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Preliminary

Definition

(1) metric d∞ on R2 by
d∞ ((x1, x2) , (y1, y2)) = max {|x1 − y1| , |x2 − y2|};
(2) D1 = T ∪ {∆} where ∆ /∈ T =

{
(x1, x2) ∈ R2 | x2 > x1 ≥ 0

}
;

(3) semi-metric δ on D1 as an extension of d∞|T on T by defining
δ ((x1, x2) ,∆) = (x2 − x1) /2.
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Spaces of persistence diagrams

Choose n ∈ N. Define spaces of persistence diagrams:

Definition

(1) the space of persistence diagrams on at most n points as
Dn =

(
D1)n /Sn, where the group of symmetries Sn acts on the

coordinates by permutation, i.e., we identify diagrams z =
(z1, z2, . . . , zn) , z′ = (z′1, z′2, . . . , z′n) ∈

(
D1)n iff there exists a matching φ

on {1, 2, . . . , n} so that zi = z′φ(i)

(2) a natural inclusion Dn ⊂ Dn+1 by appending point ∆. We will
frequently use this inclusion implicitly, for example by identifying
diagrams (a) and (a,∆). Consequently we can define D<∞ =

⋃
n∈N Dn.
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Bottleneck distance

Definition

For points z = (z1, z2, . . . , zn) , z′ = (z′1, z′2, . . . , z′n) in Dn define

A(z) = (z1, z2, . . . , zn,∆, . . . ,∆) ∈
(
D1)2n

A (z′) = (z′1, z′2, . . . , z′n,∆, . . . ,∆) ∈
(
D1)2n

The bottleneck distance is defined as

dB (z, z′) = min
φ∈S2n

max
i

δ
(
zi, z′φ(i)

)
Dn

B = (Dn, dB) and D<∞
B = (D<∞, dB). Note that D1

B is not
isometric to

(
D1, δ

)
.
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p-Wasserstein distance

Definition

For points z = (z1, z2, . . . , zn) , z′ = (z′1, z′2, . . . , z′n) in Dn

The p-Wasserstein distance is defined as

dW,p (z, z′) = min
φ∈S2n

(∑
i
δ
(
zi, z′φ(i)

)p)1/p

Dn
W,p = (Dn, dp) and D<∞

W,p = (D<∞, dp)
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Background

Coarse embeddings were once in the spotlight due to a remarkable
theorem by G. Yu [8], who showed that every discrete metric space Γ

which embeds coarsely into a Hilbert space satisfies the Coarse
Baum-Connes Conjecture. In particular, if Γ is a finitely generated group
with word length metric coarsely embeddable into a Hilbert space and
the classifying space BΓ has a homotopy type of a finite CW-complex,
then the Novikov Conjecture holds for Γ.
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Coarse Structure

Let X be a set. The product of two sets A,D ⊂ X2, denoted A ◦ D is
given by

A ◦ D =
{
(x, y) ∈ X2 | ∃z ∈ X 3 (x, z) ∈ A, (z, y) ∈ D

}
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Definition

Let X be a set. A coarse structure on X is a collection of subsets of
C ⊆ P(X2) satisfying ∆ ∈ C in addition to the following four closure
properties:

1 A ∈ C ⇒ D ∈ C for any D ⊆ A (closed under subsets)

2 A ∈ C ⇒ At ∈ C (closed under transpositions)

3 A,D ∈ C ⇒ A ∪ D ∈ C (closed under finite unions)

4 A,D ∈ C ⇒ A ◦ D ∈ C (closed under finite products)

A coarse space is a set X endowed with a coarse structure C. The sets
in C are called controlled sets. Any subset B of X for which B2 is
controlled is called bounded. A coarse space is connected if every point
(x, y) ∈ X2 lies in some controlled set.
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Example

Let X be a set. The first (trivial) example of a coarse structure on X is the
power set of X2, called the maximal coarse structure. Another is the
collection Cdis consisting of all sets containing only finite many points off
the diagonal ∆; this is called the discrete coarse structure on X. The
discrete coarse structure is the smallest, connected coarse structure on X.
Perhaps the most fundamental nontrivial example of a coarse space is a
metric space (X, d) endowed with the bounded coarse structure. This
is the structure consisting of all sets C such that

sup{d(x, y) | (x, y) ∈ C} < ∞
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Uniformly bounded

Let X be a coarse space. We say a collection of bounded sets {Bα} is
uniformly bounded if

⋃
B2
α is controlled. The definition comes from [7]
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Asymptotic dimension

Definition

Let n be a non-negative integer. We say that the asymptotic dimension
of a metric space X is less than or equal to n (asdimX ≤ n) iff for every
R > 0 the space X can be expressed as the union of n+ 1 subsets Xi,
with each Xi being an union of uniformly bounded R-disjoint sets.

