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Motivation for Studying Toric Varieties

Overview
The study of toric varieties is a wonderful part of algebraic geometry.
There are elegant theorems and deep connections with polytopes, polyhedra,
combinatorics, commutative algebra, and topology.

Fulton’s Insight
As noted by Fulton, “toric varieties have provided a remarkably fertile testing ground
for general theories.”

Educational Value
The concreteness of toric varieties provides an excellent context for someone
encountering the powerful techniques of modern algebraic geometry for the first time.
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The Torus.

A torus T ∼= (C∗)n as an affine variety and a group.

Character

χ : T → C∗

For any torus T , its characters form a free abelian group M of rank equal to dim T
and m ∈ M gives the character χm : T → C∗.

For example, m = (a1, . . . , an) ∈ Zn gives a character χm : (C∗)n → C∗

χm(t1, . . . , tn) = ta1
1 · · · t

an
n

All characters of (C∗)n arise this way.
The characters of (C∗)n form a group isomorphic to Zn .
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One-parameter subgroup

λ : C∗ → T

For any T , the one-parameter subgroups form a free abelian group N of rank equal to
the dim T and u ∈ N gives the one-parameter subgroup λu : C∗ → T .

For example, u = (b1, . . . , bn) ∈ Zn gives a one-parameter subgroup λu : C∗ → (C∗)n

λu(t) = (tb1 , . . . , tbn )

Consider 〈 , 〉 : M × N → Z :
(Intrinsic) χm ◦ λu : C∗ → C∗ given by t 7→ tℓ for some ℓ ∈ Z.
Then 〈m, u〉 = ℓ.
(Concrete) If T = (C∗)n with m = (a1, . . . , an) ∈ Zn , u = (b1, . . . , bn) ∈ Zn ,

〈m, u〉 =
n∑

i=1

aibi
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The Definition of Affine Toric Variety.

Definition
An affine toric variety is an irreducible affine variety V containing a torus TN ' (C∗)n

as a Zariski open subset such that the action of TN on itself extends to an algebraic
action of TN on V .
(By algebraic action, we mean an action TN × V → V given by a morphism.)

Example
C = V(x3 − y2) ⊆ C2

C \ {0} = C ∩ (C∗)2 = {(t2, t3) | t ∈ C∗} ' C∗ t 7→ (t2, t3)

Example
V = V(xy − zw) ⊆ C4

V ∩ (C∗)4 = {(t1, t2, t3, t1t2t−1
3 ) | ti ∈ C∗} ' (C∗)3 (t1, t2, t3) 7→ (t1, t2, t3, t1t2t−1

3 )
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Lattice Points.

A lattice is a free abelian group of finite rank.

A torus TN has lattices M (of characters) and N (of one-parameter subgroups).
A set A = {m1, . . . ,ms} ⊆ M gives characters χmi : TN → C∗.
Consider

ΦA : TN −→ Cs

ΦA(t) = (χm1(t), . . . , χms(t)) ∈ Cs.

YA := ImΦA is an affine toric variety.

Example
Let ΦA : (C∗)2 −→ Cd+1 defined by (s, t) 7→ (sd , sd−1t, . . . , std−1, td) extend to

Φ : C2 −→ Cd+1

Thus YA = ImΦ =: Ĉd , which is called the rational normal cone of degree d.
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Lemma
Let T1 and T2 be tori and let Φ : T1 → T2 be a morphism that is a group
homomorphism. Then the image of Φ is a torus and is closed in T2.

The map ΦA can be regarded as a map of tori

ΦA : TN −→ (C∗)s.

The image T = ΦA(TN ) is a torus.
The torus T of YA has character lattice ZA.
The dimension of YA is the rank of ZA.
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Toric Ideals.
ΦA induces

Φ̂A : Zs −→ M
that sends the standard basis e1, . . . , es to m1, . . . ,ms.
Consider the exact sequence

0 −→ L −→ Zs −→ M .

Given ℓ = (ℓ1, . . . , ℓs) ∈ L, set

ℓ+ =
∑
ℓi>0

ℓiei and ℓ− = −
∑
ℓi<0

ℓiei .

Note that ℓ = ℓ+ − ℓ− and the binomial

xℓ+ − xℓ− =
∏
ℓi>0

xℓi
i −

∏
ℓi<0

x−ℓi
i

vanishes on YA.

