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Singular point of a function

We only treat complex analysis function in this talk.

Definition
Given a function f : Cn → C, the point z is called a regular point of f if its gradient
∇f = ( ∂f

∂z1
, ∂f
∂z2

, · · · , ∂f
∂zn

)
∣∣
z
̸= 0. Otherwise, the point z is said to be a critical point

of function f if all the derivatives are equal to zero. The value that the function takes
at a critical point is called a critical value.

The regular points may be think as good points and critical points are bad points.
Then we can continue to divide the critical points into not very bad (nondegenerate or
generic) critical points and worse (degenerate) critical points.

Definition
A critical point is said to be nondegnerate (or a Morse critical point) if the Hessian
matrix

( ∂2f
∂zi∂zj

)
i,j

at that point is a nondegenerate quadratic form.
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Equivalence of critical points

We are only concerned with the local behavior around a critical point, denote On the
set of holomorphic function germs f at the point 0 ∈ Cn, and Dn the group of germs
of biholomorphic maps keep zero g : (Cn, 0) → (Cn, 0). Dn acts on On by
g · f = f ◦ g−1.

Definition
Two function germs at zero are said to be equivalent if one is taken into the other by
a biholomorphic change of coordinates that keeps the point zero fixed.

Definition
Two critical points are said to be equivalent if the function-germs that define them are
equivalent. The equivalence class of a function-germ at a critical point is called a
singularity.
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Morse Lemma

Example
All regular points are equivalent to the projection on one coordinate
f(z1, z2, · · · ) = z1. And f1 = xm is equivalent to f2 = cxm.

The behavior of a function in the neighborhood of a nondegenerate critical point is
described by the Morse lemma.

Lemma (Morse)

In a neighborhood of a nondegenerate critical point a ∈ C of the function f there
exists a coordinate in which f has the form f(z) = z21 + · · ·+ z2n + f(a).
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Morse lemma

For degenerate critical points, a generalization of the preceding result holds, the
parametric Morse lemma.

Theorem (Arnol’d)

In a neighborhood of the critical point 0 of corank k a holomorphic function
f : (Cn,0) → (C, 0) is equivalent to a function of the form

f(z) = φ(z1, · · · , zk) + z2k+1 + · · ·+ z2n,

where the second differential of φ at zero is equal to zero, i.e. φ is at least 3-order
infinitesimal.
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Stably equivalence

Previous theorem permits one to define an equivalence relation for critical points of
functions of different numbers of variables.

Definition
Two function-germs f : (Cn,0) → (C, 0) and g : (Cm,0) → (C, 0) are said to be
stably equivalent if they become equivalent after the addition of nondegenerate
quadratic forms in supplementary variables:

f(z1, · · · , zn) + z2n+1 + · · ·+ z2l ∼ g(z1, · · · , zm) + z2m+1 + · · ·+ z2l .

Two functions of the same number of variables are stably equivalent if and only if they
are equivalent.

Example

The function-germs f(x) = x3 and g(x, y, z) = x3 + yz are stably equivalent at zero.
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Invariants of singularity (Corank)

We want to find some invariants of a singular point under equivalent or stably
equivalent before we can distinguish different singularities.

Definition
The corank of a critical point of a function is corank (dimension – rank) of the
Hessian matrix at the critical point.

Example
The corank of any Morse critical point is equal to zero. The corank of the critical
point 0 of the function f = x31 + x22 + · · ·+ x2n is equal to 1, since

H(f) =


6x1

2
. . .

2


x=0

=


0

2
. . .

2
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Invariants of singularity (Multiplicity)

Let f : (Cn, 0) → (C, 0) be a germ of a holomorphic function with a critical point at
zero. Let us consider the gradient ideal I∇f = On⟨ ∂f

∂z1
, · · · , ∂f

∂zn
⟩ generated by the

partial derivatives of f .

Definition
The multiplicity µ(f) (or Milnor number) of the critical point of the germ f ∈ On is
the dimension of its local algebra regarded as a complex vector space dimC(On/I∇f ).

Theorem
A critical point is of finite multiplicity µ(f) < ∞ iff isolated (there is no other
critical point in its neighborhood).

Example

The function f(z) = z3 has at zero an isolated critical point of multiplicity 2. The
function g(x, y) = xy2 has a nonisolated critical point at every point of the x-axis.
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Invariants of singularity (Multiplicity) 2

Theorem
The multiplicity of an isolated critical point is equal to the number of Morse
critical points into which it decomposes under a small perturbation of the function.

