subset \mathcal{P}IC(\mathcal{C})$ consisting of just one object 1 is canonically a symmetric monoidal ∞ -category. And $B\operatorname{Aut}(1)=B\operatorname{End}(1)^{\simeq}\subset \mathcal{P}ic(\mathcal{C})$ is an \mathbb{E}_{∞} -space .

Since

$$\Omega \mathcal{P}ic(\mathcal{C}) \simeq \operatorname{Aut}(\mathbf{1})$$

we get the relations

$$\pi_1(\mathcal{P}ic(\mathcal{C}),\mathbf{1}) = \pi_0(\mathrm{End}(\mathbf{1}),\mathrm{id}_{\mathbf{1}})^\times \quad \text{ and } \quad \pi_i(\mathcal{P}ic(\mathcal{C}),\mathbf{1}) = \pi_{i-1}(\mathrm{End}(\mathbf{1}),\mathrm{id}_{\mathbf{1}}) \quad \text{ for } i \geq 2.$$

Group-like \mathbb{E}_k -spaces

Definition

An \mathbb{E}_k -space X is said to be group-like if the underlying H-space is an H-group.

Proposition

Let M be an H-space (i.e. a monoid object in hS). Then it is an H-group iff the monoid $\pi_0 M$ is a group.

So we can equivalently replace the group-like condition above into that π_0 is a group.

Proposition

For an \mathbb{E}_k -space X, there is a maximal grouplike subspace GL_1X . That is, the inclusion

$$\operatorname{Alg}^{\operatorname{gp}}_{\mathbb{E}_k}(\mathcal{S}) \stackrel{i}{\rightleftharpoons} \operatorname{Alg}_{\mathbb{E}_k}(\mathcal{S})$$

of grouplike \mathbb{E}_k -spaces into \mathbb{E}_k -spaces has a right adjoint GL_1 given by passage to the maximal grouplike \mathbb{E}_k -space.

\mathbb{E}_{k} -infinite loop space machine

Theorem (Higher Algebra 5.2.6)

Let $0 < k < \infty$, and let $\mathcal{S}_*^{\geq k}$ denote the full subcategory of \mathcal{S}_* spanned by the k-connective pointed spaces. Then The free functor $\beta_k : \mathcal{S}_* \simeq \mathrm{Mon}_{\mathbb{E}_0}(\mathcal{S}) \to \mathrm{Mon}_{\mathbb{E}_k}(\mathcal{S})$ is fully faithful when restricted to $\mathcal{S}_*^{\geq k}$ and induces an equivalence

$$\mathcal{S}_*^{\geq k} \xrightarrow{\sim} \mathrm{Mon}_{\mathbb{E}_k}^{\mathrm{gp}}(\mathcal{S}) \subseteq \mathrm{Mon}_{\mathbb{E}_k}(\mathcal{S})$$

to the full sub ∞ -category spanned by the grouplike \mathbb{E}_k -spaces.

Theorem

When $k = \infty$ we can get the classical infinite loop space machine by passage the equivalences above to limit. That is, we have the following natural equivalence.

$$\operatorname{Sp}_{\geq 0} \xrightarrow{\sim} \operatorname{Mon}_{\mathbb{E}_{\infty}}^{\operatorname{gp}}(\mathcal{S})$$

Picard spectra and Picard groups of E_∞-rings

Definition

Let \mathcal{C}^{\otimes} be a presentably symmetric monoidal ∞ -category. Then by infinite loop space machine we can identify the group-like \mathbb{E}_{∞} space $\mathcal{P}ic(\mathcal{C})^{\otimes}$ with a connective spectrum $\mathrm{pic}(\mathcal{C})$, called the Picard spectrum.

Definition

Let R be an \mathbb{E}_{∞} -ring. We write

$$\mathcal{P}ic(R) \stackrel{\mathsf{def}}{=} \mathcal{P}ic(\mathrm{Mod}(R))$$
 and $\mathrm{pic}(R) \stackrel{\mathsf{def}}{=} \mathrm{pic}(\mathrm{Mod}(R))$.

