Pipe Rings and Pipe Formal Groups

Yifan Wu

12131236

9th April, 2024

References I

[MGPS15] Aaron Mazel-Gee, Eric Peterson, and Nathaniel Stapleton, A relative lubin-tate theorem via higher formal geometry, Algebraic & Geometric Topology 15 (2015), no. 4, 2239–2268.

[Str00] Neil P. Strickland, *Formal schemes and formal groups*, 2000.

Contents

1 Formal Schemes and Formal Groups

- Category of formal schemes
- Solid formal schemes
- Formal groups
- 2 Pipe Rings
 - Pipe rings
 - Realization
- 3 Pipe Formal Groups• A moduli problem

Formal schemes can be used to detect local behaviour around a closed point.

Formal schemes can be used to detect local behaviour around a closed point.

$$\operatorname{Spec}(k) \cong \operatorname{Spec}(k[x]/x) \to \operatorname{Spec}(k[x]/x^2) \to \cdots \to \operatorname{Spec}(k[x]/x^n) \to .$$

Formal schemes can be used to detect local behaviour around a closed point.

$$\operatorname{Spec}(k) \cong \operatorname{Spec}(k[x]/x) \to \operatorname{Spec}(k[x]/x^2) \to \cdots \to \operatorname{Spec}(k[x]/x^n) \to .$$

The category Sch of schemes does not have all limits and colimits.

Formal Schemes and Formal Groups Pipe Rings Pipe Formal Groups Pipe Formal groups Pipe Sings Pipe Formal groups

A scheme X means a representable functor from **Rings** to **Sets**, that is

$$X = \mathsf{Rings}(A, -) = \operatorname{Spec}(A)$$

for some A. The ring of functions is defined to be

$$\mathcal{O}_X = \mathbb{A}^1(X),$$

which is all maps from X to \mathbb{A}^1 .

Formal Schemes and Formal Groups Pipe Rings Pipe Formal Groups Pipe Formal groups Pipe Sings Pipe Formal groups

A scheme X means a representable functor from **Rings** to **Sets**, that is

$$X = \operatorname{\mathsf{Rings}}(A, -) = \operatorname{Spec}(A)$$

for some A. The ring of functions is defined to be

$$\mathcal{O}_X = \mathbb{A}^1(X),$$

which is all maps from X to \mathbb{A}^1 .

The category of schemes has limits,

$$\lim_{i} \operatorname{Spec}(A_i) = \operatorname{Spec}(\operatorname{colim} A_i)$$

3

イロト 不同 とうほう 不同 とう

A formal scheme X is a filtered colimit of some schemes X_i .

A formal scheme X is a filtered colimit of some schemes X_i .

By definition, $X(R) = \operatorname{colim}_i X_i(R)$.

A formal scheme X is a filtered colimit of some schemes X_i .

By definition, $X(R) = \operatorname{colim}_i X_i(R)$.

$$\mathcal{O}_X = [X, \mathbb{A}^1] = [\operatorname{colim}_i X_i, \mathbb{A}^1] = \lim_i [X_i, \mathbb{A}^1] = \lim_i \mathcal{O}_{X_i}.$$

A formal scheme X is a filtered colimit of some schemes X_i .

By definition, $X(R) = \operatorname{colim}_i X_i(R)$.

$$\mathcal{O}_X = [X, \mathbb{A}^1] = [\operatorname{colim}_i X_i, \mathbb{A}^1] = \lim_i [X_i, \mathbb{A}^1] = \lim_i \mathcal{O}_{X_i}.$$

In general, for two formal schemes $X = \operatorname{colim} X_i$, $Y = \operatorname{colim}_j Y_j$, we define

$$[X, Y] = [\operatorname{colim} X_i, \operatorname{colim} Y_j] = \lim_i [X_i, \operatorname{colim} Y_j] = \lim_i \operatorname{colim} [X_i, Y_j].$$

イロト 不同 とくほと 不良とう ほ

6/27

Let $\mathfrak X$ be the category of schemes, and $\widehat{\mathfrak X}$ of formal schemes.

