

What is $D(\mathbb{S})$?

Introduction

Adapted Homology Theory

Classificatio of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

What is $D(\mathbb{S})$?

Xiansheng Li

University of Copenhagen

17. december 2024

About me

What is $D(\mathbb{S})$?

Xiansheng Li

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

2/79

Э

About me

What is $D(\mathbb{S})$?

Xiansheng Li

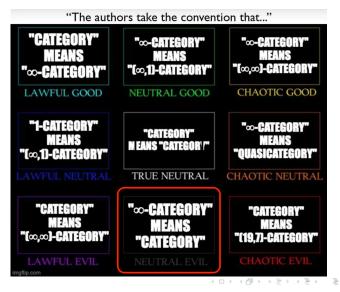
Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?



Overview

What is $D(\mathbb{S})$?

Xiansheng Li

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Introduction

2 Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

6 What To Do Next?

Algebraic Topology

What is $D(\mathbb{S})$?

Introduction

Adapted Homology Theory

Classificatior of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Question:Can we find a topological object realizing the given algebraic data?

Algebraic Topology

What is $D(\mathbb{S})$?

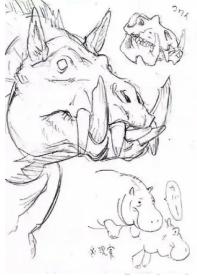
Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?



Our first attempt

୬ ଏ ୯ 6 / 79

Goerss-Hopkins Theory

What is D(S)? Xiansheng I

Introduction

Adapted Homology Theory

Classificatior of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next? Answer: Vanishing Goerss-Hopkins obstructions

 $\{\text{The topological guys}\}\simeq\mathcal{M}_\infty\rightarrow\cdots\rightarrow\mathcal{M}_0\simeq\{\text{The algebraic guys}\}$

Fact: this tower is an Postnikov tower in a suitable context.

What is $D(\mathbb{S})$?

Xiansheng Li

Introduction

Adapted Homology Theory

Classificatio of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next? Let \mathcal{C} be a stable ∞ -category and \mathcal{A} be an abelian category. We say a functor $H \colon \mathcal{C} \to \mathcal{A}$ is is *homological* if

• H is additive and

• if

Definition

is a cofibre sequence in \mathcal{C} , then

$$H(c) \to H(d) \to H(e)$$

is exact.

What is $D(\mathbb{S})$?

Xiansheng Li

Introduction

Adapted Homology Theory

Classificatio of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next? Let \mathcal{C} be a stable ∞ -category and \mathcal{A} be an abelian category. We say a functor $H \colon \mathcal{C} \to \mathcal{A}$ is is *homological* if

• *H* is additive and

• if

Definition

$$c \to d \to e$$

is a cofibre sequence in \mathcal{C} , then

$$H(c) \to H(d) \to H(e)$$

is exact.

What is $D(\mathbb{S})$?

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Definition

A local grading on an ∞ -category ${\mathfrak C}$ is an autoequivalence

$$[1]_{\mathfrak{C}} \colon \mathfrak{C} \to \mathfrak{C}.$$

A locally graded $\infty\text{-category}$ is a pair of an $\infty\text{-category}$ and a local grading.

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Definition

We say a functor $H \colon \mathfrak{C} \to \mathcal{A}$ of locally graded ∞ -categories is a *homology theory* if its underlying functor is homological.

What is $D(\mathbb{S})$?

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Example

Let $\mathcal{A}={\rm Vect}(\mathbb{F}_p)$ be the abelian category of graded vector spaces. Then, the mod p homology functor

$$H_*(-,\mathbb{F}_p)\colon \mathcal{S}p \to \mathsf{Vect}(\mathbb{F}_p)$$

is canonically a homology theory.

Adaptedness

What is $D(\mathbb{S})$?

Introduction

Adapted Homology Theory

Classificatior of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Definition

We say a homology theory $H \colon \mathcal{C} \to \mathcal{A}$ has *lifts for injectives* if

- ${\mathcal A}$ has enough injectives and
- any injective $i \in \mathcal{A}$ lifts to some $i_{\mathcal{C}}$.

Adaptedness

What is D(S)?

Xiansheng Li

Introduction

Adapted Homology Theory

Classificatior of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Example

Consider $H_*(-,\mathbb{F}_p)\colon Sp \to \text{Vect}(\mathbb{F}_p)$. In $\text{Vect}(\mathbb{F}_p)$, \mathbb{F}_p is injective, and we have

$$\operatorname{Hom}_{\mathbb{F}_p}(H_*(X,\mathbb{F}_p),\mathbb{F}_p)\simeq H^*(X,\mathbb{F}_p)\simeq [X,H\mathbb{F}_p],$$

Thus, the Eilenberg-MacLane spectrum $H\mathbb{F}_p$ is the associated injective lift.

Warning

What is $D(\mathbb{S})$?

. . .

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Warning

We have seen that the injective associated to \mathbb{F}_p via the homology theory $H_*(-, \mathbb{F}_p) \colon \mathcal{S}p \to \mathsf{Vect}(\mathbb{F}_p)$ is given by the Eilenberg-MacLane spectrum $H\mathbb{F}_p$.

However, $H_*(H\mathbb{F}_p, \mathbb{F}_p) \simeq A_*$ is the dual Steenrod algebra, and the comparison map $A_* \to \mathbb{F}_p$ is not an isomorphism.

In light of the above warning, we make the following definition.

Warning

What is D(S)?

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Warning

We have seen that the injective associated to \mathbb{F}_p via the homology theory $H_*(-, \mathbb{F}_p) \colon \mathcal{S}p \to \operatorname{Vect}(\mathbb{F}_p)$ is given by the Eilenberg-MacLane spectrum $H\mathbb{F}_p$. However, $H_*(H\mathbb{F}_p, \mathbb{F}_p) \simeq A_*$ is the dual Steenrod algebra, and the comparison map $A_* \to \mathbb{F}_p$ is not an isomorphism.

In light of the above warning, we make the following definition.

Adaptedness

What is $D(\mathbb{S})$?

Xiansheng Li

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Definition

We say a homology theory $H \colon \mathfrak{C} \to \mathcal{A}$ is *adapted* if:

- A has enough injectives,
- any injective i ∈ A lifts to an associated injective i_C (i.e. *H* has lifts for injectives) and,
- the structure map $H(i_{\mathcal{C}}) \rightarrow i$ is an isomorphism.