In particular, the homotopy groups of $\mathcal{P}ic(R)$ look very much like those of R (with a shift), starting at π_2 . In fact, we have natural equivalences of spaces

$$\Omega \mathcal{P}ic(R) \simeq \operatorname{Aut}(R) = \operatorname{GL}_1 R \quad \text{and} \quad \tau_{\geq 1} \operatorname{GL}_1 R \simeq \tau_{\geq 1} \Omega^{\infty} R.$$

and isomorphisms of abelian groups

$$\pi_1 \mathcal{P}ic(R) = \pi_0(R)^{\times}$$
 and $\pi_i \mathcal{P}ic(R) = \pi_{i-1}(R)$ for $i \geq 2$.

Fundamental property of Picard spaces of \mathbb{E}_{∞} -rings

Unlike the group-valued functor $\pi_0 \mathcal{P}ic$, both $\mathcal{P}ic$ and pic have the fundamental property that they commute with homotopy limits and hence are compatible with the descent theory.

Definition (faithfully flat)

We say that a map $R \to R'$ of \mathbb{E}_{∞} -rings is faithfully flat if the map $\pi_0 R \to \pi_0 R'$ is faithfully flat and the natural map $\pi_* R \otimes_{\pi_0 R} \pi_0 R' \to \pi_* R'$ is an isomorphism.

Theorem (DAG VII, Lurie 2011)

Suppose $R \to R'$ is a faithfully flat morphism of \mathbb{E}_{∞} -rings. Then the symmetric monoidal ∞ -category $\operatorname{Mod}(R)$ can be recovered as the limit of the cosimplicial diagram of symmetric monoidal ∞ -categories

$$\operatorname{Mod}(R') \Longrightarrow \operatorname{Mod}(R' \otimes_R R') \Longrightarrow \cdots$$

Fundamental property of Picard spaces of \mathbb{E}_{∞} -rings

So when comes to the Picard functor, the theory of faithfully flat descent goes into effect.

Corollary

As a result, $\mathcal{P}ic(R)$ can be recovered as a totalization of spaces,

$$\mathcal{P}ic(R) \simeq \operatorname{Tot}\left(\mathcal{P}ic\left(R'^{\otimes(\bullet+1)}\right)\right).$$

Equivalently, one has an equivalence of connective spectra

$$\operatorname{pic}(R) \simeq \tau_{\geq 0} \operatorname{Tot} \left(\operatorname{pic} \left(R'^{\otimes (\bullet + 1)} \right) \right).$$

The Picard functor also commutes with filtered colimits.

Theorem (Mathew-Stojanoska 2016)

The functor $\mathrm{Alg}_{\mathbb{E}_{\infty}}(Sp) \to \mathcal{S}$ given by $R \mapsto \mathcal{P}ic(R)$ commutes with filtered colimits. And hence the composition $\mathrm{Alg}_{\mathbb{E}_{\infty}}(Sp) \to \mathrm{N}(Set)$ given by $R \mapsto \pi_0 \mathcal{P}ic(R)$ also commutes with filtered colimits.

Algebraic approximation

Definition

Let R be an \mathbb{E}_{∞} -ring. There is a monomorphism

$$\Phi: \pi_0 \mathcal{P}ic\left(R_*\right) \to \pi_0 \mathcal{P}ic\left(R\right),$$

constructed as follows.

If M_* is an invertible R_* -module, it has to be finitely generated and projective of rank one. Consequently, there is a projection p_* with a section s_* :

$$F_* \overset{s_*}{\underset{p_*}{\hookleftarrow}} M_*$$

where F_* can be realized as a finite wedge sum of copies of R or its suspensions. Let e_* be the idempotent given by composition $s_* \circ p_*$. Since F is free over R, e_* can be realized as an idempotent R-module map $e: F \to F$. Define M to be the colimit of the sequence $F \xrightarrow{e} F \xrightarrow{e} \cdots$.