I(YA) = 〈xℓ+ − xℓ− | ℓ ∈ L〉 = 〈xα − xβ | α, β ∈ Ns and α− β ∈ L〉.
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Definition
Let L ⊆ Zs be a sublattice.

The ideal IL := 〈xα − xβ | α, β ∈ Ns and α− β ∈ L〉 is called a lattice ideal.
A prime lattice ideal is called a toric ideal.

Example
〈x3 − y2〉 ⊆ C[x, y]
〈xz − yw〉 ⊆ C[x, y, z,w]

〈xixj+1 − xi+1xj | 0 ≤ i < j ≤ d − 1〉 ⊆ C[x0, . . . , xd ]
The ideal generated by the 2× 2 minors of the matrix(

x0 x1 · · · xd−2 xd−1

x1 x2 · · · xd−1 xd

)
which is the ideal of the rational normal cone Ĉd
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Affine Semigroups.

Definition (Affine semigroup)
A semigroup is a set S with an associative binary operation and an identity
element.
A affine semigroup is a finitely generated commutative semigroup S , which can be
embedded in a lattice M .

There exists a finite set A ⊆ M such that

NA =

{∑
m∈A

amm | am ∈ N

}
= S .

A semigroup algebra C[S ] is the vector space over C with S as basis and
multiplication induced by the semigroup structure of S .

The simplest example of an affine semigroup is Nn ⊆ Zn .
Given a lattice M and a finite set A ⊆ M , we get the affine semigroup NA ⊆ M .
Up to isomorphism, all affine semigroups are of this form.
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We think of M as the character lattice of a torus TN .

C[S ] =

{∑
m∈S

cmχm | cm ∈ C and cm = 0 for all but finitely many m

}
,

with multiplication induced by

χm · χm′
= χm+m′

.

If S = NA for A = {m1, . . . ,ms}, then C[S ] = C[χm1 , . . . , χms ].
The affine semigroup Nn ⊆ Zn gives the polynomial ring

C[Nn ] = C[x1, . . . , xn ],

where xi = χei and e1, . . . , en is the standard basis of Zn .
If e1, . . . , en is a basis of a lattice M , then M is generated by
A = {±e1, . . . ,±en} as an affine semigroup. Setting ti = χei gives

C[M ] = C[t±1
1 , . . . , t±1

n ].

C[M ] is the coordinate ring of the torus TN .
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Let S ⊆ M be an affine semigroup. Then Spec(C[S ]) is an affine toric variety whose
torus has character lattice ZS , and if S = NA for a finite set A ⊆ M , then
Spec(C[S ]) = YA.

Equivalence of Constructions.
Let V be an affine variety. TFAE:

V is an affine toric variety .
V = YA for a finite set A in a lattice.
V is an affine variety defined by a toric ideal.
V = Spec(C[S ]) for an affine semigroup S .

Example
C = V(x3 − y2) ⊆ C2

TN = C \ {0} = C ∩ (C∗)2 = {(t2, t3) | t ∈ C∗} ' C∗ t 7→ (t2, t3)
A = {2, 3} ΦA(t) = (t2, t3)
YA is the curve x3 = y2. I(YA) = 〈x3 − y2〉
S = {0, 2, 3, . . .} C[S ] = C[t2, t3] ' C[x, y]/〈x3 − y2〉
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Example
V = V(xy − zw) ⊆ C4

TN ' (C∗)3

(t1, t2, t3) 7→ (t1, t2, t3, t1t2t−1
3 )

The lattice points used in this map can be
represented as the columns of the matrix1 0 0 1

0 1 0 1
0 0 1 −1

 .

I (YA) = 〈xy − zw〉 ⊆ C[x, y, z,w]
The corresponding semigroup S ⊆ Z3

consists of the N-linear combinations of the
column vectors. Figure: Cone corresponding to V = V(xy−zw)
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Convex Polyhedral Cones.
Fix a pair of dual vector spaces MR and NR.

A convex polyhedral cone in NR is a set of the form

σ = Cone(S) =
{∑

u∈S
λuu | λu ≥ 0

}
⊆ NR,

where S ⊆ NR is finite.
Given a polyhedral cone σ ⊆ NR, its dual cone is defined by

σ∨ = {m ∈ MR | 〈m, u〉 ≥ 0 for all u ∈ σ}.