The definition comes from [2]
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asdim(R) ≤ 1

Example

To see that asdim(R) ≤ 1 we need to express R as the union of two
families of uniformly bounded sets. See Figure 1 for a decomposition of
R into two such families. Here R is endowed with the bounded coarse
structure, the metric being the Euclidean metric.

. . .. . .

Figure: asdimR ≤ 1
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Coarse embedding and Coarse equivalence

Definition

Let f : X → Y be a function between metric spaces.

1 f is is said to be a coarse embedding if for i = 1, 2 there are
non-decreasing functions ρi : [0,∞) → [0,∞) with
ρ1(d(x1, x2)) ≤ d(f(x1), f(x2)) ≤ ρ2(d(x1, x2)) and with
limt→∞ ρ1(t) = ∞.

2 If, in addition, f is coarsely onto then f is said to be a coarse
equivalence. A function f : X → Y is said to be coarsely onto if there
is D > 0 such that the D-neighborhood of f(X) is all of Y (for every
y ∈ Y there is x ∈ X such that d(f(x), y) ≤ D).
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Asymptotic dimension is a coarse invariant

Let f : X → Y be a coarse equivalence. Then asdimX = asdim Y.

Proof.

If U0, . . . ,Un are r-disjoint, D-bounded families covering X then the
families f(U i) are ρ1(r)-disjoint and ρ2(D)-bounded. Since NR(f(X))

contains Y we see that taking families NR(f(U i)) will cover Y and be
(2R+ ρ2(D))-bounded and (ρ1(r)− 2R)-disjoint. Since ρi → ∞, r can be
chosen large enough for ρ1(r)− 2R to be as large as one likes. Therefore,
asdim Y ≤ asdimX. The same proof applied to a coarse inverse for f
proves that asdimX ≤ asdim Y.
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Union Theorem and Product Theorem of asymptotic

dimension

Theorem

Suppose X and Y are subspaces of a metric space Z. Then the following
hold:

Union Theorem asdim(X ∪ Y) = max{asdimX, asdimY} [2, Corollary 26].

Product Theorem asdim(X× Y) ≤ asdimX+ asdimY [2, Theorem 32].
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Topological dimension

Recall that the multiplicity of a cover of a metric space is the maximum
number of elements of the cover that can intersect. We will use this to
define tpological dimension for lower bounds of asymptotic dimension.
One can refer to [4] for details.
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Topological dimension

Definition

1 Let n be a non-negative integer. We say that the topological
dimension of a topological space X is less than or equal to n

(dimX ≤ n) iff for every open cover U of the space X there is an
open cover V of X of multiplicity less than or equal to n+ 1.

2 If X is a compact metric space, the above definition is equivalent to
the following: dimX ≤ n iff for every ε > 0, X has an ε-small open
cover of multiplicity n+ 1.
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An important Lemma

Lemma

Let p > 1. If for every R > 0 there is an isometric embedding of
([0,R]m, d∞) or ([0,R]m, dp) in X, then asdimX ≥ m.

One can refer to [Atish et al. [1] 2021 Lemma 2.12] for proof of this
lemma.
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An interesting result

For each p > 1 spaces D<∞
B and D<∞

W,p are not of finite asymptotic
dimension.

Proof.

For each R > 0 and n ∈ N we can isometrically embed ([0,R]n, d∞) or
([0,R]n, dp) into Dn

<∞ or D<∞
p respectively by mapping

(x1, x2, . . . , xn) 7→ (2R, 4R+ x1, 4R, 6R+ x2, . . . , 2nR, 2nR+ 2R+ xn). The
conclusion follows by Lemma above.
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A classical result of coarse embedding

Finiteness of asymptotic dimension is closely related to embeddability
questions, as the following well known result shows.

Theorem

[Roe, [7] Example 11.5] A metric space of finite asymptotic dimension
coarsely embeds in Hilbert space.
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Asymptotic dimension is an invariant of finite group action

Theorem

[Kasprowski, [5] Theorem 1.1] Let X be a proper metric space and F be a
finite group acting on X by isometries. Then X/F has the same
asymptotic dimension as that of X.
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Coarse disjoint union

Given a sequence of bounded metric spaces (Xn, dn) we can define a
metric d on their disjoint union

⊔
n Xn such that d restricted to Xn is dn,

and for i 6= j and xi ∈ Xi, xj ∈ Xj, d(xi, xj) > max{diam(Xi), diam(Xj)}.
Any two such metrics on