Let $\mathfrak X$ be the category of schemes, and $\widehat{\mathfrak X}$ of formal schemes.

• has all small colimits and finite limits.

Let $\mathfrak X$ be the category of schemes, and $\widehat{\mathfrak X}$ of formal schemes.

- has all small colimits and finite limits.
- Finite limits commute with colimits in $\widehat{\mathfrak{X}}$.

Let $\mathfrak X$ be the category of schemes, and $\widehat{\mathfrak X}$ of formal schemes.

- has all small colimits and finite limits.
- Finite limits commute with colimits in $\widehat{\mathfrak{X}}$.

There is a kind of special formal schemes, coming from LRings.

Suppose R is a linearly topologized ring and S is a ring,

$$\mathbf{LRing}(R,S) = \operatorname{colim}_{J} \mathbf{Ring}(R/J,S).$$

Suppose R is a linearly topologized ring and S is a ring,

$$\mathbf{LRing}(R,S) = \operatorname{colim}_{J} \mathbf{Ring}(R/J,S).$$

Hence we define Spf(R) = LRings(R, -).

Suppose R is a linearly topologized ring and S is a ring,

$$\mathbf{LRing}(R,S) = \operatorname{colim}_{J} \mathbf{Ring}(R/J,S).$$

Hence we define Spf(R) = LRings(R, -).

X is a solid formal scheme if $X \cong \operatorname{Spf}(R)$, $\mathcal{O} \cong \widehat{R}$.

Suppose R is a linearly topologized ring and S is a ring,

$$\mathbf{LRing}(R,S) = \operatorname{colim}_{J} \mathbf{Ring}(R/J,S).$$

Hence we define Spf(R) = LRings(R, -).

X is a solid formal scheme if $X \cong \operatorname{Spf}(R)$, $\mathcal{O} \cong \widehat{R}$.

We also have $\operatorname{Spf}(R) = \operatorname{Spf}(\widehat{R})$.

Suppose R is a linearly topologized ring and S is a ring,

$$\mathbf{LRing}(R,S) = \operatorname{colim}_{J} \mathbf{Ring}(R/J,S).$$

Hence we define Spf(R) = LRings(R, -).

X is a solid formal scheme if $X \cong \text{Spf}(R)$, $\mathcal{O} \cong \widehat{R}$.

We also have $\operatorname{Spf}(R) = \operatorname{Spf}(\widehat{R})$.

We denote the full subcategory consisting of solid formal schemes by $\widehat{\mathfrak{X}}_{\textit{sol}}.$

Category of formal schemes Solid formal schemes Formal groups

We have following adjoint functors.

We have following adjoint functors.

$$\mathcal{O}: \widehat{\mathfrak{X}} \leftrightarrows \mathsf{LRing}^{op} : \mathrm{Spf}$$
$$\mathcal{O}: \widehat{\mathfrak{X}}_{sol} \leftrightarrows \mathsf{FRing}^{op} : \mathrm{Spf}$$
$$\widehat{\bullet}: \mathsf{LRings} \leftrightarrows \mathsf{FRings}: i$$
$$\mathrm{Spf}(\mathcal{O}): \widehat{\mathfrak{X}} \leftrightarrows \widehat{\mathfrak{X}}_{sol}: i$$

We have following adjoint functors.

$$\mathcal{O} : \widehat{\mathfrak{X}} \leftrightarrows \mathsf{LRing}^{op} : \mathrm{Spf}$$
$$\mathcal{O} : \widehat{\mathfrak{X}}_{sol} \leftrightarrows \mathsf{FRing}^{op} : \mathrm{Spf}$$
$$\widehat{\bullet} : \mathsf{LRings} \leftrightarrows \mathsf{FRings} : i$$
$$\mathrm{Spf}(\mathcal{O}) : \widehat{\mathfrak{X}} \leftrightarrows \widehat{\mathfrak{X}}_{sol} : i$$

 $\widehat{\mathfrak{X}}_{sol}$ is closed under finite limits and has arbitrary colimits which may not be preserved by the inclusion into $\widehat{\mathfrak{X}}$.