Picard-algebraic

Definition

Given an \mathbb{E}_{∞} -ring, when $\Phi: \pi_0 \mathcal{P}ic\left(R_*\right) \to \pi_0 \mathcal{P}ic\left(R\right)$ is an isomorphism, we say that R is **Picard-algebraic**.

Theorem (Mathew–Stojanoska 2016)

- **1** Suppose R is a connective \mathbb{E}_{∞} -ring. Then R is Picard-algebraic.
- ② Suppose R is a weakly even periodic \mathbb{E}_{∞} -ring with $\pi_0 R$ a regular noetherian ring. We have the following:
 - (i) The R is Picard-algebraic.
 - (ii) If further R is Landweber exact, Let $n \geq 1$ be an integer, and let L_n denote localization with respect to the Lubin-Tate spectrum E_n . Then the Picard group of $L_n R$ is $\operatorname{Pic}\left(L_n R\right) = \operatorname{Pic}\left(\pi_* R\right) \times \pi_{-1}\left(L_n R\right)$, where we denote Pic as $\pi_0 \mathcal{P}ic$. Besides, $\operatorname{Pic}\left(\pi_* R\right)$ sits in an extension $0 \to \operatorname{Pic}\left(\pi_0 R\right) \to \operatorname{Pic}\left(\pi_* R\right) \to \mathbb{Z}/2 \to 0$, which is split if R is strongly even periodic.

Examples

Definition

Suppose that $\mathcal C$ is a symmetric monoidal stable ∞ -category such that the tensor product commutes with finite colimits in each variable. Then one has a natural homomorphism

$$\mathbb{Z} \to \operatorname{Pic}(\mathcal{C})$$

sending $n \mapsto \Sigma^n \mathbf{1}$.

Example (Bott periodicity)

- The KU is an even periodic \mathbb{E}_{∞} -ring with a regular noetherian π_0 , so it is Picard-algebraic. Then $\operatorname{Pic}(KU) = \operatorname{Pic}(\mathbb{Z}[u^{\pm}]_*) \simeq \mathbb{Z}/2$ generated by ΣKU .
- By $KO \simeq KU^{hC_2}$ and the homotopy fixed point spectral sequence $H^s\left(C_2, \pi_t \operatorname{pic}(KU)\right) \Rightarrow \pi_{t-s} \operatorname{pic}(KO)$, we can calculate that $\operatorname{Pic}(KO) \simeq \mathbb{Z}/8$ generated by ΣKO .

Examples

Theorem (Sphere spectrum)

Let Sp be the ∞ -category of spectra with the smash product. Then $\operatorname{Pic}(Sp) = \operatorname{Pic}(\mathbb{S}) \simeq \mathbb{Z}$, generated by the suspension $\Sigma^1 \mathbb{S}$.

A quick proof: If $T \in \operatorname{Sp}$ is invertible, so that there exists a spectrum T' such that $T \wedge T' \simeq \mathbb{S}$, then we need to show that T is a suspension of \mathbb{S} .

Since the unit object $\mathbb{S} \in \operatorname{Sp}$ is compact, it follows that T is compact: that is, it is a finite spectrum. By suspending or desuspending, we may assume that T is connective, and that $\pi_0 T \neq 0$.

By the Künneth formula, it follows easily that $H_*(T;F)$ is concentrated in the dimension 0 for each field F. Since $H_*(T;\mathbb{Z})$ is finitely generated, an argument with the universal coefficient theorem implies that $H_*(T;\mathbb{Z})$ is torsion-free of rank 1:i.e. $H_0(T;\mathbb{Z})\simeq \mathbb{Z}$. By the Hurewicz theorem, $T\simeq \mathbb{S}$.