A polyhedral cone σ ⊆ NR is rational if σ = Cone(S) for some finite set S ⊆ N .
The ray generators of the edges is the minimal generators of σ = Cone(S).
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Cone and Semigroup Algebras.
Given a rational polyhedral cone σ ⊆ NR, Sσ = σ∨ ∩M is an affine semigroup.
Then

Uσ = Spec(C[Sσ]) = Spec(C[σ∨ ∩M ])

is an affine toric variety.

Example
Fix 0 ≤ r ≤ n and set σ = Cone(e1, . . . , er) ⊆ Rn . Then

σ∨ = Cone(e1, . . . , er ,±er+1, . . . ,±en)

Uσ = Spec(C[x1, . . . , xr , x±1
r+1, . . . , x

±1
n ])
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Faces

Given m 6= 0 in MR,

Hm = {u ∈ NR | 〈m, u〉 = 0} ⊆ NR

H+
m = {u ∈ NR | 〈m, u〉 ≥ 0} ⊆ NR

If σ ⊆ H+
m , then Hm is a supporting hyperplane and H+

m is a supporting
half-space.

σ∨ = Cone(m1, . . . ,ms)←→ σ = H+
m1
∩ · · · ∩ H+

ms .

A face of σ is τ = Hm ∩ σ for some m ∈ σ∨, written τ � σ.
Using m = 0 , σ � σ.
Every face of σ is a polyhedral cone.
An intersection of two faces of σ is again a face of σ.
A face of a face of σ is again a face of σ.

A facet of σ is a face τ of codimension 1, i.e., dim τ = dimσ − 1.
An edge of σ is a face of dimension 1.
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Given a face τ � σ ⊆ NR, define

τ⊥ = {m ∈ MR | 〈m, u〉 = 0 for all u ∈ τ}
τ∗ = {m ∈ σ∨ | 〈m, u〉 = 0 for all u ∈ τ}

= σ∨ ∩ τ⊥.

We call τ∗ the dual face of τ .
A cone is called strongly convex if the origin is a face.

σ is strongly convex ⇐⇒ {0} is a face of σ
⇐⇒ σ contains no positive-dimensional subspace of NR

⇐⇒ σ ∩ (−σ) = {0}
⇐⇒ dimσ∨ = n.

Let σ ⊆ NR be a strongly convex rational polyhedral cone.
σ is smooth or regular if its minimal generators form part of a Z-basis of N
σ is simplicial if its minimal generators are linearly independent over R.
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Faces and Affine Open Subsets.
Let σ ⊆ NR be a strongly convex rational polyhedral cone and let τ � σ be a face.
Then we can find m ∈ σ∨ ∩M such that τ = Hm ∩ σ.
Then C[Sτ ] = C[τ∨ ∩M ] is the localization of C[Sσ] = C[σ∨ ∩M ] at χm ∈ C[Sσ].
In other words,

C[Sτ ] = C[Sσ]χm .

Uτ = Spec(C[Sτ ]) = Spec(C[Sσ]χm) = (Spec(C[Sσ]))χm ⊆ Uσ.

If τ = σ1 ∩ σ2, then
σ1 ∩Hm = τ = σ2 ∩Hm ,

for some m ∈ σ∨
1 ∩ (−σ∨

2 ) ∩M .
This shows that

Uσ1 ⊇ (Uσ1)χm = Uτ = (Uσ2)χ−m ⊆ Uσ2 .

A fan Σ in NR is a finite collection of cones σ ⊆ NR such that:
Every σ ∈ Σ is a strongly convex rational polyhedral cone.
For all σ ∈ Σ, each face of σ is also in Σ.
For all σ1, σ2 ∈ Σ, the intersection σ1 ∩ σ2 is a face of each (hence also in Σ).
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Example
Let σ1 = Cone(e1 + e2, e2), and let σ2 = Cone(e1, e1 + e2) in NR = R2.
Then τ = σ1 ∩ σ2 = Cone(e1 + e2).
The dual cones σ∨

1 = Cone(e1,−e1 + e2), σ∨
2 = Cone(e1 − e2, e2), and τ∨ = σ∨

1 + σ∨
2 .