We have following adjoint functors.

$$\mathcal{O}: \widehat{\mathfrak{X}} \leftrightarrows \mathsf{LRing}^{op} : \mathrm{Spf}$$
$$\mathcal{O}: \widehat{\mathfrak{X}}_{sol} \leftrightarrows \mathsf{FRing}^{op} : \mathrm{Spf}$$
$$\widehat{\bullet}: \mathsf{LRings} \leftrightarrows \mathsf{FRings}: i$$
$$\mathrm{Spf}(\mathcal{O}): \widehat{\mathfrak{X}} \leftrightarrows \widehat{\mathfrak{X}}_{sol}: i$$

 $\widehat{\mathfrak{X}}_{sol}$ is closed under finite limits and has arbitrary colimits which may not be preserved by the inclusion into $\widehat{\mathfrak{X}}$.

Example: $\widehat{\mathbb{A}}^1 = \operatorname{Spf}(\mathbb{Z}\llbracket t \rrbracket), \ \widehat{\mathbb{A}}^1(R) = \operatorname{Nil}(R).$

Formal Schemes and Formal Groups Pipe Rings Pipe Formal Groups Pipe Formal Groups Formal groups

We say G is a formal group over X if

- $G\cong X imes \widehat{\mathbb{A}}^1$ and
- $\mu: G \times_X G \to G.$

We say G is a formal group over X if

- $G\cong X imes\widehat{\mathbb{A}}^1$ and
- $\mu: G \times_X G \to G.$
- If X is solid, then G is solid with

 $\mathcal{O}_G \cong \mathcal{O}_X[\![t]\!].$

A coordinate x on G is an element in \mathcal{O}_G establishing the above isomorphism.

We say G is a formal group over X if

- $G\cong X imes\widehat{\mathbb{A}}^1$ and
- $\mu: G \times_X G \to G.$

If X is solid, then G is solid with

 $\mathcal{O}_G \cong \mathcal{O}_X[\![t]\!].$

A coordinate x on G is an element in \mathcal{O}_G establishing the above isomorphism.

 $f(x,y) = \mu^*(t) \in \mathcal{O}_X\llbracket x,y
rbracket$ is a formal group law.

Suppose $f : G \to H$ is a homomorphism over X/\mathbb{F}_p , x, y are coordinates,

$$f^*: \mathcal{O}_X\llbracket y \rrbracket \to \mathcal{O}_X\llbracket x \rrbracket.$$

We have $f^{*}(y) = g(x^{p^{n}})$.

Suppose $f : G \to H$ is a homomorphism over X/\mathbb{F}_p , x, y are coordinates,

$$f^*: \mathcal{O}_X\llbracket y \rrbracket \to \mathcal{O}_X\llbracket x \rrbracket.$$

We have $f^{*}(y) = g(x^{p^{n}})$.

We define $\operatorname{Height}(f)$ to be *n* in the above equation. $\operatorname{Height}(G)$ is the height of

$$[p]: G \xrightarrow{\Delta} \underbrace{G \times_X \cdots \times_X G}_{p \ times} \xrightarrow{\mu} G.$$

Suppose $f : G \to H$ is a homomorphism over X/\mathbb{F}_p , x, y are coordinates,

$$f^*: \mathcal{O}_X\llbracket y\rrbracket \to \mathcal{O}_X\llbracket x\rrbracket.$$

We have $f^{*}(y) = g(x^{p^{n}})$.

We define $\operatorname{Height}(f)$ to be *n* in the above equation. $\operatorname{Height}(G)$ is the height of

$$[p]: G \xrightarrow{\Delta} \underbrace{G \times_X \cdots \times_X G}_{p \ times} \xrightarrow{\mu} G.$$

Proposition 1.1

Let $f : \mathbb{G} \to \mathbb{H}$ be a nonzero homomorphism over X with Height(\mathbb{G}) finite. Then Height(\mathbb{G}) = Height(\mathbb{H}) and Height(f) is finite.