Adams Spectral Sequence

What is D(S)? Xiansheng L

Introduction

Adapted Homology Theory

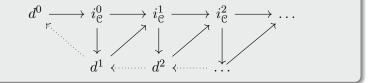
Classificatior of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Construction (Adams spectral sequence)

Let $H: \mathbb{C} \to \mathcal{A}$ be an adapted homology theory and $d \in \mathbb{C}$ be an object. Writing $d = d^0$, we can find an embedding $H(d^0) \hookrightarrow i^0$ into an injective, which determines a map $d \to i^0_{\mathbb{C}}$ into a corresponding associated injective object of \mathbb{C} . Proceeding inductively by setting $d^{i+1} = cofib(d^i \to i^i_{\mathbb{C}})$, we construct an *Adams resolution* of the form



イロト イヨト イヨト イヨト

Adams Spectral Sequence

What is D(S)?

Xiansheng Li

Introduction

Adapted Homology Theory

Classificatior of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Construction (Adams spectral sequence)

Applying H, we obtain an injective resolution of $H(d) = H(d^0)$. Applying $[c, -]_*$ for some other object $c \in \mathcal{C}$, we obtain a spectral sequence with

$$\mathbb{E}_2^{s,t} = \mathsf{Ext}_{\mathcal{A}}^{s,t}(H(c), H(d)),$$

This is the *H*-Adams spectral sequence, and in favourable cases it converges to $[c, d]_*$ (or a suitable completion).

Adams Spectral Sequence

What is D(S)?

Xiansheng Li

Introduction

Adapted Homology Theory

Classificatior of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Example

The mod p homology $H_*(X, \mathbb{F}_p)$ of a spectrum X has a canonical structure of a comodule over the dual Steenrod algebra A_* . Thus, the previously considered homology theory factors as

 $Sp \to Comod(A_*) \to \mathsf{Vect}(\mathbb{F}_p),$

where $Comod(A_*)$ is the category of comodules over A_* and the second functor is the forgetful one.

What is $D(\mathbb{S})$?

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Example

In fact, one can show that

$$H_*(-,\mathbb{F}_p)\colon \mathfrak{S}p\to \mathfrak{C}omod(A_*)$$

is an adapted homology theory.

Classical Freyd Envelope

Introduction

Adapted Homology Theory

Classificatior of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Definition

The *Freyd envelope* of an additive ∞ -category \mathcal{C} , denoted by $A(\mathcal{C})$, is the full subcategory of $\operatorname{Fun}_{\Sigma}(\mathcal{C}^{op}, \mathcal{A}b)$ spanned by finitely presented presheaves.

Remarks

What is D(S)? Xiansheng I

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

- A(C) only depends on its homotopy category.
- The discrete Yoneda embeddding $y \colon \mathcal{C} \to A(\mathcal{C})$ is usually far from being fully faithful, but $y \colon h\mathcal{C} \to A(\mathcal{C})$ is fully faithful.

Remarks

What is $D(\mathbb{S})$? Xianshong I

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

- $A(\mathcal{C})$ only depends on its homotopy category.
- The discrete Yoneda embeddding $y \colon \mathcal{C} \to A(\mathcal{C})$ is usually far from being fully faithful, but $y \colon h\mathcal{C} \to A(\mathcal{C})$ is fully faithful.

What is D(S)? Xiansheng I

Introduction

Adapted Homology Theory

Classificatior of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next? By definition, the Freyd envelope is the smallest subcategory of the category $\mathsf{Fun}_\Sigma(\mathbb{C}^{op},\mathcal{A}b)$ of all additive presheaves which contains all representables and is closed under isomorphisms and under finite colimits.

What is $D(\mathbb{S})$?

Xiansheng Li

Introduction

Adapted Homology Theory

Classificatio of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next? Using this description, one can show that the Freyd envelope $A(\mathbb{C})$ enjoys the following universal property:

 if B is an additive 1-category which admits finite colimits, any additive functor C → B uniquely extends to a *right exact* additive functor A(C) → B.

In other words, the classical Freyd envelope $A(\mathcal{C})$ is obtained from the homotopy category $h\mathcal{C}$ by formally adjoining cokernels. In fact, as cokernels are reflexive coequalizers, one can show that $A(\mathcal{C})$ is obtained from $h\mathcal{C}$ by formally adjoining reflexive coequalizers.

What is $D(\mathbb{S})$?

Xiansheng Li

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next? Using this description, one can show that the Freyd envelope $A(\mathbb{C})$ enjoys the following universal property:

 if B is an additive 1-category which admits finite colimits, any additive functor C → B uniquely extends to a *right exact* additive functor A(C) → B.

In other words, the classical Freyd envelope $A(\mathcal{C})$ is obtained from the homotopy category $h\mathcal{C}$ by formally adjoining cokernels. In fact, as cokernels are reflexive coequalizers, one can show that $A(\mathcal{C})$ is obtained from $h\mathcal{C}$ by formally adjoining reflexive coequalizers.

Abelian Subcategory

What is D(S)?

Xiansheng Li

Introduction

Adapted Homology Theory

Classificatior of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Proposition

Let \mathcal{C} be an additive ∞ -category with finite limits. Then, the Freyd envelope $A(\mathcal{C})$ is an abelian subcategory of Fun_{Σ}(\mathcal{C}^{op} , $\mathcal{A}b$); that is, it is closed under extensions, finite limits and colimits.

In fact, one can show that $A(\mathcal{C})$ can be described as the smallest subcategory of $\mathsf{Fun}_\Sigma(\mathcal{C}^{op}, \mathcal{S}et)$ containing all the representables and closed under finite colimits.

The Preferred Local Grading

What is $D(\mathbb{S})$?

Introduction

Adapted Homology Theory

Classificatior of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Definition

Let C be a locally graded additive ∞ -category. Then, the *induced local grading* on the Freyd envelope A(C) is defined by

$$(X[1])(c) := X(c[-1]).$$

<ロト < 回 ト < 直 ト < 亘 ト < 亘 ト 三 の Q () 25 / 79

Theorem (Freyd)

What is $D(\mathbb{S})$?

Xiansheng Li

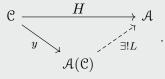
Introduction

Adapted Homology Theory

Classificatior of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next? Let \mathcal{C} be a stable ∞ -category. Then, the the functor $y \colon \mathcal{C} \to A(\mathcal{C})$ is homological. Moreover, it is universal in the following sense: for any homological functor $H \colon \mathcal{C} \to \mathcal{A}$, there is an essentially unique exact functor $L \colon A(\mathcal{C}) \to \mathcal{A}$ of abelian categories such that the following diagram commutes



<ロ > < 回 > < 巨 > < 巨 > < 巨 > 三 の < () 26/79

$A(\mathbb{C})$ is usually not presentable

Introduction

Adapted Homology Theory

Classificatior of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Warning

Even if $\mathbb C$ is a presentable $\infty\text{-category},$ $A(\mathbb C)$ will not be presentable except in the most trivial cases!

What is $D(\mathbb{S})$?