Corollary

By the Picard-algebraic property of S, we have $\operatorname{Pic}(\pi_*S) \simeq \operatorname{Pic}(S) \simeq \mathbb{Z}$.

Calculation of Picard groups of TMF and Tmf

Theorem (Picard descent spectral sequence, Gepner-Lawson 2016)

Suppose that X is a regular Deligne-Mumford stack with a quasi-affine flat map $X \to M_{\mathrm{FG}}$, and suppose $\mathfrak X$ is an even periodic realization of X. Then there is a spectral sequence with

$$E_2^{s,t} = \begin{cases} H^s(X,\mathbb{Z}/2) & \text{if } t = 0 \\ H^s\left(X,\mathcal{O}_X^\times\right) & \text{if } t = 1, \\ H^s\left(X,\omega^{(t-1)/2}\right) & \text{if } t \geq 3 \text{ is odd} \\ 0 & \text{otherwise,} \end{cases}$$

whose abutment is $\pi_{t-s}\operatorname{pic}\Gamma(\mathfrak{X},\mathcal{O}^{top})$. The differentials run $d_r:E_r^{s,t}\to E^{s+r,t+r-1}$.

Calculation of Picard groups of TMF and Tmf

Theorem (Mathew–Stojanoska 2016)

The Picard group of integral TMF is $\mathbb{Z}/576$, generated by ΣTMF .

A quick proof: We can use étale descent to produce the spectral sequence, as TMF is obtained as the global sections of the sheaf $\mathcal{O}^{\mathsf{top}}$ of even-periodic E_{∞} -rings on the moduli stack of elliptic curves. Namely, by the fact that the map $M_{\mathrm{ell}} \to M_{\mathrm{FG}}$ is affine, the spectral sequence is

$$H^{s}\left(M_{\mathrm{ell}}, \pi_{t} \operatorname{pic} \mathcal{O}^{\mathsf{top}}\right) \Rightarrow \pi_{t-s} \operatorname{pic} \Gamma(M_{\mathrm{ell}}, \mathcal{O}^{\mathsf{top}}) = \pi_{t-s} \operatorname{pic}(TMF),$$

and we are interested in π_0 . The E_2 -page of this spectral sequence is given by (for $t-s\geq 0$)

$$E_2^{s,t} = \begin{cases} \mathbb{Z}/2 & \text{if } t = s = 0, \\ H^s\left(M_{\mathrm{ell}}, \mathcal{O}_{M_{\mathrm{ell}}}^{\times}\right) & \text{if } t = 1, \\ H^s\left(M_{\mathrm{ell}}, \omega^{(t-1)/2}\right) & \text{if } t \geq 3 \text{ is odd,} \\ 0 & \text{otherwise.} \end{cases}$$

Over a field k of characteristic $\neq 2,3$, Mumford showed that

$$H^1\left(\left(M_{\mathrm{ell}}\right)_k,\mathcal{O}_{M_{\mathrm{ell}}}^{ imes}
ight)\simeq \mathbb{Z}/12,$$

generated by the canonical line bundle ω that assigns to an elliptic curve the dual of its Lie algebra. This result is also true over \mathbb{Z} by the work of Fulton and Olsson.

Actually, the differentials involving 3-torsion classes wipe out everything above the s=5 line, and those involving 2-torsion classes wipe out everything above the s=7 line. We conclude that the following are the only groups that can survive:

- at most a group of order 2 in (t s, s) = (0, 0),
- at most a group of order 12 in (0,1),
- at most a group of order 12 in (0,5), and
- at most a group of order 2 in (0,7).

This gives us an upper bound $2^63^2 = 576$ on the cardinality of π_0 , which is exactly the periodicity of TMF.

Calculation of Picard groups of TMF and Tmf

Theorem (Mathew–Stojanoska 2016)

The Picard group of integral Tmf is $\mathbb{Z} \oplus \mathbb{Z}/24$, generated by ΣTmf and a certain 24-torsion.