F_X is the Frobenius.

 \mathbb{G} : coordinate x, formal group law g(x, x').

F_X is the Frobenius.

ヘロン ヘヨン ヘヨン ヘヨン

3

12 / 27

 \mathbb{G} : coordinate x, formal group law g(x, x'). $F_X^*\mathbb{G}$: coordinate y, $g^{(p)}(y, y')$. Formal Schemes and Formal Groups Pipe Rings Pipe Formal Groups Pipe Formal Groups Formal groups

F_X is the Frobenius.

.

 \mathbb{G} : coordinate x, formal group law g(x, x'). $F_X^*\mathbb{G}$: coordinate y, $g^{(p)}(y, y')$.

$$F^*_{\mathbb{G}/X}(y) = x^p$$

ormal Schemes and Formal Groups	Category of formal schemes
Pipe Rings	
Pipe Formal Groups	Formal groups

 $\operatorname{Spf}(E_h^0)$ classifies deformations of a formal group G over k.

$$E_h^0 = W(k) \llbracket u_1, \cdots, u_{h-1} \rrbracket$$
Formal Schemes and Formal Groups Pipe Rings Pipe Formal Groups Pipe and Schemes Pipe rings Realization

 $\operatorname{Spf}(E_h^0)$ classifies deformations of a formal group G over k.

$$E_h^0 = W(k) \llbracket u_1, \cdots, u_{h-1} \rrbracket$$

$$(L_{\mathcal{K}(h')}E_{h})^{0} = W(k)\llbracket u_{1}, \cdots, u_{h-1}\rrbracket [u_{h'}^{-1}]_{I_{h'}}^{\wedge},$$

where $I_{h'} = (p, u_{1}, \cdots, u_{h'-1}).$

Formal Schemes and Formal Groups Pipe Rings Pipe Formal Groups Pipe and Schemes and Formal Groups Pipe Formal Groups

 $\operatorname{Spf}(E_h^0)$ classifies deformations of a formal group G over k.

$$E_h^0 = W(k)\llbracket u_1, \cdots, u_{h-1}\rrbracket$$

$$(L_{\mathcal{K}(h')}E_{h})^{0} = W(k)\llbracket u_{1}, \cdots, u_{h-1}\rrbracket \llbracket u_{h'}^{-1} \rrbracket_{I_{h'}}^{\wedge},$$

where $I_{h'} = (p, u_1, \cdots, u_{h'-1}).$

• This is not a complete local ring.

Formal Schemes and Formal Groups Pipe Rings Pipe Formal Groups Pipe Sormal Groups

 $Spf(E_h^0)$ classifies deformations of a formal group G over k.

$$E_h^0 = W(k) \llbracket u_1, \cdots, u_{h-1} \rrbracket$$

$$(L_{\mathcal{K}(h')}E_h)^0 = W(k)\llbracket u_1, \cdots, u_{h-1}\rrbracket [u_{h'}^{-1}]_{I_{h'}}^{\wedge},$$

where $I_{h'} = (p, u_1, \cdots, u_{h'-1}).$

- This is not a complete local ring.
- Inverting topological nilpotent elements destroys the original topology.

Formal Schemes and Formal Groups Pipe Rings Pipe Formal Groups Pipe Sormal Groups

 $Spf(E_h^0)$ classifies deformations of a formal group G over k.

$$E_h^0 = W(k) \llbracket u_1, \cdots, u_{h-1} \rrbracket$$

$$(L_{\mathcal{K}(h')}E_h)^0 = W(k)\llbracket u_1, \cdots, u_{h-1}\rrbracket [u_{h'}^{-1}]_{I_{h'}}^{\wedge},$$

where $I_{h'} = (p, u_1, \cdots, u_{h'-1}).$

- This is not a complete local ring.
- Inverting topological nilpotent elements destroys the original topology. For instance, inverting x in k[x], we have the field k((x)).

Goal:

 Construct a category such that the usual topology of profinite rings and their continuous maps contributes to a full subcategory of it.