Theorem
If holomorphic function f has a an isolated critical point at z0. The multiplicity µ(f)
of z0 is the mapping degree of the map:

z 7→ ∇f(z)

||∇f(z)||

from a small sphere S(ϵ) centered at z0 to the unit sphere of Cn.
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k-jet

Definition

For a function f : (Cn, 0) → (C, 0) denote by jka(f) its k-jet at the point a. If one
fixes a coordinate system on Cn, then the k-jet can be thought of as the Taylor
polynomial of degree k. A k-jet of a function is said to be sufficient at a if it
determines the germ of that function at a up to equivalence.

Example
As follows from the Morse lemma, at a nondegenerate critical point a function is
equivalent to its Taylor polynomial of degree two. Hence, the 2-jet of a function at a
nondegenerate critical point is sufficient.

Theorem (Tougeron)

The (µ+ 1)-jet of a function at an isolated critical point of multiplicity µ is sufficient,
i.e. this function is always equivalent to a polynomial.
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Invariants of singularity (Modality)

Thus, the problem of classifying isolated critical points reduces to algebraic problems
concerning the action of finite-dimensional Lie groups on finite-dimensional spaces of
jets.

Definition
Let G be a Lie group acting on a manifold M , and f is a point of M . The modality
of the point f ∈ M under the action of the Lie group G is defined to be the least
number m such that a sufficiently small neighborhood of f is covered by a finite
number of m-parameter families of orbits.
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Deformation of a critical point

Definition

A deformation with base Λ = Cl of the germ f : (Cn, 0) → (C, 0) is the germ at zero
of a smooth map F : (Cn × Cl, 0) → (C, 0) such that F (x, 0) ≡ f(x). A deformation
F ′ is equivalent to F if F ′(x, λ) = F (g(x, λ), λ), where g : (Cn × Cl, 0) → (Cn, 0),
with g(x, 0) ≡ x, is a smooth germ (a family of diffeomorphisms depending on the
parameter λ ∈ Λ).

Definition
A deformation F (x, λ) of the germ f(x) is said to be versal if every deformation F ′ of
f(x) can be represented in the form
F ′(x, λ′) = F (g(x, λ′), θ(λ′)), g(x, 0) ≡ 0, θ(0) = 0, where θ : (Cl′ , 0) → (Cl, 0) is a
smooth germ. i.e., if every deformation of f(x) is equivalent to a deformation induced
from F .
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Invariants of singularity (Modality) 2

The group of germs of diffeomorphisms (Cn, 0) → (Cn, 0) acts on the function space
m = On⟨z1, · · · , zn⟩ ⊂ On of germs of critical points, and consequently also on the
k-jet space jk(m). To avoid the difficulties inherent to the infinite-dimensional moduli
space of holomorphic maps, let us define the modality of a germ f as the modality of
its k-jet for sufficiently large k.

Definition

The modality m of a function-germ f is the modality of any of its jets jk(f), such
that k ≥ µ(f) + 1. The functions of modality m = 0, 1, 2 are called respectively
simple, unimodal, and bimodal functions.

The point is simple if a neighborhood of it is intersected by finitely many orbits.

Theorem
The three invariants of a singularity are related by µ = c+m+ 1.
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Classification of low modality (simple)

A surprising conclusion of the computations carried out in the classification of
singularities is that the most natural results are obtained not in classifying singularities
by their corank c or multiplicity µ, but rather in classifying the singularities of low
modality m.

Theorem (Arnol’d 72)

Up to stable equivalence, the simple germs with m = 0 are exhausted by the following
list. There are two infinite series, Ak and Dk , and three exceptional singularities, E6,
E7 and E8:

Ak, k ≥ 1 Dk, k ≥ 4 E6 E7 E8

xk+1 x2y + yk−1 x3 + y4 x3 + xy3 x3 + y5

This is also called elliptic case.
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Classification of low modality (unimodal)

Theorem
Up to stable equivalence, the unimodal germs with m = 1 are exhausted by the
three-index series of one-parameter families, a three-index series of hyperbolic
singularities, and 14 families of exceptional singularities.
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Classification of low modality (unimodal) 2
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Classification of low modality (bimodal)

Theorem
There are 8 infinite series and 14 exceptional families in the case m = 2.
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Connection to Klein singularity

There is a remarkable connection exists between the classification of simple
singularities, that of regular polyhedra in three-dimensional space, and that of the
Coxeter groups Ak, Dk, Ek.