⊔
n Xn are coarsely equivalent and the resulting

space is called coarse disjoint union.
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In Theorem below we will consider Zk = {[0], · · · , [k− 1]}, the set of
integers modulo k ∈ N, as a metric space. The metric is defined as
d([i], [j]) = min{|i′ − j′| : [i′ − j′] = [i− j]}. This is the usual word metric
on the finitely generated group Zk.
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The application of asymptotic dimension in finitely

generated group

Theorem

[Dranishnikov et al, [3] Proposition 6.3]
Consider (Zn)

m as a metric space, where the integers mod n has the word
metric and the m-fold product has the max metric d∞. Let S be the
disjoint union of (Zn)

m (for all m, n ≥ 1). We define a metric d on S

whose restriction to each (Zn)
m coincides with its existing metric, and

such that d(x, y) > m+ n+ m′ + n′ for x ∈ (Zn)
m and y ∈ (Zn′)

m′ . Then
S does not coarsely embed in a Hilbert space.
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Finite determination

Often, an efficient way to decide coarse embeddability (and
non-embeddability) of metric spaces is the following result, which says
that this question is ”finitely determined”.

Theorem

[Nowak, [6] Theorem 3.4]
A metric space (X, d) admits a coarse embedding in a Hilbert space if
and only if for i = 1, 2 there are non-decreasing functions
ρi : [0,∞) → [0,∞) with limt→∞ ρ1(t) = ∞, such that for every finite
subset A ⊂ X there exists a map fA : A → ℓ2 satisfying
ρ1(d(x1, x2)) ≤ ‖fA(x1)− fA(x2)‖2 ≤ ρ2(d(x1, x2)) for all x1, x2 ∈ X.

Zeyang Ding SUSTech
The Space of Persistence Diagrams on n Points Coarsely Embeds into Hilbert Space



Contents

1 Backgound

2 Spaces of persistence diagrams and metric

3 Coarse Geometry

4 Compute Asymptotic Dimension of Spaces of Persistence Diagrams
with at most n points

5 Non-Embeddability results

6 References

Zeyang Ding SUSTech
The Space of Persistence Diagrams on n Points Coarsely Embeds into Hilbert Space



Connection between the bottleneck distance (Dn
B) and the

p-Wasserstein distances (Dn
W,p)

For each n ∈ N and p ≥ 1, Dn
B and Dn

W,p are coarsely equivalent.

Proof.

This can be checked by direct comparison of the definitions of these
metrics.
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Compute Asymptotic Dimension of Spaces of Persistence

Diagrams with at most n points

The main result of this section is the following. Here we will provide a
detailed proof for the case when n=1. The more general case can be
completed using induction. The proof in the original text is rather
technical, and one may refer to (Atish et al. [1] Theorem 3.2).

Theorem

For n ∈ N, asdimDn
W,p = asdimDn

B = 2n.
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The easiest case

The following lemma deals with the case n = 1.

Lemma

asdimD1
B = 2

One may refer to [1].
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Upper bounds

Figure: asdimD1
B ≤ 2

Zeyang Ding SUSTech
The Space of Persistence Diagrams on n Points Coarsely Embeds into Hilbert Space



Lower bounds

We now turn attention to inequality asdimD1
B ≥ 2. Given R > 0 the

subset B̃ = [0,R]× [2R, 3R] in D1
∞ is isometric to ([0,R]2, d∞). To verify

this note that B̃ is of diameter R and at distance 2R from the diagonal,
hence no optimal matching used when computing the induced distance
on B̃ pairs any point of B̃ to the diagonal.
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Lemma

For each h ∈ N every finite metric space (X, d) embeds isometrically into
D|X|

B above the horizontal line at height h.

Proof.

Let X = {x0, x1, . . . , xn} and R = diam(X). For each k define

f(xk) =
{(

3Ri, 3Ri+ 3R+ d(xk, xi) + h
)
| i = 1, 2, . . . , n

}
.

Note that f : X → f(X) ⊂ D|X|
B is an isometry. For precise proof, one can

refer to [Atish et al. [1] Lemma 4.1]
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Corollary

A coarse disjoint union of any collection of finite metric spaces
{Ai}i∈{1,2,...} embeds isometrically into D<∞

B . If for some M ∈ N we have
|Ai| ≤ M, ∀i, then the embedded space lies within DM

B .

Proof.

Using Lemma above we can isometrically embed each Ai into D|Ai|
B above

any height of our choosing. Starting with A1 we inductively embed Ai

into D<∞
B using Lemma above so that the y-coordinates of the embedded

Ai are at least maxj≤i diam(Aj) above the maximal y-coordinates of the
embedded Ai−1. Let Ã denote the embedded union of {Ai}i∈{1,2,...}. The
subspace metric on Ã turns Ã into a coarse disjoint union of {Ai}i∈{1,2,...}.
If for some M ∈ N we have |Ai| ≤ M, ∀i, then the embedding above maps
each Ai into DM

B by Lemma above, and hence Ã ⊂ DM
B .
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Theorem

D<∞
B does not coarsely embed into Hilbert space.

Proof.

Follows from Theorem of Dranishnikov above and last Corollary for the
coarse disjoint union of ((Z/m)n, d∞).
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