Goal:

- Construct a category such that the usual topology of profinite rings and their continuous maps contributes to a full subcategory of it.
- 2 The maps

$$\pi_0 E_h \rightarrow \pi_0 L_{\mathcal{K}(h')} E_h \rightarrow \pi_0 L_{\mathcal{K}(h'')} L_{\mathcal{K}(h')} E_h \rightarrow \cdots$$

belongs to this category.

Formal Schemes and Formal Groups **Pipe Rings** Pipe Formal Groups

$\operatorname{Pipe}_{-1} :=$ the category of finite sets.

Formal Schemes and Formal Groups Pipe Rings Pipe Formal Groups

Pipe rings Realization

 $\operatorname{Pipe}_{-1} :=$ the category of finite sets. $\operatorname{Pipe}_{0} :=$ the category of Profinite sets. Formal Schemes and Formal Groups Pipe Rings Pipe Formal Groups Pipe Formal Groups

 $Pipe_{-1} :=$ the category of finite sets. $Pipe_{0} :=$ the category of Profinite sets.

 $\operatorname{Pipe}_n = \operatorname{Pro}(\operatorname{Ind}(\operatorname{Pipe}_{n-1})).$

Formal Schemes and Formal Groups Pipe Rings Pipe Formal Groups Realization

 $Pipe_{-1} :=$ the category of finite sets. $Pipe_0 :=$ the category of Profinite sets.

 $\operatorname{Pipe}_n = \operatorname{Pro}(\operatorname{Ind}(\operatorname{Pipe}_{n-1})).$

Ind(C) is the category with all filtered colimits added.

$$[\operatorname{colim}_{i} X_{i}, \operatorname{colim}_{j} Y_{j}] = \lim_{i} \operatorname{colim}_{j} [X_{i}, Y_{j}].$$

Formal Schemes and Formal Groups Pipe Rings Pipe Formal Groups Realization

 $Pipe_{-1} :=$ the category of finite sets. $Pipe_0 :=$ the category of Profinite sets.

$$\operatorname{Pipe}_n = \operatorname{Pro}(\operatorname{Ind}(\operatorname{Pipe}_{n-1})).$$

 $\operatorname{Ind}(C)$ is the category with all filtered colimits added.

$$[\operatorname{colim}_{i} X_{i}, \operatorname{colim}_{j} Y_{j}] = \lim_{i} \operatorname{colim}_{j} [X_{i}, Y_{j}].$$

Pro(C) is the category with all cofiltered limits added.

$$[\lim_{i} X_i, \lim_{j} Y_j] = \lim_{j} \operatorname{colim}_i [X_i, Y_j]$$

イロン 不同 とくほど 不良 とうほ

We have inclusions $\operatorname{Pipe}_{n-1} \to \operatorname{Pipe}_n$, and denote the colimit by $\operatorname{Pipe}_{\infty}$. Each Pipe_n has finite product preserved by th inclusion.

We have inclusions $\operatorname{Pipe}_{n-1} \to \operatorname{Pipe}_n$, and denote the colimit by $\operatorname{Pipe}_{\infty}$. Each Pipe_n has finite product preserved by th inclusion.

A Pipe_n ring R is just a ring object in Pipe_n.

We have inclusions $\operatorname{Pipe}_{n-1} \to \operatorname{Pipe}_n$, and denote the colimit by $\operatorname{Pipe}_{\infty}$. Each Pipe_n has finite product preserved by th inclusion.

A Pipe_n ring R is just a ring object in Pipe_n.

We refer to pipe rings as ring objects in $\operatorname{Pipe}_\infty.$

The constant system of a singleton set gives a terminal object $1\in \operatorname{Pipe}_{\infty}.$

```
The constant system of a singleton set gives a terminal object 1\in \operatorname{Pipe}_\infty.
We define a functor \operatorname{Pipe}_\infty\to \textbf{Sets} by
```

$$S \mapsto [1, S] = \underline{S}$$

called realization.