In 1880, Klein employed polynomial equations coming from the Invariant theory of a
finite subgroup of SL(2,C) to solve the quintic equation. The invariant polynomials
that appear in this way are singular at the origin. We will call the singularities arising
from a quotient of C2 by a finite subgroup SL(2,C) Kleinian singularities.

All the finite subgroups of SO(3) are exhausted by the following list:
1 the cyclic group Cn cyclic group of rotation;
2 the dihedral group D2n, isomorphic to the semidirect product of Cn and C2;
3 the isometric group of the tetrahedron T12;
4 the isometric group of the octahedron and cube O24;
5 the isometric group of the icosahedron and dodecahedron I60.
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Connection to Klein singularity 2

Let Γ be a discrete subgroup of SO(3). Consider its preimage Γ∗ ⊂ SU(2) under the
2-covering map SU(2) → SO(3).

All finite subgroups of SU(2) are isomorphic to one of the following 5 groups: Cn,
D∗

2n, T∗
12, O

∗
24, I

∗
60.

The group Γ∗ acts on C2 as a subgroup of SU(2). Consider the algebra of polynomial
invariants of this action of Γ∗,i.e. C[T1, T2]

Γ∗
. Klein showed that this algebra is

generated by three invariants x, y, z ∈ C[T1, T2], which satisfy a single relation u. i.e.
C[x, y, z]/u ∼= C[T1, T2]

Γ∗
. That relation u defines a hypersurface V in the space C3

with coordinates x, y, z. So V is naturally isomorphic to the orbit space of the action
of Γ∗ on C2 and has an isolated singular point at the origin.
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Connection to Klein singularity 3

symmetric group relation singularity
Cn xn + yz = 0 An−1, n ≥ 2
D∗

2n x2y − yn+1 + z2 = 0 Dn+2, n ≥ 2
T∗

12 x3 + y4 + z2 = 0 E6

O∗
24 x3 + xy3 + z2 = 0 E7

I∗60 x3 + y5 + z2 = 0 E8
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Milnor fibration main result 1

Theorem (Fibration theorem)

Let f be a non-constant polynomial in n variables f : Cn → C . If z0 is any point of
the complex hypersurface V = f−1(0) and if Sϵ is a sufficiently small sphere centered
at z0, let intersection be K := Sϵ ∩ V , then the map ϕ : Sϵ \K → S1 given by

ϕ(z) =
f(z)

||f(z)||

from Sϵ \K to the unit circle is the projection map of a smooth fiber bundle. Each
fiber Fθ = ϕ−1(eiθ) ⊂ Sϵ \K is a smooth parallelizable 2(n− 1)-dimensional manifold.
K is a (2n− 3)-dimensional knotted manifold in sphere S2n−1 and is the boundary of
the closure of Fθ.
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Milnor fibration main result 2

Theorem (Milnor)

If z0 is an isolated critical point of f, then each fiber Fθ has the homotopy type of a
bouquet of n− 1-sphere

∨µ Sn−1 the number of spheres in this bouquet (i.e., the
middle Betti number of Fθ), being strictly positive, this number is called Milnor
number of a isolated critical point.
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Intersection form of fiber, simple singularity and resolution 1

The only nonzero reduced homology of F0 is the middle homology Hn−1(F0,Z) ∼= Zµ.
Since F0 is a (2n− 2)-dim manifold, so there is a bilinear intersection form
Q : Hn−1(F0,Z)×Hn−1(F0,Z) → Z. A singularity is said to be elliptic (respectively,
parabolic, hyperbolic) if its quadratic form is positive definite (respectively,
semidefinite, has negative index of inertia 1).

Theorem
The elliptic singularities are precisely the simple singularities A, D and E with positive
definite. If choosing proper basis, one can write the intersection form matrix to be the
standard Cartan matrix.
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Intersection form of fiber, simple singularity and resolution 2
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Exotic sphere first constructed by Milnor 1

For a differentiable oriented closed manifold M8, Hirzebruch found a formula to
represent the signature as the rational coefficients linear combination of Pontrjagin
numbers: σ(M8) = 7

45p2[M
8]− 1

45p
2
1[M

8], or 45σ + p21 = 7p2.

Thom shows that any differentiable closed manifold Σ7 is a boundary of a
differentiable manifold M8. If the boundary M8 is a homology 7-sphere, then the
signature still makes sense. Furthermore, the first Pontrjagin class, p1, is well defined
as an element of H4(M8) ∼= H4(M8, ∂M8), and p21 considered as an element of
H8(M8, ∂M8), is non-zero, so p21[M

8] can be defined. If this boundary Σ7 is actually
diffeomorphic to standard sphere S7. Then we can glue on an 8-ball to get a closed
manifold. Hence we must have 45σ + p21 ≡ 0 mod 7.

