A brief introduction to Hitchin's equations

Wenhui Yang

November 25, 2024

Classical Hodge Theory

Support X is a compact Kähler manifold, then we have

 $Hom(\pi_1 X, \mathbb{C}) \simeq H^1_{Sing}(X, \mathbb{C}) \simeq H^1_{dR}(X, \mathbb{C}) \simeq \oplus_{p+q=1} H^{p,q}(X).$

• Classical Hodge theory actually builds a bridge connecting topology, differentiable and holomorphic world.

Note $\mathbb C$ is an abelian group, if we replace $\mathbb C$ with a nonabelian group, will we have a similar result?

Non-abelian Hodge Theory

From: Introduction to Nonabelian Hodge Theory

The objects in nonabelian Hodge theory and their relationships

Figure 1: From R. Laza, Matthias Schuett, and Noriko Yui. Calabi-Yau Varieties: Arithmetic, Geometry and Physics, Lecture Notes on Concentrated Graduate Courses. 01 2015.

Hitchin's equations appear as a dimensional reduction of the self-dual Yang–Mills equations from four dimension to two dimension that have the form:

$$
\begin{cases} F_{D_{E,h}} + [\theta, \theta^{\dagger}] = 0 \\ \overline{\partial}_E \theta = 0 \end{cases}
$$

- The irreducible solutions to Hitchin's equations modulo gauge transformations are actually the same as stable Higgs pairs. This relates something purely algebro-geometric and something analytic.
- The moduli space of the irreducible solutions has rich geometric structures. As for its topology property, it is non-compact,simply connected and has dimension $12(g - 1)$. From the analytical aspect, it has a natural metric which is hyperKähler. Moreover, some explicit solutions can be used to construct hyperbolic metric and give examples to Higgs bundles.

1 Some definitions in complex geometry

- 2 Hitchin's equations
- 3 [Connection to hyperbo](#page-6-0)lic geometry
- 4 [Moduli spa](#page-12-0)ce of the irreducible solutions

[References](#page-19-0)

Through this talk, we use the following notations.

- \bullet Σ : a Riemann surface with genus g greater than 1;
- \bullet E : complex vector bundle of rank r ;
- $\Omega^{p}(\Sigma, E)$: \mathbb{C}^{∞} complex p-forms valued in $E;$
- $\Gamma(\Sigma, E)$: the space of smooth sections of E;
- K : the canonical line bundle $(T^{1,0})^*\Sigma.$

Holomorphic structure

A holomorphic structure on E over Σ is a differential operator $\overline{\partial_E}:\Omega^{p,q}(\Sigma,E)\to \Omega^{p,q+1}(\Sigma,E)$ satisfying the Leibniz rule: for any $\alpha \in \Omega^{p,q}(\Sigma, \mathbb{C}), \beta \in \Omega^{k,l}(\Sigma, E),$

$$
\overline{\partial_E}(\alpha \wedge \beta) = (\overline{\partial}\alpha) \wedge \beta + (-1)^{p+q} \alpha \wedge \overline{\partial_E} \beta.
$$

Hermitian metric

A Hermitian metric H on a complex vector bundle over Σ is a $\mathbb C$ family of Hermitian inner products on E satisfying the following conditions:

- \bullet $H(x, y)$ is linear in x, where x, y is in the fiber E_p for some p;
- $H(x,\overline{y})=H(x,\overline{y});$
- $H(x, x) > 0$ for any $x \neq 0$.

Hermitian vector bundle

If there exists a Hermitian metric on a vector bundle E, then (E, H) is called a Hermitian vector bundle.

Connection

A connection D on a complex vector bundle E is a differential operator from $\Omega^{p}(\Sigma, E)$ to $\Omega^{p+1}(\Sigma, E)$ such that for any $f \in \Omega^p(\Sigma, \mathbb{C}), g \in \Omega^p(\Sigma, E), D(f \wedge g) = Df \wedge g + (-1)^p f \wedge dg.$

Curvature

The curvature F_D of connection D is defined to be the operator

$$
F_D = D \circ D : \Omega^p(\Sigma, E) \to \Omega^{p+2}(\Sigma, E).
$$

Flat connection

A connection is said to be flat if $F_D = 0$.

Unitary connection

A connection D on E is unitary if for any two sections $s, t \in \Gamma(\Sigma, E)$,

$$
d(H(s,t)) = H(Ds,t) + H(s, Dt),
$$

where H is a Hermitian metric on E .