The constant system of a singleton set gives a terminal object $1\in \operatorname{Pipe}_\infty.$ We define a functor $\operatorname{Pipe}_\infty\to \textbf{Sets}$ by

$$S \mapsto [1, S] = \underline{S}$$

called realization.

If R is a pipe ring, then \underline{R} is a ring.

This should be thought as a forgetful functor, which forgets topological structures and continuity of maps.

Formal Schemes and Formal Groups Pipe Rings Pipe Formal Groups Pipe Formal Groups

Every -1-Pipe and 0-Pipe is called fine. An *n*-Pipe Y is fine if $Y = \lim_{\alpha} \operatorname{colim}_{\beta}(Y_{\alpha})_{\beta}$

• Each $(Y_{\alpha})_{\beta}$ is fine and

Formal Schemes and Formal Groups Pipe Rings Pipe Formal Groups Pipe Tormal Groups

Every -1-Pipe and 0-Pipe is called fine. An *n*-Pipe *Y* is fine if $Y = \lim_{\alpha} \operatorname{colim}_{\beta}(Y_{\alpha})_{\beta}$

- Each $(Y_{\alpha})_{\beta}$ is fine and
- The induced map $(Y_{\alpha})_{eta}
 ightarrow rac{Y_{lpha}}{Y_{lpha}}$ is injective.

Formal Schemes and Formal Groups Pipe Rings Pipe Formal Groups Pipe Formal Groups

Every -1-Pipe and 0-Pipe is called fine. An *n*-Pipe *Y* is fine if $Y = \lim_{\alpha} \operatorname{colim}_{\beta}(Y_{\alpha})_{\beta}$

- Each $(Y_{\alpha})_{\beta}$ is fine and
- The induced map $(Y_{\alpha})_{eta}
 ightarrow rac{Y_{lpha}}{Y_{lpha}}$ is injective.

Every -1-Pipe is cofine.

An *n*-Pipe X is cofine if $X = \lim_{\lambda} \operatorname{colim}_{\mu}(X_{\lambda})_{\mu}$

- Each $(X_{\lambda})_{\mu}$ is cofine and
- $\underline{X} \to \underline{X_{\lambda}}$ is surjective.

Formal Schemes and Formal Groups Pipe Rings Pipe Formal Groups Pipe Formal Groups

Every -1-Pipe and 0-Pipe is called fine. An *n*-Pipe *Y* is fine if $Y = \lim_{\alpha} \operatorname{colim}_{\beta}(Y_{\alpha})_{\beta}$

- Each $(Y_{\alpha})_{\beta}$ is fine and
- The induced map $(Y_{\alpha})_{eta}
 ightarrow rac{Y_{lpha}}{Y_{lpha}}$ is injective.

Every -1-Pipe is cofine.

An *n*-Pipe X is cofine if $X = \lim_{\lambda} \operatorname{colim}_{\mu}(X_{\lambda})_{\mu}$

- Each $(X_{\lambda})_{\mu}$ is cofine and
- $\underline{X} \to \underline{X_{\lambda}}$ is surjective.

Fine and cofine are both preserved by inclusion $\operatorname{Pipe}_{n-1} \to \operatorname{Pipe}_n$.

Formal Schemes and Formal Groups Pipe Rings Pipe Formal Groups

Pipe rings Realization

Proposition 2.1

The realization functor is faithful if the source is cofine and target is fine.

Proposition 2.1

The realization functor is faithful if the source is cofine and target is fine.

$$\begin{split} [X, Y] &= \lim_{\alpha} \operatorname{colim}_{\lambda} \lim_{\nu} \operatorname{colim}_{\beta} [(X_{\lambda})_{\nu}, (Y_{\alpha})_{\beta}] \\ &\subset \lim_{\alpha} \operatorname{colim}_{\lambda} \lim_{\nu} \operatorname{colim}_{\beta} [(X_{\lambda})_{\nu}, (Y_{\alpha})_{\beta}] \\ &\subset \lim_{\alpha} \operatorname{colim}_{\lambda} \lim_{\nu} [(X_{\lambda})_{\nu}, Y_{\alpha}] \\ &= \lim_{\alpha} \operatorname{colim}_{\lambda} [X_{\lambda}, Y_{\alpha}] \\ &\subset \lim_{\alpha} [X, Y_{\alpha}] \\ &= [X, Y]. \end{split}$$