Alansheng Li

Introduction

Adapted Homology Theory

Classificatior of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Lemma

Let \mathbb{C} be an idempotent complete stable ∞ -category and $H: \mathbb{C} \to \mathcal{A}$ a homology theory such that \mathcal{A} has enough injectives. Then, the following are equivalent:

- every injective of A has a lift in C,
- induced functor $L \colon A(\mathbb{C}) \to \mathcal{A}$ has a right adjoint.

What is $D(\mathbb{S})$?

Xiansheng Li

Introduction

Adapted Homology Theory

Classificatior of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Theorem (Characterization of adapted homology theories)

Let \mathcal{C} be an **idempotent complete** stable ∞ -category and $H : \mathcal{C} \to \mathcal{A}$ a homology theory such that \mathcal{A} has enough injectives. Then, the following conditions are equivalent:

- *H* is adapted,
- the induced functor $L\colon \mathcal{A}(\mathbb{C})\to \mathcal{A}$ has a fully faithful right adjoint,

What is D(S)?

Xiansheng Li

Introduction

Adapted Homology Theory

Classificatior of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Theorem (Characterization of adapted homology theories)

Let \mathcal{C} be an **idempotent complete** stable ∞ -category and $H : \mathcal{C} \to \mathcal{A}$ a homology theory such that \mathcal{A} has enough injectives. Then, the following conditions are equivalent:

- *H* is adapted,
- the induced functor $L\colon \mathcal{A}(\mathbb{C})\to \mathcal{A}$ has a fully faithful right adjoint,

What is D(S)?

Xiansheng Li

Introduction

Adapted Homology Theory

Classificatior of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Theorem (Characterization of adapted homology theories)

Let \mathcal{C} be an **idempotent complete** stable ∞ -category and $H : \mathcal{C} \to \mathcal{A}$ a homology theory such that \mathcal{A} has enough injectives. Then, the following conditions are equivalent:

- *H* is adapted,
- the induced functor $L\colon \mathcal{A}(\mathbb{C})\to \mathcal{A}$ has a fully faithful right adjoint,

Epimorphism Class

Definition

What is $D(\mathbb{S})$?

Xiansheng Li

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next? Let $\mathfrak C$ be a stable $\infty\text{-category.}$ We say a class of arrows $\mathcal E\subseteq\mathsf{Fun}(\Delta^1,\mathfrak C)$ is an **epimorphism class** if:

- all equivalences are in \mathcal{E} ,
- for any pair f, g of composable arrows, if $f, g \in \mathcal{E}$ then also $g \circ f \in \mathcal{E}$ and if $g \circ f \in \mathcal{E}$ then also $g \in \mathcal{E}$,
- E is stable under pullbacks along arbitrary maps in C,
- an arrow $f: c \to d$ belongs to \mathcal{E} if and only if $\Sigma f: \Sigma c \to \Sigma d$ does.

Definition

What is $D(\mathbb{S})$?

Xiansheng Li

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Let $\mathfrak C$ be a stable $\infty\text{-category.}$ We say a class of arrows $\mathcal E\subseteq\mathsf{Fun}(\Delta^1,\mathfrak C)$ is an **epimorphism class** if:

- all equivalences are in \mathcal{E} ,
- for any pair f, g of composable arrows, if $f, g \in \mathcal{E}$ then also $g \circ f \in \mathcal{E}$ and if $g \circ f \in \mathcal{E}$ then also $g \in \mathcal{E}$,

• \mathcal{E} is stable under pullbacks along arbitrary maps in \mathcal{C} ,

• an arrow $f: c \to d$ belongs to \mathcal{E} if and only if $\Sigma f: \Sigma c \to \Sigma d$ does.

Definition

What is D(S)?

Xiansheng Li

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next? Let \mathcal{C} be a stable ∞ -category. We say a class of arrows $\mathcal{E} \subseteq \mathsf{Fun}(\Delta^1, \mathcal{C})$ is an **epimorphism class** if:

- all equivalences are in *E*,
- for any pair f, g of composable arrows, if $f, g \in \mathcal{E}$ then also $g \circ f \in \mathcal{E}$ and if $g \circ f \in \mathcal{E}$ then also $g \in \mathcal{E}$,
- \mathcal{E} is stable under pullbacks along arbitrary maps in \mathcal{C} ,
- an arrow $f: c \to d$ belongs to \mathcal{E} if and only if $\Sigma f: \Sigma c \to \Sigma d$ does.

Definition

What is $D(\mathbb{S})$?

Xiansheng Li

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Let $\mathfrak C$ be a stable $\infty\text{-category.}$ We say a class of arrows $\mathcal E\subseteq\mathsf{Fun}(\Delta^1,\mathfrak C)$ is an **epimorphism class** if:

- all equivalences are in \mathcal{E} ,
- for any pair f, g of composable arrows, if $f, g \in \mathcal{E}$ then also $g \circ f \in \mathcal{E}$ and if $g \circ f \in \mathcal{E}$ then also $g \in \mathcal{E}$,
- \mathcal{E} is stable under pullbacks along arbitrary maps in \mathcal{C} ,
- an arrow $f: c \to d$ belongs to \mathcal{E} if and only if $\Sigma f: \Sigma c \to \Sigma d$ does.

イロト イヨト イヨト 一日

What is $D(\mathbb{S})$?

Xiansheng Li

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Definition

Recall that in an $\infty\text{-category}\ {\mathfrak C},$ a morphism $c\to d$ is called an effective epimorphism if the Čech nerve

$$\ldots \stackrel{\Longrightarrow}{\Longrightarrow} c \times_d c \rightrightarrows c \to d$$

is a colimit diagram.

What is $D(\mathbb{S})$?

Xiansheng Li

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Warning

- In an abelian category \mathcal{A} is an effective epimorphism if and only if it is an epimorphism.
- in a stable ∞ -category \mathcal{C} , *any* arrow $c \to d$ is an effective epimorphism.

Warning: There is **no** natrual choice of the class of "epimorphisms" in a stable ∞ -category C.

Major Examples of Epimorphism Classes

What is $D(\mathbb{S})$?

Xiansheng Li

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Example

The class of *split surjections*; that is, those maps $c \rightarrow d$ which are equivalent to a projection onto a direct summand, is an epimorphism class.

Example

Let $H \colon \mathcal{C} \to \mathcal{A}$ be a homology theory. Then, the class of H-epimorphisms; that is, those maps $c \to d$ such that $H(c) \to H(d)$ is an epimorphism, is an epimorphism class on \mathcal{C} .

Example

Let $L \colon \mathcal{C} \to \mathcal{D}$ be an exact functor between stable ∞ -categories and let \mathcal{E} be an epimorphism class on \mathcal{D} . Then, $L^{-1}(\mathcal{E})$ is an epimorphism class in \mathcal{C} .

What is $D(\mathbb{S})$?