Note τ = σ1 ∩Hm = σ2 ∩H−m , where m = −e1 + e2 ∈ σ∨
1 and −m = e1 − e2 ∈ σ∨

2 .
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The Toric Variety of a Fan.
Consider the collection of Uσ = Spec(C[Sσ]), where σ runs over all cones in a fan Σ.
Let σ1 and σ2 be any two of these cones and let τ = σ1 ∩ σ2. We have an isomorphism

gσ2,σ1 : (Uσ1)χm ' (Uσ2)χ−m

which is the identity on Uτ .
The compatibility conditions for gluing the affine varieties Uσ along the subvarieties
(Uσ)χm are satisfied.
Hence we obtain an abstract variety XΣ associated to the fan Σ.
Example
The fan Σ has three 2-dimensional cones
σ0 = Cone(e1, e2),
σ1 = Cone(−e1 − e2, e2),
σ2 = Cone(e1,−e1 − e2),
together with the three rays
τij = σi ∩ σj for i 6= j,
and the origin.
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The toric variety XΣ is covered by the affine opens

Uσ0 = Spec(C[Sσ0 ]) ' Spec(C[x, y])
Uσ1 = Spec(C[Sσ1 ]) ' Spec(C[x−1, x−1y])
Uσ2 = Spec(C[Sσ2 ]) ' Spec(C[xy−1, y−1]).

The gluing data on the coordinate rings is given by

g∗10 : C[x, y]x ' C[x−1, x−1y]x−1

g∗20 : C[x, y]y ' C[xy−1, y−1]y−1

g∗21 : C[x−1, x−1y]x−1y ' C[xy−1, y−1]xy−1 .

If we use the usual homogeneous coordinates (x0, x1, x2) on P2,
then x 7→ x1

x0 and y 7→ x2
x0 identifies the standard affine open Ui ⊆ P2 with Uσi ⊆ XΣ.

Hence we have recovered P2 as XΣ.
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If the fan Σ has only one 2-dimensional cone σ = R2, note that in this case σ is not
strongly convex, σ∨ = Cone(e1), then

Uσ = Spec(C[σ∨ ∩M ]) = Spec(C).

If the fan Σ has only one 2-dimensional cone σ = Cone(e1, e2,−e2), note that in this
case Σ is also not strongly convex，σ∨ = Cone(e1), then

Uσ = Spec(C[σ∨ ∩M ]) = Spec(C[x1]).

In general,

dim Uσ = n ⇐⇒ the torus of Uσ is TN = N ⊗Z C∗ ⇐⇒ σ is strongly convex.

This is why we emphasize the condition of strongly convexity.
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Polytopes.
A polytope in MR is a set of the form

P = Conv(S) =
{∑

m∈S
λmm | λm ≥ 0,

∑
m∈S

λm = 1

}
⊆ MR,

Given a nonzero vector u in the dual space NR and b ∈ R, define

Hu,b = {m ∈ MR | 〈m, u〉 = b} and H+
u,b = {m ∈ MR | 〈m, u〉 ≥ b}.

A subset Q ⊆ P is a face of P, written Q � P, if there are u ∈ NR \ {0}, b ∈ R with

Q = Hu,b ∩ P and P ⊆ H+
u,b.

P =
∩

F facet
H+

F = {m ∈ MR | 〈m, uF 〉 ≥ −aF for all facets F ≺ P}

where (uF , aF ) ∈ NR × R is unique up to multiplication by a positive real number.
23 / 24



Application
Let X be a projective simplicial toric variety of dimension n, associated with some
complete fan in a lattice N ∼= Zn . The set of rays of Σ is denoted by Σ(1). There
exists a bijection between prime torus-invariant divisors and rays. The divisors are
symbolized by {Di | i ∈ Σ(1)}. Let I ⊂ Σ(1) and J = Σ(1)− I . Denote

OJ = {D ∼
∑

dρDρ | dρ > 0, ρ ∈ I and dρ < 0, ρ ∈ J}.

Let PJ
X denote the subset of PX consisting of the union of all facets corresponding to

rays in J .
Ampq(X) = Pic(X)−

∪
i≥q

∪
H̃ i(PJ

X ) ̸=0

[OJ ].
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