э

イロン 不同 とくほど 不良 とう

Formal Schemes and Formal Groups Pipe Rings Pipe Formal Groups

Pipe rings Realization

Pipe Dream

For every pipe X, there is an initial cofine pipe X^c over X, such that $X^c \to X$ induces an isomorphism $\underline{X^c} \to \underline{X}$. Dually, for every pipe Y, there is a terminal fine pipe Y^f under Y, which induces $\underline{Y} \to \underline{Y^f}$ an isomorphism. Finally, there is a class of maps W called weak equivalences, such that

$$\operatorname{Pipe}_{\infty}[W^{-1}](X,Y) = \operatorname{Pipe}_{\infty}(X^{c},Y^{f}).$$

Formal Schemes and Formal Groups Pipe Rings Pipe Formal Groups Pipe Formal Groups

For $x \in \underline{R}$, we have a map of pipe rings

$$x: R = 1 \times R \xrightarrow{(x,id)} R \times R \xrightarrow{\mu} R$$

Formal Schemes and Formal Groups Pipe Rings Pipe Formal Groups Pipe Formal Groups

For $x \in \underline{R}$, we have a map of pipe rings

$$x: R = 1 \times R \xrightarrow{(x,id)} R \times R \xrightarrow{\mu} R$$

Hence inverting an element in underlying ring can be lifted as colimit on pipe rings.

$$x^{-1}R := \operatorname{colim}(R \xrightarrow{x} R \xrightarrow{x} R \to \cdots)$$

Formal Schemes and Formal Groups Pipe Rings Pipe Formal Groups Pipe Tings Realization

For $x \in \underline{R}$, we have a map of pipe rings

$$x: R = 1 \times R \xrightarrow{(x,id)} R \times R \xrightarrow{\mu} R$$

Hence inverting an element in underlying ring can be lifted as colimit on pipe rings.

$$x^{-1}R := \operatorname{colim}(R \xrightarrow{x} R \xrightarrow{x} R \to \cdots)$$

Taking completion in the underlying ring can also be lifted in pipe cases as a limit.

Formal Schemes and Formal Groups Pipe Rings Pipe Formal Groups Pipe Formal Groups

For $x \in \underline{R}$, we have a map of pipe rings

$$x: R = 1 \times R \xrightarrow{(x,id)} R \times R \xrightarrow{\mu} R$$

Hence inverting an element in underlying ring can be lifted as colimit on pipe rings.

$$x^{-1}R := \operatorname{colim}(R \xrightarrow{x} R \xrightarrow{x} R \to \cdots)$$

Taking completion in the underlying ring can also be lifted in pipe cases as a limit.

 $\pi_0 L_{Kh'} E_h$ and its further localizations are bifine.

```
\operatorname{Spp}(R) = \operatorname{Pipe Rings}_{\infty}(R, -).
```

Restricting to -1 pipes and 0 pipes recovers Spec and Spf.

```
\operatorname{Spp}(R) = \operatorname{Pipe} \operatorname{Rings}_{\infty}(R, -).
```

Restricting to -1 pipes and 0 pipes recovers Spec and Spf.

$$\widehat{\mathbb{A}}_R^1 = \mathrm{Spp}(R[\![x]\!])$$
 is an n pipe if R is an $n-1$ pipe.

```
\operatorname{Spp}(R) = \operatorname{Pipe Rings}_{\infty}(R, -).
```

Restricting to -1 pipes and 0 pipes recovers Spec and Spf.

$$\widehat{\mathbb{A}}_R^1 = \operatorname{Spp}(R\llbracket x \rrbracket)$$
 is an n pipe if R is an $n-1$ pipe.