Xiansheng Li

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next? Let \mathcal{E} be an epimorphism class on a stable ∞ -category \mathcal{C} . We will say an arrow $c \to d$ is \mathcal{E} -monic if the canonical map $d \to \operatorname{cofib}(c \to d)$ is in \mathcal{E} .

Definition

Definition

Let $\mathcal E$ be an epimorphism class. We say an object $i\in \mathcal C$ is $\mathcal E\text{-injective}$ if for every $c\to d$ in $\mathcal E$, the induced map

$$[d,i] \to [c,i]$$

is a monomorphism of abelian groups.

Alansheng Li

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next? Definition

Let \mathcal{E} be an epimorphism class. We say \mathcal{C} has enough \mathcal{E} -injectives if for every $c \in \mathcal{C}$ there exists an \mathcal{E} -monic map $c \to i$ into an \mathcal{E} -injective.

Classification of Adams Spectral Sequences

What is $D(\mathbb{S})$?

Xiansheng Li

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Theorem (Classification of Adams spectral sequences)

The following two sets of data one can associate to an idempotent-complete stable ∞ -category \mathbb{C} are equivalent:

- 1) an epimorphism class ${\mathcal E}$ of morphisms such that ${\mathcal C}$ has enough ${\mathcal E}\mbox{-injectives},$
- Bousfield localizations A(C) → A of such that the Gabriel quotient A has enough injectives and

3) adapted homology theories $H: \mathbb{C} \to \mathcal{A}$.

Classification of Adams Spectral Sequences

What is $D(\mathbb{S})$?

Xiansheng Li

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Theorem (Classification of Adams spectral sequences)

The following two sets of data one can associate to an idempotent-complete stable ∞ -category \mathbb{C} are equivalent:

- 1) an epimorphism class \mathcal{E} of morphisms such that \mathcal{C} has enough \mathcal{E} -injectives,
- 2) Bousfield localizations $A(\mathbb{C}) \to \mathcal{A}$ of such that the Gabriel quotient \mathcal{A} has enough injectives and

3) adapted homology theories $H \colon \mathbb{C} \to \mathcal{A}$.

Classification of Adams Spectral Sequences

What is $D(\mathbb{S})$?

Xiansheng Li

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Theorem (Classification of Adams spectral sequences)

The following two sets of data one can associate to an idempotent-complete stable ∞ -category \mathbb{C} are equivalent:

- 1) an epimorphism class ${\mathcal E}$ of morphisms such that ${\mathcal C}$ has enough ${\mathcal E}\mbox{-injectives},$
- 2) Bousfield localizations $A(\mathbb{C}) \to \mathcal{A}$ of such that the Gabriel quotient \mathcal{A} has enough injectives and
- 3) adapted homology theories $H \colon \mathfrak{C} \to \mathcal{A}$.

Two ways to generalize Freyd Envelope

What is $D(\mathbb{S})$?

Introduction

- Adapted Homology Theory
- Classificatior of Adams Spectral Sequence

Prestable Freyd Envelope

- We have mentioned that the classical Freyd envelope $A(\mathbb{C})$ is obtained from $h\mathbb{C}$ by formally adjoining reflexive coequalizers.
- The ∞ -categorical analogue of a reflexive coequalizers is given by a geometric realization of a simplicial object.
- To obtain an ∞-categorical analogue of the Freyd envelope, we should enlarge a given C by freely adjoining geometric realizations.

Two ways to generalize Freyd Envelope

What is $D(\mathbb{S})$?

Introduction

- Adapted Homology Theory
- Classification of Adams Spectral Sequence

Prestable Freyd Envelope

- We have mentioned that the classical Freyd envelope $A(\mathcal{C})$ is obtained from $h\mathcal{C}$ by formally adjoining reflexive coequalizers.
- The ∞-categorical analogue of a reflexive coequalizers is given by a geometric realization of a simplicial object.
- To obtain an ∞-categorical analogue of the Freyd envelope, we should enlarge a given C by freely adjoining geometric realizations.

Two ways to generalize Freyd Envelope

What is $D(\mathbb{S})$?

Introduction

Adapted Homology Theory

Classificatior of Adams Spectral Sequence

Prestable Freyd Envelope

- We have mentioned that the classical Freyd envelope $A(\mathcal{C})$ is obtained from $h\mathcal{C}$ by formally adjoining reflexive coequalizers.
- The ∞-categorical analogue of a reflexive coequalizers is given by a geometric realization of a simplicial object.
- To obtain an ∞-categorical analogue of the Freyd envelope, we should enlarge a given C by freely adjoining *geometric realizations*.

What is $D(\mathbb{S})$?

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

- Alternatively, if C admits finite limits, then A(C) can be described as the smallest subcategory of Fun_Σ(C^{op}, Set) containing all the representables and closed under finite colimits.
- This suggests a different generalization of the Freyd envelope, where we take the same definition, but replace sets by the ∞-category of spaces.

Almost Perfect Presheaves

What is $D(\mathbb{S})$?

Xiansheng Li

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next? Let \mathcal{C} be an additive ∞ -category. We say a product-preserving presheaf $X: \mathcal{C}^{op} \to \mathcal{S}$ of spaces is *almost perfect* if it belongs to the smallest subcategory of $\operatorname{Fun}_{\Sigma}(\mathcal{C}^{op}, \mathcal{S})$ containing the representables and closed under geometric realizations.

Definition

Definition

The prestable Freyd envelope $A_{\infty}(\mathcal{C})$ is the ∞ -category of almost perfect presheaves on \mathcal{C} . It is an additive subcategory of $\operatorname{Fun}_{\Sigma}(\mathcal{C}^{op}, \mathbb{S})$.

Almost Perfect Presheaves

What is $D(\mathbb{S})$?

Xiansheng Li

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next? Let \mathcal{C} be an additive ∞ -category. We say a product-preserving presheaf $X: \mathcal{C}^{op} \to S$ of spaces is *almost perfect* if it belongs to the smallest subcategory of $\operatorname{Fun}_{\Sigma}(\mathcal{C}^{op}, S)$ containing the representables and closed under geometric realizations.

Definition

Definition

The prestable Freyd envelope $A_{\infty}(\mathcal{C})$ is the ∞ -category of almost perfect presheaves on \mathcal{C} . It is an additive subcategory of $\operatorname{Fun}_{\Sigma}(\mathcal{C}^{op}, \mathcal{S})$.

The Restricted Yoneda Embedding

What is $D(\mathbb{S})$?

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Notation

The Yoneda embedding of \mathcal{C} factors through almost perfect presheaves, and we will denote this factorization by $\nu \colon \mathcal{C} \to A_{\infty}(\mathcal{C})$. Explicitly, we have

 $\nu(c)(d) := \mathsf{Map}_{\mathfrak{C}}(d, c).$

Universal Property 1

Remark

What is $D(\mathbb{S})$?