The relevant part of the Picard descent spectral sequence is similar to that of TMF, with the following exceptions: the algebraic part $H^1\left(\overline{M}_{\mathrm{ell}},\mathcal{O}^\times\right)$ is now \mathbb{Z} generated by ω , according to Fulton–Olsson, and we have

- at most a group of order 2 in (t s, s) = (0, 0),
- a subquotient of \mathbb{Z} in (0,1),
- at most a group of order 12 in (0,5), and
- at most a group of order 2 in (0,7)

as potential contributions to the s=t line of the E_{∞} -page.

The rest of the E_{∞} -filtration now tells us that $\operatorname{Pic}(\operatorname{Tmf})$ sits in an extension

$$0 \to A \to \operatorname{Pic}(\operatorname{Tmf}) \to \mathbb{Z} \to 0$$
,

where A is a finite group of order at most 24, actually $\mathbb{Z}/24$. So $\operatorname{Pic}(\operatorname{Tmf}) \simeq \mathbb{Z} \oplus \mathbb{Z}/24$.

Recalling Thom spectra

Definition (Classical Thom spectrum functor)

Let $(f:X\to BO)\in \mathcal{S}_{/BO}$, then the standard filtration $X_n=f^{-1}(BO_n)$ induces a Thom spectrum given by

$$M(X)_n = \operatorname{Th}(E(X_n)) = D(X_n)/S(X_n).$$

In the ∞ -categorical view, this process is exactly equivalent to taking the homotopy colimit of the diagram $\mathcal{L}_f: X \to BO \to BGL_1(\mathbb{S}) \subset \mathcal{P}ic(\mathbb{S}) \hookrightarrow \operatorname{Mod}_{\mathbb{S}} \simeq Sp$, namely $M(X) \simeq \operatorname{hocolim}_{\alpha \in X} \mathcal{L}_{\alpha}$ taken in Sp. That leads to the following ∞ -categorical definition.

Definition (x-categorical definition)

Let \mathcal{C}^{\otimes} be a presentably \mathbb{E}_k -monoidal ∞ -category. We define the generalized Thom spectrum functor $M: \mathcal{S}_{/\mathcal{P}ic(\mathcal{C})} \to \mathcal{C}$ as given by $(\mathcal{L}: X \to \mathcal{P}ic(\mathcal{C})) \mapsto \operatorname{colim}_{\alpha \in X} \mathcal{L}(\alpha)$ taken in \mathcal{C} .

Universal property of the Picard space

We firstly solve a technical problem about the smallness of the Picard group. Let \mathbb{C}^{\otimes} be an \mathbb{E}_k -monoidal ∞ -category, where $1 \leq k \leq \infty$.

Proposition

If \mathcal{C}^{\otimes} is presentably \mathbb{E}_k -monoidal, then there exists an uncountable regular cardinal κ such that $\mathcal{P}IC(\mathcal{C}) \subset \mathcal{C}^{\kappa}$ all invertible objects are κ -compact. Hence $\mathcal{P}IC(\mathcal{C})$ and $\mathcal{P}ic(\mathcal{C})$ are essentially small (∞ -categories).

Now we claim that the Picard space functor is a right adjoint to the presheaf functor.

Theorem (Ando-Blumberg-Gepner 2018)

The picard space functor induces the following adjunction

$$\operatorname{Alg}_{\mathbb{E}_k}^{\operatorname{gp}}(\mathcal{S}) \xrightarrow{\operatorname{PSh}} \operatorname{Alg}_{\mathbb{E}_k}(\operatorname{Pr}^{\operatorname{L}})$$

where the presheaf functor PSh is given by $K \mapsto \operatorname{Fun}(K^{op}, \mathcal{S})$.

A sketch of the proof

The $\mathrm{Alg}^{\mathrm{gp}}_{\mathbb{E}_k}(\mathcal{S}) \xrightarrow{\mathrm{PSh}} \mathrm{Alg}_{\mathbb{E}_k}(\mathrm{Pr}^{\mathrm{L}})$ is an adjunction.