Consider 3-sphere bundles over the 4-sphere with the rotation group SO(4) as
structural group. The equivalence classes of such bundles are in one to one
correspondence with elements of the homotopy groups π3(SO(4)) = Z2, since
[S4, BSO(4)] ∼= [S3,ΩBSO(4)] ∼= π3(SO(4)).
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Exotic sphere first constructed by Milnor 2

For each (h, j) ∈ Z2, let fhj : S3 → SO(4) be defined by fhj(u) · v = uhvuj using
quaternion multiplication. Let Σ7 := Ehj denote the sphere bundle corresponding to f .
Choosing proper (h, j) one can make the congruence equation fail.

There exists a differentiable function f : Σ7 → R having only two critical points.
Furthermore these critical points are non-degenerate. So this Σ7 is homeomorphic to
S7, Milnor found an exotic sphere.

Denote Θ7 as the set of equivalence classes of oriented differentiable manifolds with
the homotopy type of Sn (i.e., homotopy n-spheres), up to h-cobordism. By
h-cobordism theory, if n ≥ 5, all homotopy sphere is a homeomorphism sphere.
Therefore, Θ7 provide all diffeomorphism structures on 7-sphere.
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How many diffeomorphism structures on 7-sphere

Theorem (Milnor, Kervaire)

Let S1, S2 be homotopy spheres of dimension 4m− 1, (m > 1) which bound
s-parallelizable manifolds M1, M2. Then S1 is h-cobordant to S2 if and only if

σ(M1) ≡ σ(M2) mod σm, where σm = 22m−1(22m−1 − 1)
Bmjmam

m
. am is 1 if m is

even or 2 if m is odd. Bm denotes the m-th Bernoulli number. jm denotes the order
of the cyclic group of J(π4m−1(SO)) ⊂ π4m−1(S

0).

Theorem (Adams)

The value of jm is precisely the denominator of
Bm

4m
.
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How many diffeomorphism structures on 7-sphere

Corollary
If n = 7, then m = 2, a direct calculation shows that σ2 = 224.

Theorem
Let M be an s-parallelizable (2k − 1)-connected 4k-manifold whose boundary is a
homotopy sphere. Then the signature σ(M) is a multiple of 8.

Theorem
Let k > 1 and t ∈ Z. Then there exists an s-parallelizable 4k-manifold M with
boundary a homotopy sphere and signature σ(M) = 8t.

Theorem
There are precisely 28 differentiable structures on the 7-sphere.
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Brieskorn varieties

Pham first studies the singularity of the function
fa(x1, · · · , xn) = xa11 + xa22 + · · ·+ xann , here a is a vector (a1, · · · , an). Then we can
define the corresponding subvariety Ka = f−1

a (0) ∩ Sϵ is a smooth (2n− 3)-manifold.
Ka is diffeomorphic to Ka(δ) = f−1

a (δ) ∩ Sϵ, Ka(δ) is the boundary of smooth
manifold Ma = f−1

a (δ) ∩Dϵ, Dϵ is the ball with radius ϵ.

Theorem (Brieskorn)

Take a = (3, 6k− 1, 2, 2, 2), then Ka is precisely the k-th exotic diffeomorphism sphere
of the group Θ7.
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Brieskorn varieties

Theorem (Brieskorn)

If n ≥ 5 is odd, then Ka(δ) is a topological sphere, and the diffeomorphism type of
Ka(δ) is completely determined by the signature σa = σ(Ma). We have
σa = σ+

a − σ−
a , where σ+

a is determined to be the number of n-tuples of integers
(x1, · · · , xn), with 0 < xi < ai such that

0 <

n∑
j=1

xj
aj

< 1, mod 2,

and σ−
a is determined to be the number of n-tuples of integers (x1, · · · , xn), with

0 < xi < ai such that

−1 <

n∑
j=1

xj
aj

< 0, mod 2.
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Brieskorn varieties and topological spheres

Example

Let us take n odd and a = (3, 6k − 1, 2, · · · , 2). Then Ka(δ) is a topological sphere,
and σa = (−1)

n−1
2 8k.

Corollary

Let n = 5, a = (3, 6k − 1, 2, 2, 2), then σa = 8k, then Ka is precisely the k-th exotic
diffeomorphism sphere of the group Θ7.
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Thanks!
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