Xiansheng Li

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

By construction, the ∞ -category $A_{\infty}(\mathcal{C})$, has the following universal property:

for any $\infty\text{-}\mathsf{category}\ \mathcal D$ admitting geometric realizations, restriction along the Yoneda embedding gives an equivalence

 $\operatorname{Fun}_{\sigma}(A_{\infty}({\mathfrak C}),{\mathfrak D})\simeq\operatorname{Fun}({\mathfrak C},{\mathfrak D})$

between geometric-realization preserving functors out of $A_{\infty}(\mathcal{C})$, and all functors out of \mathcal{C} . The inverse to the above equivalence is given by left Kan extension.

Universal Property 1

What is D(S)?

Xiansheng Li

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Remark

By construction, the $\infty\text{-category}\;A_\infty({\mathbb C}),$ has the following universal property:

for any $\infty\text{-category}\ {\mathcal D}$ admitting geometric realizations, restriction along the Yoneda embedding gives an equivalence

 $\mathsf{Fun}_{\sigma}(A_{\infty}(\mathfrak{C}),\mathfrak{D})\simeq\mathsf{Fun}(\mathfrak{C},\mathfrak{D})$

between geometric-realization preserving functors out of $A_\infty({\mathfrak C}),$ and all functors out of ${\mathfrak C}.$ The inverse to the above equivalence is given by left Kan extension.

What is $D(\mathbb{S})$?

Xiansheng Li

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Proposition

Let \mathcal{C} be an additive ∞ -category which admits finite limits. Then, the following conditions on a product-preserving presheaf $X : \mathcal{C}^{op} \to S$ are equivalent:

- $X \simeq |\nu(c_{\bullet})|$ for a simplicial diagram of representables,
- X is almost perfect,
- π_kX is finitely presented presheaf of abelian groups; that is, π_kX ∈ A(C), for every k ≥ 0.

What is $D(\mathbb{S})$?

Xiansheng Li

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next? Proposition

Let \mathcal{C} be an additive ∞ -category which admits finite limits. Then, the following conditions on a product-preserving presheaf $X : \mathcal{C}^{op} \to S$ are equivalent:

- $X \simeq |\nu(c_{\bullet})|$ for a simplicial diagram of representables,
- X is almost perfect,
- π_kX is finitely presented presheaf of abelian groups; that is, π_kX ∈ A(C), for every k ≥ 0.

What is $D(\mathbb{S})$?

Xiansheng Li

Introduction

Adapted Homology Theory

Classificatior of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Proposition

Let \mathcal{C} be an additive ∞ -category which admits finite limits. Then, the following conditions on a product-preserving presheaf $X : \mathcal{C}^{op} \to S$ are equivalent:

- $X \simeq |\nu(c_{\bullet})|$ for a simplicial diagram of representables,
- X is almost perfect,
- π_kX is finitely presented presheaf of abelian groups; that is, π_kX ∈ A(C), for every k ≥ 0.

What is $D(\mathbb{S})$?

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Corollary

Suppose that \mathbb{C} is an additive ∞ -category which admits finite limits. Then, the prestable Freyd envelope $A_{\infty}(\mathbb{C})$ is closed under finite limits, finite colimits, extensions and Postnikov truncations in Fun_{Σ}(\mathbb{C}^{op} , \mathbb{S}). In particular, it is prestable.

$\mathsf{Prestable}\ \infty\text{-category}$

What is $D(\mathbb{S})$?

Xiansheng Li

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Definition

A ∞ -category ${\mathfrak C}$ is called prestable if the following hold:

- $\ensuremath{\mathfrak{C}}$ is pointed and admits finite colimits,
- the suspension functor $\Sigma: {\mathfrak C} \to {\mathfrak C}$ is fully failthful and
- for any arrow of the form $d\to \Sigma c$, where $c,d\in \mathbb{C},$ there exists a bicartesian square

$$\begin{array}{ccc} e & \longrightarrow & d \\ \downarrow & & & \downarrow \\ 0 & \longrightarrow & \Sigma c \end{array}$$

If you do not familiar with this, think of it as the connective part of your favorite stable ∞ -category(precise when C admits finite limits).

t-structure Homotopy Groups

What is $D(\mathbb{S})$?

Notation

Xiansheng Li

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next? If \mathcal{C} is prestable, the *heart* is $\mathcal{C}^{\heartsuit} := \tau_{\leq 0}\mathcal{C}$, the subcategory of discrete objects. If \mathcal{C} has finite limits, then the inclusion of the heart admits a left adjoint denoted by

$$\pi_0 \colon \mathfrak{C} \to \mathfrak{C}^{\heartsuit}.$$

Using the heart and π_0 we define the higher *homotopy groups* by setting

$$\pi_k(c) := \pi_0(\Omega^k c).$$

These correspond to the usual *t*-structure homotopy groups on the stabilization, although in the prestable setting they are necessarily non-negatively graded.

Ξ

イロト イロト イヨト イヨト

t-structure Homotopy Groups

What is $D(\mathbb{S})$?

Notation

Xiansheng Li

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next? If \mathcal{C} is prestable, the *heart* is $\mathcal{C}^{\heartsuit} := \tau_{\leq 0}\mathcal{C}$, the subcategory of discrete objects. If \mathcal{C} has finite limits, then the inclusion of the heart admits a left adjoint denoted by

$$\pi_0 \colon \mathfrak{C} \to \mathfrak{C}^{\heartsuit}.$$

Using the heart and π_0 we define the higher homotopy groups by setting

$$\pi_k(c) := \pi_0(\Omega^k c).$$

These correspond to the usual *t*-structure homotopy groups on the stabilization, although in the prestable setting they are necessarily non-negatively graded.

Ξ

イロト イヨト イヨト イヨト

t-structure Homotopy Groups

What is D(S)?

Example

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next? Let \mathcal{C} be an additive ∞ -category which admits finite limits. A presheaf $X \in A_{\infty}(\mathcal{C})$ is discrete if and only if it is discrete as an object of Fun $(\mathcal{C}^{op}, \mathcal{S})$; that is, when it is valued in sets. It follows that we have an equivalence

 $A_{\infty}(\mathfrak{C})^{\heartsuit} \simeq A(\mathfrak{C}).$

In terms of this equivalence, the t-structure homotopy groups coincide with the pointwise ones in the sense that

$$(\pi_k X)(c) \simeq \pi_k X(c).$$

Local Grading

What is $D(\mathbb{S})$?

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Remark

Using the universal property of $A_\infty({\mathcal C})$, we see that if ${\mathcal C}$ is locally graded, then $A_\infty({\mathcal C})$ inherits an essentially unique local grading such that ν admits a structure of a locally graded functor.