Proof: Let $G^{\otimes} \in \mathrm{Alg}_{\mathbb{E}_k}^{\mathrm{gp}}(\mathcal{S})$ and $\mathcal{C}^{\otimes} \in \mathrm{Alg}_{\mathbb{E}_k}(\mathrm{Pr}^{\mathbf{L}})$. Then we have

$$\operatorname{Map}_{\operatorname{Alg}_{\mathbb{E}_k}(\operatorname{Pr^L})}(\operatorname{PSh}(G)^{\otimes},\mathcal{C}^{\otimes}) \simeq \operatorname{Map}_{\operatorname{Alg}_{\mathbb{E}_k}(\widehat{\operatorname{Cat}}_{\infty})}(G^{\otimes},\mathcal{C}^{\otimes})$$

by the universal property of Yoneda embedding. Secondly we have

$$\operatorname{Map}_{\operatorname{Alg}_{\mathbb{E}_k}(\widehat{\operatorname{Cat}}_{\infty})}(G^{\otimes},\mathcal{C}^{\otimes}) \simeq \operatorname{Map}_{\operatorname{Alg}_{\mathbb{E}_k}(\widehat{\mathcal{S}})}(G^{\otimes},\mathcal{C}^{\simeq,\otimes})$$

by the property of the maximal groupoid. Thirdly we have

$$Map_{\mathrm{Alg}_{\mathbb{E}_{k}}(\widehat{\mathcal{S}})}(G^{\otimes}, \mathcal{C}^{\simeq, \otimes}) \simeq Map_{\mathrm{Alg}_{\mathbb{E}_{k}}^{\mathrm{gp}}(\mathcal{S})}(G^{\otimes}, \mathcal{P}ic(\mathcal{C})^{\otimes})$$

since an \mathbb{E}_k -monoidal functor maps invertible objects into invertible objects. Combining all above, we have a natural equivalence

$$Map_{\mathrm{Alg}_{\mathbb{E}_{t}}(\mathrm{Pr}^{\mathrm{L}})}(\mathrm{PSh}(G)^{\otimes},\mathcal{C}^{\otimes}) \simeq Map_{\mathrm{Alg}_{\mathbb{E}_{t}}^{\mathrm{gp}}(\mathcal{S})}(G^{\otimes},\mathcal{P}ic(\mathcal{C})^{\otimes}).$$

Generalized Thom spectrum functor

Let $\mathcal{C}^{\otimes} \in \mathrm{Alg}_{\mathbb{E}_k}(\mathrm{Pr}^{\mathrm{L}})$ be a presentably \mathbb{E}_k -monoidal ∞ -category.

Definition

By the adjunction $\mathrm{Alg}^{\mathrm{gp}}_{\mathbb{E}_k}(\mathcal{S}) \xrightarrow{\mathrm{PSh}} \mathrm{Alg}_{\mathbb{E}_k}(\mathrm{Pr}^{\mathrm{L}})$, we have the natural counit map $\mathrm{PSh}(\mathcal{P}ic(\mathcal{C}))^{\otimes} \to \mathcal{C}^{\otimes}$, which is a colimit-preserving \mathbb{E}_k -monoidal functor.

By unstraightening we get natural equivalences of ∞ -categories $\mathrm{PSh}(X) \simeq \mathrm{RFib}_{/X} = \mathrm{KanFib}_{/X} \overset{\sim}{\to} \mathcal{S}_{/X}$ for any space $X \in \mathcal{S}$. This can be promoted as an \mathbb{E}_k -monoidal equivalence $\mathrm{PSh}(X)^\otimes \simeq \mathcal{S}_{/X}^\otimes$ when X is an \mathbb{E}_k -space.