Theorem

For a holomorphic vector bundle E with a Hermitian metric H, there exists a unique connection $\nabla_{\overline{\partial_E},H}$, called Chern connection, such that $\nabla^{0,1}_{\overline{\partial_E},H}=\overline{\partial_E}$ and $\nabla_{\overline{\partial_E},H}$ is a unitary connection.

Higgs bundles

A rank r Higgs bundle over a Riemann surface Σ is a pair (E, ϕ) , where E is holomorphic vector bundle of rank r , and $\phi \in \Omega^{1,0}(\Sigma,{\rm End} E\otimes K)$ which is called the Higgs field.

First Chern class

The first Chern class of E is
$$
c_1(E) = \left[\frac{i}{2\pi}tr(F_D)\right] \in H_{dR}^2(\Sigma, \mathbb{C})
$$
.

Degree

The degree of the vector bundle E is
$$
degE = \int_{\Sigma} c_1(E)
$$
.

Slope

The slope of the vector bundle E is $\mu(E) = \frac{deg E}{rank(E)}.$

Stable Higgs bundle

A Higgs bundle (E, ϕ) is stable if for every proper, non-trivial, ϕ -invariant subbundles $F \subset E$, $\mu(F) < \mu(E)$. We call (E, ϕ) semistable if $\mu(F) \leq \mu(E)$.

Example

Let
$$
E = K^{\frac{1}{2}} \otimes K^{-\frac{1}{2}}
$$
, where $K^{\frac{1}{2}} \otimes K^{\frac{1}{2}} = K$, then $\mu(E) = 0$.
Take $\phi = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, where 1 denotes the section of $Hom(K^{\frac{1}{2}}, K^{-\frac{1}{2}}) \otimes K$.
The only ϕ -invariant subbundle is $K^{-\frac{1}{2}}$, which has degree $1 - g < 0$ for $g > 1$, so (E, ϕ) is a stable Higgs bundle.

Definition

Let (E,h) be a trivial Hermitian vector bundle over \mathbb{R}^4 , and ∇ a unitary connection on (E, h) . Then the curvature F_{∇} of ∇ is said to satisfy the self-dual Yang-Mills equations if F_{∇} is invariant under the Hodge star operator ∗, that is,

$$
*F_{\nabla}=F_{\nabla}.
$$

In terms of a trivialization of (E,h) over \mathbb{R}^4 and the basic coordinates $\left(x_1, x_2, x_3, x_4 \right)$. We may write

$$
F_{\nabla} = \frac{1}{2} \sum F_{ij} dx_i \wedge dx_j,
$$

then the equation is reduced to the followings:

$$
F_{12} = F_{34}, F_{13} = F_{42}, F_{14} = F_{23}.
$$

We can write $\nabla = d + \sum_i A_i dx_i$, where $A_i \in U(n)$. Now we assume ∇ is independent of x_3, x_4 , and set $\phi_1 = A_3, \ \phi_2 = A_4$. Define $\nabla_i = \frac{\partial}{\partial x_i}$ $\frac{\partial}{\partial x_i} + A_i$ for $i \in \{1,2\}$, then the equation can written as

$$
[\nabla_1, \nabla_2] = [\phi_1, \phi_2], [\nabla_1, \phi_1] = [\phi_2, \nabla_2], [\nabla_1, \phi_2] = [\nabla_2, \phi_1].
$$

From Hermitian-Yang-Mills equation to Hitchin's equation

Define a connection $D = d + A$ on E by $A = A_1 dx_1 + A_2 dx_2$ and let $\phi = \phi_1 - i \phi_2, D_j = \frac{\partial}{\partial x}$ $\frac{\partial}{\partial x_j} + A_j$ for $j=1,2.$

Then we obtain that

$$
F_D = \frac{i}{2} [\phi, \phi^{\dagger}], [D_1 + i D_2, \phi] = 0.
$$

Here the dagger † stands for the transpose conjugate. In order to identify \mathbb{R}^2 with \mathbb{C} , set

$$
z = x_1 + ix_2, \partial_{\overline{z}} = \frac{\partial}{\partial x_1} + i \frac{\partial}{\partial x_2}, A_{\overline{z}} = A_1 + iA_2,
$$

then write

$$
D_1 + iD_2 = D_{\overline{z}} = \partial_{\overline{z}} + A_{\overline{z}}
$$

Let $\theta = \frac{1}{2}$ $\frac{1}{2}\phi dz, \theta^{\dagger} = \frac{1}{2}$ $\frac{1}{2}\phi^\dagger d\overline{z}$, the equation can be written as follows:

> $\int F_D + [\theta, \theta^\dagger] = 0$ $D_{\overline{z}}\theta=0$

Hitchin's equations

Given a Hermitian holomorphic vector bundle $(E, \overline{\partial}_E, h)$ on a Riemann surface Σ , $\phi\in \Omega^{1,0}(\Sigma;EndE)$. Let $D_{E,h}$ be the Chern connection of $\overline{\partial}_E$ with respect to h, $(D_{E,h}, \phi)$ is said to satisfy the Hitchin's equations if

$$
\begin{cases} F_{D_{E,h}} + [\phi, \phi^{\dagger}] = 0 \\ \overline{\partial}_E \phi = 0 \end{cases}
$$

Theorem(Hitchin and Simpson)

There is a correspondence between stable Higgs bundles and irreducible solutions of Hitchin's equations.

{stable Higgs bundles }/∼ ↔

{irreducible solutions to Hitchin′ s equations }/∼

Remark: Furthermore, if we consider harmonic representation we can obtain another one-to-one correspondence making the Theorem into the so-called non-abelian Hodge correspondence.

{stable Higgs bundles (E, ϕ) of rank n }/ $\sim \leftrightarrow$

{irreducible projectively flat connections}/∼ ↔

 ${Representations of π₁Σ into SL(n, ℝ)}$

Example

Let $\phi = 0$, then the equations are simply $F_D = 0$, so it is reduced to the flat unitary connections on Σ , which are equivalent to stable holomorphic bundles of Σ by Narasimhan-Seshadri Theorem.

Narasimhan-Seshadri Theorem

{flat unitary connections}/∼ ↔

{stable holomorphic vector bundle}/∼

Theorem(Hitchin)

Let $a \in H^0(\Sigma; K^2)$ be a quadratic differential, (D, ϕ) be a solution to the Hitchin's equations for which $E=K^{\frac{1}{2}}\otimes K^{-\frac{1}{2}}$ and $\phi=0$ $\begin{bmatrix} 0 & a \\ 1 & 0 \end{bmatrix}$, then

- If h is the Hermitian metric on K^{-1} , then $\hat{h} = a + (h + \frac{a\overline{a}}{h})$ $\frac{\imath a}{h})+\overline{a}$ is a Riemannian metric on Σ of constant curvature -4 .
- Any metric of constant curvature -4 on Σ is isometric to a metric of this form for some $a\in H^0(\Sigma;K^2).$

Theorem(Hitchin)

Let M be the moduli space of irresucible solutions to the Hitchin's equations on a rank 2 vector bundle V of odd degree. Then the natural metric is complete and hyperKähler.

HyperKähler metric

A hyperKähler metric on a $4n$ -dimensional manifolds is a Riemannian metric which is Kählerian with respect to three almost complex structures I, J, K which satisfy the following equations:

$$
\begin{cases}\nI^2 = J^2 = K^2 = -1, \\
IJ = -JI = K, \\
JK = -KJ = I, \\
KI = -IK = J.\n\end{cases}
$$

Dimension

Let M be the moduli space of irreducible solutions to Hitchin's equations on a rank 2 vector bundle of odd degree V, then M is a smooth manifold of dimension $12(q-1)$.

From Higgs bundle aspect

The moduli space of all stable pairs (V, ϕ) , where V is a rank 2 holomorphic vector bundle of odd degree and fixed determinant, ϕ is a trace-free holomorphic section of $EndV\otimes K$, is a smooth manifold of real dimension $12(q-1)$.

[1] R. Laza, Matthias Schuett, and Noriko Yui. Calabi-Yau Varieties: Arithmetic, Geometry and Physics, Lecture Notes on Concentrated Graduate Courses. 01 2015.

[2] Shoshichi Kobayashi. Differential Geometry of Complex Vector Bundles. Princeton University Press, Princeton, 1987.

[3] Qiongling Li. An introduction to Higgs bundles via harmonic maps. Symmetry, Integrability and Geometry: Methods and Applications, May 2019.

[4] Sergio A. H. Cardona, Hugo Garc'ia-Compe'an, and Aldo-Mart'inez Merino. On 2k- Hitchin's equations and Higgs bundles: A survey. International Journal of Geometric Methods in Modern Physics, 2019. [5] N. J. Hitchin. The self-duality equations on a Riemann surface. Proceedings of the London Mathematical Society, s3-55(1):59–126, 1987.