When $\ensuremath{\mathbb{C}}$ is stable and locally graded through suspension, we have

$$(X[1])(c) := X(\Sigma^{-1}c);$$

Perfect Freyd Envelope

What is $D(\mathbb{S})$?

Xiansheng Li

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Definition

Let \mathcal{C} be an additive ∞ -category. Then, an additive presheaf $X \in \operatorname{Fun}_{\Sigma}(\mathcal{C}^{op}, \mathbb{S})$ is *perfect* if it belongs to the smallest subcategory containing all representables and closed under finite colimits.

Definition

The perfect prestable Freyd envelope is the ∞ -category $A^{\omega}_{\infty}(\mathcal{C})$ of perfect presheaves.

1

イロト 不同 トイヨト イヨト

Universal Property

What is $D(\mathbb{S})$?

Introduction

Adapted Homology Theory

Classificatior of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Remark

By construction, $A_{\infty}^{\omega}(\mathbb{C})$ has the following universal property: any additive functor $\mathbb{C} \to \mathcal{D}$ into an additive ∞ -category with finite colimits extends uniquely to a right exact functor $A_{\infty}^{\omega}(\mathbb{C}) \to \mathcal{D}.$

Perfect Preseaves are Almost Perfect

What is $D(\mathbb{S})$?

Introduction

Adapted Homology Theory

Classificatior of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next? Let \mathcal{C} be an additive ∞ -category. Then, any perfect presheaf X is almost perfect; that is, $A^{\omega}_{\infty}(\mathcal{C})$ is naturally a subcategory of $A_{\infty}(\mathcal{C})$.

One-word Proof.

Lemma

In an additive $\infty\text{-category, the cofiber of }d\to c$ is equivalent to the geometric realization of the bar construction

$$\cdots \rightrightarrows d \oplus d \oplus c \rightrightarrows d \oplus c \to c.$$

<ロ > < 回 > < 巨 > < 巨 > < 巨 > 三 つ Q () 50 / 79

Finite Limits of Perfect Presheaves

What is $D(\mathbb{S})$?

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Theorem

Let \mathfrak{C} be an additive ∞ -category with finite limits. Then, the perfect prestable Freyd envelope $A^{\omega}_{\infty}(\mathfrak{C})$ is closed under finite limits in additive presheaves of spaces. In particular, it is a prestable ∞ -category with finite limits.

Prestable Enhancement

What is $D(\mathbb{S})$?

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Definition

Let \mathcal{C} be a stable ∞ -category. We say a functor $\mathcal{H} \colon \mathcal{C} \to \mathcal{D}$ into a prestable ∞ -category \mathcal{D} with finite limits is a *prestable enhancement* to a homological functor when

- $\mathcal H$ is additive and
- $\mathcal H$ is left exact.

Prestable Enhancement

What is $D(\mathbb{S})$?

Xiansheng Li

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Example

The functor $\nu: \mathcal{C} \to A_{\infty}(\mathcal{C})$ is a prestable enhancement compatible with the local grading, as the Yoneda embedding into presheaves preserves all limits.

Universal Property 2

Theorem

What is $D(\mathbb{S})$?

Xiansheng Li

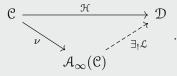
Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next? Let $\mathcal{H}: \mathfrak{C} \to \mathfrak{D}$ be a prestable enhancement to a homological functor and suppose that \mathfrak{D} admits geometric realizations. Then, there exists an essentially unique exact, geometric realization-preserving functor $\mathcal{L}: A_{\infty}(\mathfrak{C}) \to \mathfrak{D}$ such that the following diagram commutes



Universal Property 2'

What is $D(\mathbb{S})$?

Xiansheng Li

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Theorem

Suppose that \mathfrak{C} is stable and let $\mathfrak{H} \colon \mathfrak{C} \to \mathfrak{D}$ be a prestable enhancement to a homological functor. Then, there exists an essentially unique exact functor $\mathcal{L} \colon A^{\omega}_{\infty}(\mathfrak{C}) \to \mathfrak{D}$ such that the following diagram commutes



Thread Structure

Construction

What is $D(\mathbb{S})$?

Xiansheng Li

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next? Since ν is a functor, for any $c\in {\mathbb C}$ we have a canonical map

 $\Sigma \nu c \rightarrow \nu(\Sigma c) \simeq \nu(c)[1].$

This is in fact a natural transformation of functors $\mathcal{C} \to A_{\infty}(\mathcal{C})$, and by left Kan extension we obtain a natural transformation

 $\tau\colon \Sigma X\to X[1]$

of geometric realization-preserving endofunctors of the prestable Freyd envelope.

Thread Structure

Xiansheng Li

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Definition

The canonical thread structure on $A_{\infty}(\mathcal{C})$ is the above natural transformation

 $\tau\colon \Sigma X\to X[1].$

What is $D(\mathbb{S})$?

Xiansheng Li

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Notation

Let $\pi(n)\colon {\mathfrak C}\to h_n{\mathfrak C}$ be the projection onto the n-th homotopy category. We then have an adjunction

$$\pi(n)^* \dashv \pi(n)_* \colon A_{\infty}(\mathcal{C}) \rightleftharpoons A_{\infty}(h_n \mathcal{C})$$

between the $\infty\mbox{-}categories$ of almost perfect presheaves given by left Kan extension and restriction.

What is $D(\mathbb{S})$?

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Proposition

For any $n \ge 1$, the map τ^n into an almost perfect X fits into a canonical cofiber sequence

$$\Sigma^n X[-n] \to X \to \pi(n)_* \pi(n)^* X$$

<ロト < 回 ト < 巨 ト < 巨 ト < 巨 ト 三 の Q () 59 / 79

What is D(S)?

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Notation

We will write

$$C\tau^n \otimes - := \pi(n)_* \pi(n)^*$$

for the monad associated to the adjunction $\pi(n)^* \dashv \pi(n)_*$. We will refer to modules over the monad $C\tau^n$ as $C\tau^n$ -modules.

What is $D(\mathbb{S})$?

Xiansheng Li

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Warning

Beware that this notation is potentially abusive, as unless \mathcal{C} is monoidal, there is no natural notion of a tensor product of almost perfect presheaves.

However, we can treat $C\tau^n$ as if they were commtative algebras in the following sense

Lemma (Linearity of $C\tau^n$)

If X is a module over the monad $C au^n\otimes -$, then the map

$$\tau\colon \Sigma X[-1]\to X$$

has a canonical lift to a morphism of modules.

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Remark (Passing to perfect presheaves)

Note that since perfect presheaves are stable under cofibers. This implies that if $X \in A_{\infty}^{\omega}(\mathbb{C})$ is perfect, so is $C\tau^n \otimes X$ for any $n \geq 1$. In particular, the monad $C\tau^n$ restricts to a monad on the perfect prestable Freyd envelope.