Definition (Monoidal enhancement)

By the identification above we have the natural colimit-preserving \mathbb{E}_k -monoidal functor $M^\otimes: \mathcal{S}^\otimes_{/\mathcal{P}ic(\mathcal{C})} \simeq \mathrm{PSh}(\mathcal{P}ic(\mathcal{C}))^\otimes \to \mathcal{C}^\otimes$, which makes the generalized Thom spectrum functor M monoidal.

Definition

Let $A \in \mathrm{Alg}_{\mathbb{E}_k}(\mathcal{C})$. We define the \mathbb{E}_k -spaces $BGL_1(\mathbf{1}_{\mathcal{C}})_{\downarrow A}$ and $\mathcal{P}ic(\mathcal{C})_{\downarrow A}$ by requiring the following squares to be pullbacks of \mathbb{E}_k -monoidal ∞ -categories.

$$BGL_{1}(\mathbf{1}_{\mathcal{C}})_{\downarrow A} \longrightarrow \mathcal{P}ic(\mathcal{C})_{\downarrow A} \longrightarrow \mathcal{C}_{/A}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

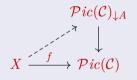
$$BGL_{1}(\mathbf{1}_{\mathcal{C}}) \longrightarrow \mathcal{P}ic(\mathcal{C}) \longrightarrow \mathcal{C}$$

Theorem (Camarena-Barthel 2018)

The pair $\operatorname{Alg}_{\mathbb{E}_k}(\mathcal{S})_{/\mathcal{P}ic(\mathcal{C})} \xrightarrow{M} \operatorname{Alg}_{\mathbb{E}_k}(\mathcal{C})$ is an adjunction. So we have a natural equivalence of spaces $\operatorname{Map}_{\operatorname{Alg}_{\mathbb{E}_k}(\mathcal{C})}(M(X), A) \simeq \operatorname{Map}_{\operatorname{Alg}_{\mathbb{E}_k}(\mathcal{S})_{/\mathcal{P}ic(\mathcal{C})}}(X, \mathcal{P}ic(\mathcal{C})_{\downarrow A})$ for any $A \in \operatorname{Alg}_{\mathbb{E}_k}(\mathcal{C})$.

Corollary (Camarena-Barthel 2018)

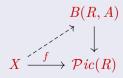
Let $f: X \to \mathcal{P}ic(\mathcal{C})$ be an \mathbb{E}_k -map and $A \in \mathrm{Alg}_{\mathbb{E}_k}(\mathcal{C})$. The \mathbb{E}_k -algebra structure of Mf is characterized by the following universal property: the space $\mathrm{Map}_{\mathrm{Alg}_{\mathbb{E}_k}(\mathcal{C})}(Mf, A)$ is equivalent to the space of \mathbb{E}_k -lifts of f indicated below:



For the remainder of slides let \mathcal{C}^{\otimes} be a **presentably stable symmetric monoidal** ∞ -category and $R \to A$ be a morphism in $\mathrm{Alg}_{\mathbb{E}_{k+1}}(\mathcal{C})$ where $1 \le k \le \infty$.

Definition (Generalized orientation)

- By HA 5.1.4, the ∞-category $\operatorname{RMod}_R(\mathcal{C})$ of (right) modules over R is an \mathbb{E}_k -monoidal ∞-category. We denote $\operatorname{Pic}(R)$ as the $\operatorname{Pic}(\operatorname{RMod}_R(\mathcal{C}))$.
- ② Let B(R,A) be the full \mathbb{E}_k -subgroupoid of $\mathcal{P}ic(R)_{\downarrow A}$ consisting of morphisms of R-modules $h:M\to A$ such that the adjoint $h^{\dagger}:A\otimes_R M\to A$ is an equivalence in $R\mathrm{Mod}_A(\mathcal{C})$.
- ③ We define the space of \mathbb{E}_k A-orientations of an \mathbb{E}_k -map $f: X \to \mathcal{P}ic(R)$ as the space $\operatorname{Map}_{\operatorname{Alg}_{\mathbb{E}_t}(\mathcal{S})/\mathcal{P}ic(R)}(X, B(R, A))$ of \mathbb{E}_k -lifts of f indicated below:



Proposition (Camarena-Barthel 2018)

If X is a group-like \mathbb{E}_k -space, then for any \mathbb{E}_k -map $X \to \mathcal{P}ic(R)_{\downarrow A}$ we have the factorization:

Remark

Note that this proposition does not necessarily hold if we do not assume ${\cal C}$ is stable.