A pipe formal group G over an n pipe R is an n+1 pipe, such that $G \cong \widehat{\mathbb{A}}_{R}^{1}$, and $\mu : G \times_{\mathrm{Spp}(R)} G \to G$.

$$\operatorname{Spp}(R) = \operatorname{Pipe Rings}_{\infty}(R, -).$$

Restricting to -1 pipes and 0 pipes recovers Spec and Spf.

$$\widehat{\mathbb{A}}^1_{R} = \mathrm{Spp}(R\llbracket\!\![x]\!\!])$$
 is an n pipe if R is an $n-1$ pipe.

A pipe formal group G over an n pipe R is an n+1 pipe, such that $G \cong \widehat{\mathbb{A}}_{R}^{1}$, and $\mu : G \times_{\mathrm{Spp}(R)} G \to G$.

$$\widehat{\mathbb{A}}_R^2 = \widehat{\mathbb{A}}_R^1 \times_{\operatorname{Spp}(R)} \widehat{\mathbb{A}}_R^1 \to \widehat{\mathbb{A}}_R^1$$

By Yoneda lemma, this yields a power series in $R[x_1, x_2]$.

$$[R[[x_1, x_2]], R[[x_1, x_2]]] \to [R[[x]], R[[x_1, x_2]]]$$

1 $\mapsto f(x_1, x_2)$

By Yoneda lemma, this yields a power series in $R[x_1, x_2]$.

$$[R[[x_1, x_2]], R[[x_1, x_2]]] \to [R[[x]], R[[x_1, x_2]]]$$

$$1 \mapsto f(x_1, x_2)$$

We say G is of p height h, if R is complete with respect to some ideal I, and <u>I</u> contains p, a_i for $i < p^h$, and a_{p^h} is invertible in R/I.

By Yoneda lemma, this yields a power series in $R[x_1, x_2]$.

$$[R[[x_1, x_2]], R[[x_1, x_2]]] \to [R[[x]], R[[x_1, x_2]]]$$

$$1 \mapsto f(x_1, x_2)$$

We say G is of p height h, if R is complete with respect to some ideal I, and <u>I</u> contains p, a_i for $i < p^h$, and a_{p^h} is invertible in R/I.

The pipe formal group over $\pi_0 L_{\mathcal{K}(h')} E_h$ has p height h'. $\pi_0 L_{\mathcal{K}(h_n)} \cdots L_{\mathcal{K}(h_1)} E_h$ is bifine. Formal Schemes and Formal Groups Pipe Rings A moduli problem Pipe Formal Groups

Staged Lubin-Tate moduli problem: fix $h = h_0 \ge \cdots \ge h_N$

$$R_0 \xrightarrow{i_1} R_1 \to \cdots \xrightarrow{i_N} R_N$$

where R_0 is a complete local ring with residue field k, R_i is an i pipe ring.
Formal Schemes and Formal Groups Pipe Rings A moduli problem Pipe Formal Groups

Staged Lubin-Tate moduli problem: fix $h = h_0 \ge \cdots \ge h_N$

$$R_0 \xrightarrow{i_1} R_1 \to \cdots \xrightarrow{i_N} R_N$$

where R_0 is a complete local ring with residue field k, R_i is an i pipe ring.

 F_k is of p height h_k with its associated formal group law pushing forward that of F_{k-1} along i_k .

Formal Schemes and Formal Groups Pipe Rings Pipe Formal Groups

Theorem 1

This moduli problem is discrete and corepresented by

$$\pi_0 E_h \to \pi_0 L_{\mathcal{K}(h_1)} E_h \to \cdots \to \pi_0 L_{\mathcal{K}(h_N)} \cdots L_{\mathcal{K}(h_1)} E_h.$$

Formal Schemes and Formal Groups Pipe Rings Pipe Formal Groups

Theorem 1

This moduli problem is discrete and corepresented by

$$\pi_0 E_h \to \pi_0 L_{\mathcal{K}(h_1)} E_h \to \cdots \to \pi_0 L_{\mathcal{K}(h_N)} \cdots L_{\mathcal{K}(h_1)} E_h.$$

Formal Schemes and Formal Groups Pipe Rings Pipe Formal Groups

A moduli problem

Thank You!