What is $D(\mathbb{S})$?

Xiansheng Li

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next? One part of the importance of the monad $C\tau^n$ is that it allows one to recover the Freyd envelopes of the homotopy categories, as the following shows.

roposition

The adjunction $\pi(n)^* \dashv \pi(n)_* : A_{\infty}(\mathcal{C}) \rightleftharpoons A_{\infty}(h_n \mathcal{C})$ is monadic; that is, it induces an equivalence

 $\operatorname{Mod}_{C\tau^n\otimes -}(A_{\infty}(\mathcal{C}))\simeq A_{\infty}(h_n\mathcal{C})$

with modules over the monad $C\tau^n$.

What is $D(\mathbb{S})$?

Xiansheng Li

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next? One part of the importance of the monad $C\tau^n$ is that it allows one to recover the Freyd envelopes of the homotopy categories, as the following shows.

Proposition

The adjunction $\pi(n)^* \dashv \pi(n)_* \colon A_\infty(\mathbb{C}) \rightleftharpoons A_\infty(h_n\mathbb{C})$ is monadic; that is, it induces an equivalence

 $\mathcal{M}od_{C\tau^n\otimes -}(A_\infty(\mathcal{C}))\simeq A_\infty(h_n\mathcal{C})$

with modules over the monad $C\tau^n$.

63 / 79

イロト イヨト イヨト 一日

What is $D(\mathbb{S})$?

Xiansheng Li

Introduction

Adapted Homology Theory

Classificatior of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Proposition

The forgetful functor

$$\mathcal{M}od_{C\tau^n\otimes -}(A_\infty(\mathcal{C})) \to A_\infty(\mathcal{C})$$

is exact and induces an equivalence

$$\tau_{\leq n-1}(\mathcal{M}od_{C\tau^n\otimes -}(A_{\infty}(\mathcal{C}))) \simeq \tau_{\leq n-1}A_{\infty}(\mathcal{C})$$

between the subcategories of (n-1)-truncated objects.

au-inversion

What is $D(\mathbb{S})$?

Xiansheng Li

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Construction (τ -inversion)

Let ${\mathbb C}$ be a stable $\infty\text{-category.}$ Then, the left Kan extension provides a unique exact extension

$$\tau^{-1}\colon A^{\omega}_{\infty}(\mathcal{C})\to \mathcal{C}$$

which we will call the τ -inversion functor. In the case when \mathcal{C} admits geometric realizations, the analogous construction also applies to the almost perfect presheaves.

au-inversion

What is $D(\mathbb{S})$?

Xiansheng Li

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Construction (τ -inversion)

Let ${\mathbb C}$ be a stable $\infty\text{-category.}$ Then, the left Kan extension provides a unique exact extension

$$\tau^{-1}\colon A^{\omega}_{\infty}(\mathcal{C})\to \mathcal{C}$$

which we will call the τ -inversion functor. In the case when C admits geometric realizations, the analogous construction also applies to the almost perfect presheaves.

Characterization of perfect presheaves

What is $D(\mathbb{S})$?

Xiansheng Li

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Lemma

Let \mathfrak{C} be a stable ∞ -category. Then, the following are equivalent for an additive presheaf $X \in \operatorname{Fun}_{\Sigma}(\mathfrak{C}^{op}, \mathfrak{S})$:

- X is perfect,
- $\pi_k X$ is finitely presented for each $k \ge 0$, and there exists an N such that for any $k \ge N$, $\pi_k X$ is a representable discrete presheaf and $\tau : \pi_k X[-1] \to \pi_{k+1}(X)$ is an isomorphism.

Set Theoretic issues

What is D(S)? Xiansheng L

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next? It will be convenient to argue in a context where we know that sheafification exists.

Notation

Let \mathcal{C} be an additive ∞ -category. Recall that $A_{\infty}(\mathcal{C})$ is by definition a subcategory of presheaves Fun $(\mathcal{C}^{op}, \mathbb{S})$, choosing a larger universe, we can embed the latter into the ∞ -category

$$\widehat{P}_{\Sigma}(\mathfrak{C}) := \mathsf{Fun}_{\Sigma}(\mathfrak{C}^{op},\widehat{\mathfrak{S}})$$

of product-preserving presheaves valued in large spaces. Relative to this larger universe, \mathcal{C} is small, and so by standard results there exists a sheafification functor which we will denote by $L: \widehat{P}_{\Sigma}(\mathcal{C}) \to \widehat{P}_{\Sigma}(\mathcal{C})$.

H-epimorphism topology

What is $D(\mathbb{S})$?

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Notation

We fix a stable ∞ -category equipped with a choice of an adapted homology theory $H \colon \mathcal{C} \to \mathcal{A}$. We recall that by the characterization of adapted homology theories, the induced functor $A(\mathcal{C}) \to \mathcal{A}$ presents the latter as a bousfield localization whose kernel we will denote by K.

H-epimorphism topology

What is $D(\mathbb{S})$?

Xiansheng Li

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Definition

The *H*-epimorphism topology is a Grothendieck pretopology on \mathcal{C} in which a family of maps $\{c_i \rightarrow d\}$ is a covering if it consists of a single map which is an *H*-epimorphism. For formal reasons, we have a sheafification functor

 $L: A^{\omega}_{\infty}(\mathcal{C}) \to A^{\omega}_{\infty}(\mathcal{C}).$

Perfect Sheaves

What is $D(\mathbb{S})$?

Xiansheng Li

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Proposition

Let $X \in A^{\omega}_{\infty}(\mathbb{C})$ be a perfect presheaf. Then, the sheafification LX is perfect.

Here we take \mathcal{C} to be either an abelian category equipped with the epimorphism topology or an stable ∞ -category equipped with the H-epimorphism topology.

Restricting to perfect objects, we get rid of the larger universe!

Bounded Derived Category

What is D(S)?

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Definition

Let \mathcal{A} be an abelian category with enough injectives. The *bounded (connective) derived* ∞ -*category* of \mathcal{A} , denoted by $\mathcal{D}^b(\mathcal{A})$, is the ∞ -category of perfect sheaves on \mathcal{A} with respect to the epimorphism topology.

Bounded Derived Category

What is $D(\mathbb{S})$?

Xiansheng Li

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next? The above definition is reasonable, as it satisfies the following universal property:

Theorem

Let \mathcal{D} be a prestable ∞ -category with finite limits. Then, left Kan extension gives an equivalence between the following data:

- exact functors $\mathcal{A} \to \mathfrak{D}^\heartsuit$ of abelian categories and
- exact functors $\mathbb{D}^b(\mathcal{A}) \to \mathbb{D}$ of prestable ∞ -categories with finite limits.

Perfect Derived Category

What is $D(\mathbb{S})$?