So in this group-like X case, any \mathbb{E}_k -map $Mf \to A$ is an \mathbb{E}_k A-orientation.

Proposition (Camarena-Barthel 2018)

The following diagram is a pullback diagram of \mathbb{E}_k -spaces, where B(A, A) is a contractible \mathbb{E}_k -space.

$$B(R, A) \longrightarrow B(A, A)$$

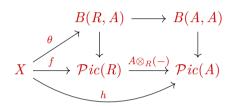
$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{P}ic(R) \xrightarrow{A \otimes_{R}(-)} \mathcal{P}ic(A)$$

Corollary

Let $f: X \to \mathcal{P}ic(R)$ be an \mathbb{E}_k -map. Then the space of \mathbb{E}_k A-orientations for f is either empty or equivalent to the space of \mathbb{E}_k A-orientations of the constant map $c_R: X \to \mathcal{P}ic(R)$, namely $\Omega \operatorname{Map}_{\mathbb{E}_k}(X, \mathcal{P}ic(A))$.

A quick proof: Let θ be an \mathbb{E}_k *A*-orientation. We have the following diagram of \mathbb{E}_k -spaces.



So h is null-homotopy by the contractibility of B(A,A). Therefore we have equivalences of spaces

$$\begin{split} \operatorname{Map}_{\operatorname{Alg}_{\mathbb{E}_k}(\mathcal{S})/\mathcal{P}ic(R)}(X,B(R,A)) &\simeq \operatorname{Map}_{\operatorname{Alg}_{\mathbb{E}_k}(\mathcal{S})/\mathcal{P}ic(A)}(X,B(A,A)) \simeq \\ & \operatorname{Map}_{\operatorname{Alg}_{\mathbb{E}_k}(\mathcal{S})}(X,\Omega\mathcal{P}ic(A)) \end{split}$$

and $\operatorname{Map}_{\operatorname{Alg}_{\mathbb{E}_k}^R}(Mf,A) \simeq \operatorname{Map}_{\operatorname{Alg}_{\mathbb{E}_k}^A}(A \otimes_R Mf,A) \simeq \operatorname{Map}_{\operatorname{Alg}_{\mathbb{E}_k}^A}(A \otimes \Sigma_+^{\infty} X,A)$ (Thom isomorphism).

References

In the \mathbb{E}_{∞} -case, we can go further by combing the infinite loop space machine.

Proposition

If $k = \infty$ and X is group-like, then then by $\operatorname{Sp}_{\geq 0} \xrightarrow{\sim} \operatorname{Mon}_{\mathbb{E}_{\infty}}^{\operatorname{gp}}(\mathcal{S}) \simeq \operatorname{Alg}_{\mathbb{E}_{\infty}}^{\operatorname{gp}}(\mathcal{S})$ we have $\Omega \operatorname{Map}_{\mathbb{E}_{\infty}}(X, \mathcal{P}ic(A)) \simeq \Omega \operatorname{Map}_{Sp}(x, \operatorname{pic}(A))$.

- Ando, M., Blumberg, A.J., Gepner, D. (2018). Parametrized spectra, multiplicative Thom spectra and the twisted Umkehr map. Geometry Topology.
- Mathew, A., Stojanoska, V. (2016). The Picard group of topological modular forms via descent theory. Geometry Topology.
- Antol'in-Camarena, O., Barthel, T. (2018). A simple universal property of Thom ring spectra. Journal of Topology, 12.