Xiansheng Li

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Definition

Let $H: \mathcal{C} \to \mathcal{A}$ be an adapted homology theory. Then, the perfect derived ∞ -category of \mathcal{C} relative to H is given by

$$\mathcal{D}^{\omega}(\mathfrak{C}) := A^{\omega, sh}_{\infty}(\mathfrak{C}),$$

the ∞ -category of perfect sheaves on $\mathcal C$ with respect to the H-epimorphism topology.

What is D(S)?

Xiansheng Li

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Proposition

We have that

1) $L: A^{\omega}_{\infty}(\mathbb{C}) \to \mathbb{D}^{\omega}(\mathbb{C})$ is an exact localization compatible with local grading, in particular $\mathbb{D}^{\omega}(\mathbb{C})$ is a locally graded, prestable ∞ -category with finite limits.

2) We have a canonical equivalence $\mathbb{D}^{\omega}(\mathbb{C})^{\heartsuit} \simeq \mathcal{A}$.

b) $\nu \colon \mathfrak{C} \to A^{\omega}_{\infty}(\mathfrak{C})$ factors through $\mathfrak{D}^{\omega}(\mathfrak{C})$.

 A cofibre sequence c → d → e in C induces a cofibre sequence ν(c) → ν(d) → ν(e) if and only if H(d) → H(e) is surjective.

What is $D(\mathbb{S})$?

Xiansheng Li

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Proposition

We have that

1) $L: A^{\omega}_{\infty}(\mathbb{C}) \to \mathbb{D}^{\omega}(\mathbb{C})$ is an exact localization compatible with local grading, in particular $\mathbb{D}^{\omega}(\mathbb{C})$ is a locally graded, prestable ∞ -category with finite limits.

2) We have a canonical equivalence $\mathfrak{D}^{\omega}(\mathfrak{C})^{\heartsuit} \simeq \mathcal{A}$.

) $\nu \colon \mathcal{C} \to A^{\omega}_{\infty}(\mathcal{C})$ factors through $\mathcal{D}^{\omega}(\mathcal{C})$.

4) A cofibre sequence c → d → e in C induces a cofibre sequence ν(c) → ν(d) → ν(e) if and only if H(d) → H(e)is surjective.

What is $D(\mathbb{S})$?

Xiansheng Li

Introduction

Adapted Homology Theory

Classificatior of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

Proposition

We have that

- 1) $L: A^{\omega}_{\infty}(\mathbb{C}) \to \mathbb{D}^{\omega}(\mathbb{C})$ is an exact localization compatible with local grading, in particular $\mathbb{D}^{\omega}(\mathbb{C})$ is a locally graded, prestable ∞ -category with finite limits.
- 2) We have a canonical equivalence $\mathfrak{D}^{\omega}(\mathfrak{C})^{\heartsuit} \simeq \mathcal{A}$.
- 3) $\nu \colon \mathfrak{C} \to A^{\omega}_{\infty}(\mathfrak{C})$ factors through $\mathfrak{D}^{\omega}(\mathfrak{C})$.
- 4) A cofibre sequence $c \to d \to e$ in \mathbb{C} induces a cofibre sequence $\nu(c) \to \nu(d) \to \nu(e)$ if and only if $H(d) \to H(e)$ is surjective.

What is $D(\mathbb{S})$?

Xiansheng Li

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next? Theorem (Universal property of the perfect derived ∞ -category)

Let $H: \mathbb{C} \to \mathcal{A}$ be an adapted homology theory, $\mathbb{D}^{\omega}(\mathbb{C})$ the corresponding perfect derived ∞ -category and \mathbb{D} a prestable ∞ -category with finite limits. Then, left Kan extension along $\nu: \mathbb{C} \to \mathbb{D}^{\omega}(\mathbb{C})$ induces an equivalence between the two following collections of data:

- 1) exact functors $G\colon {\mathfrak D}^\omega({\mathfrak C})\to {\mathfrak D}$ of prestable $\infty\text{-categories}$ and
- 2) exact functors $G_0: \mathcal{A} \to \mathcal{D}^{\heartsuit}$ of abelian categories together with a prestable enhancement of $G_0 \circ H$.

The Two "Fibers"

Theorem

What is $D(\mathbb{S})$?

Xiansheng Li

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next? The right adjoint $H_*: \mathbb{D}^b(\mathcal{A}) \to \mathbb{D}^\omega(\mathbb{C})$ has a canonical lift to $C\tau$ -modules and induces an equivalence

 $\mathcal{M}od_{C\tau\otimes -}(\mathcal{D}^{\omega}(\mathcal{C}))\simeq \mathcal{D}^{b}(\mathcal{A})$

between $C\tau$ -modules whose underlying sheaf is perfect and the bounded derived ∞ -category of A.

イロト イヨト イヨト イヨト

Э

76 / 79

The Two "Fibers"

Theorem

What is $D(\mathbb{S})$?

-

Introduction

Adapted Homology Theory

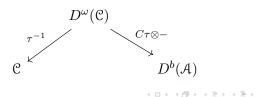
Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next? The right adjoint $H_*: \mathbb{D}^b(\mathcal{A}) \to \mathbb{D}^\omega(\mathbb{C})$ has a canonical lift to $C\tau$ -modules and induces an equivalence

 $\mathcal{M}od_{C\tau\otimes -}(\mathcal{D}^{\omega}(\mathcal{C}))\simeq \mathcal{D}^{b}(\mathcal{A})$

between $C\tau$ -modules whose underlying sheaf is perfect and the bounded derived ∞ -category of A.



=

Further Topics

What is $D(\mathbb{S})$?

Introduction

Adapted Homology Theory

Classification of Adams Spectral Sequence

Prestable Freyd Envelope

What To Do Next?

further topics

- Postnikov tower and Adams resolution,
- three variants of $D^{\omega}(\mathbb{C})$ (for the grothendieck abelian case),
- Goerss-Hopkins tower and algebraicity.

References

What is $D(\mathbb{S})?$

What To Do Next?

Lars Hesselholt and Piotr Pstragowski. Dirac geometry ii: Coherent cohomology, 2024.

J. Lurie

Higher Topos Theory. Academic Search Complete. Princeton University Press, 2009.

Jacob Lurie.

Higher algebra, 2017.

Jacob Lurie.

Spectral algebraic geometry, 2018.

Irakli Patchkoria and Piotr Pstragowski.

Adams spectral sequences and franke's algebraicity conjecture, 2023.

Piotr Pstragowski.

Synthetic spectra and the cellular motivic category, 2022. 78 / 79

A D > A D >

What is $D(\mathbb{S})$?	
Xiansheng Li	
Adapted Homology Theory	
Classification of Adams Spectral Sequence	
What To Do Next?	

Thank you!