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Thom spectrum functor

Definition (Thom spectrum functor)
Let (f : X → BO) ∈ Top↓BO , then the standard filtration XV = f −1(BO(V )) gives a
Thom prespectrum

Mp(f )(V ) = Th(E(XV ) → XV ) = E(XV )+ ∧O(V )+ SV

The spectrification M (f ) of Mp(f ) is called the Thom spectrum corresponding f .

Remark
(i) Actually, any filtration lim−→V⊂R∞ FV X = X where FV X is a closed subspace of X
such that FV X ⊂ XV gives the same Thom spectra (though not the same prespectra).
(ii) For G = Sp(∞),U (∞),SU (∞),O(∞),SO(∞), almost all arguments about
Thom spectra throughout this talk apply for them. In the following content we always
use O(∞) for convenience.
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Properties of the Thom spectrum functor
For any spectrum E ∈ Sp and any V ⊂ R∞ , Ω∞E admits a right O(V )-action since
Ω∞E = E0 = ΩV EV = F(SV ,EV ). These actions are coherent between different V ,
so we actually get a right O-action on Ω∞E .

Theorem
The Thom spectrum functor induces a continuous adjoint pair

Top↓BO
M(−)

⇄
EO×OΩ∞(−)

Sp

Given a map (f : X → BO) ∈ U/BO and E ∈ Sp , then

HomSp(Mf ,E) = HomU [O](f ∗EO,Ω∞E) = HomU/BO(X ,EO ×O Ω∞E)
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Proof
First

HomSp(Mf ,E) = HomSp(colimV MXV ,E) = limV HomSp(MXV ,E)

Second we define EXV and Z (V ) by pullback diagrams,
EXV EO(V )

XV BO(V )

and
ZV EO(V )×O(V ) O

XV BO(V )

then
limV HomSp(MXV ,E) = limV HomU∗(EXV+ ∧O(V ) SV ,EV ) =

limV HomU∗[OV+](EXV+,Ω
V EV ) = limV HomU [OV ](EXV ,Ω∞E) =

limV HomU [O](EXV×O(V )O,Ω∞E) = limV HomU [O](ZV ,Ω∞E) = HomU [O](f ∗EO,Ω∞E)

Since equivariant maps from a principle G-bundle to a G-space are equivalent to
sections of the associated bundle, i.e.
HomU [O](f ∗EO,Ω∞E) = HomU/X (X , f ∗EO×O Ω∞E) = HomU/BO(X ,EO×O Ω∞E)
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Properties of the Thom spectrum functor

Proposition

This adjunction Top↓BO
M(−)

⇄
EO×OΩ∞(−)

Sp is actually a Quillen adjunction since

M (Sn−1 → Dn) is a cell pair of spectra and M (Dn × 0 → Dn × I ) is a weak
equivalent cell pair for those morphisms over BO.

Proposition
Let f : X → BO be a map and A a space. Let g be the composite
X × A → X → BO, where the first map is the projection away from A. Then
T (g) = A+ ∧ T (f ), which implies Thom spectrum functor preserves tensors, and
hence is a topological Quillen functor.

Proposition
Thom spectrum functor T (−) preserves weak equivalences. Any Thom spectrum T (f )
from a map F : X → BO is (−1)-connective.
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Monad and Thom spectrum functor

Proposition
Let V1,V2 be two real universes.
(i) Given maps B → L(V1,V2) and f : X → BO(V1), denote g to be the composition
B × X → B × BO(V1) → BO(V2). Then we have the natural isomorphism
T (g) ∼= B n T (f ).
(ii) Given maps f : X → BO(V1) and g : Y → BO(V2), denote f × g to be the
composition X × Y → BO(V1)× BO(V2) → BO(V1 ⊕ V2). Then
T (f × g) ∼= T (f ) ⊼ T (g).

Proposition
Let L(n) = L(R∞×n ,R∞), then for any map f : X → BO we have

T (
⊔
n≥0

L(n)×Σn Xn →
⊔
n≥0

L(n)×Σn BOn → BO) =
∨
n≥0

L(n)×Σn T (f )⊼n
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Monad and Thom spectrum functor

Lemma
Let C and D be topological bicomplete categories, and A : C → C and B : D → D be
continuous monads. Further suppose that there is a continuous functor F : C → D
which is coherent with the monad structure and therefore yields a functor
F : C[A] → D[B].
If F : C → D is left adjoint functor preserving tensors, and the monads A and B
preserve reflexive coequalizers, then F : C[A] → D[B] is still a left adjoint functor
preserving tensors.

Theorem
Thom spectrum functor induces topological Quillen adjoint pairs

Top[L(1)]↓BO ⇌ Sp[L(1)] and Top[E∞]↓BO ⇌ Sp[E∞].
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Diagonal and Thom isomorphism

Definition (coaction)
For any map f : X → BO, the diagonal induces a coaction X → X × X in Top↓BO,
where X × X → BO is the projection of the second variable. It gives a natural
coaction on Thom spectra: Mf → X+ ∧ Mf .

Definition (Thom morphism)
With the same hypothesis above, given a homotopy commutative ring spectrum E and
a morphism of spectra Mf → E we have a natural morphism
E ∧ Mf → E ∧ X+ ∧ Mf → E ∧ X+ ∧ E → E ∧ X+ in Ho(Sp). It induces a natural
homological morphism ϕf : E∗(Mf ) → E∗(X).

Under certain condition ϕf will be an isomorphism, which is called Thom isomorphism.
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Diagonal and Thom isomorphism

Theorem (Thom isomorphism)
Let G = Sp(∞),U (∞),SU (∞),O(∞),SO(∞) or Spin(∞). Let E be a homotopy
commutative ring (phantom-)spectrum.
(i) Given a (phantom) ring spectrum morphism MG → E , then for any map X → BG
the Thom morphism E∗(Mf ) → E∗(X) is an isomorphism.
Moreover, if X is E∞ and f is an E∞ map, then E∗(Mf ) → E∗(X) is an isomorphism
of E∗-algebras.
(ii) Given an E∞ space X and an E∞ map f : X → BG. Let Mf → E be a (phantom)
ring spectrum morphism. If X is 0-connected, then E∗(Mf ) → E∗(X) is an
isomorphism of E∗-algebras.

Example
Let MO → HZ/2 and MU → HZ be ring spectrum morphisms from the 0-th
postnikov tower. Then we have natural Thom isomorphisms
H∗(MO;Z/2) → H∗(BO;Z/2) and H∗(MU ) → H∗(BU ).
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Infinite loop space machine
We first introduce some consequences of infinite loop space machine.

Theorem (Additive infinite loop space machine, in ABGHR)
Let C be a cofibrant unital E∞ operad in Top and f : C∗ → Ω∞Σ∞ be a morphism of
monads on Top∗. Then the Quillen pair (Σf ,Ωf ) induces a equivalence of categories
enriched in Ho(Top) if we restrict it to the following subcategories

group-like Ho(E∞-spaces) ⇌ (−1)-connective Ho(Sp)

where Σf (−) = Σ∞ ⊗C∗ (−) is the coequalizer of the following diagram in Sp

Σ∞C∗X ΣX Σf X

Σ∞Ω∞Σ∞X

Σ∞µ

And Ωf X = Ω∞X is endowed with the C∗-action C∗Ω
∞X → Ω∞Σ∞Ω∞X → Ω∞X .
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Uniqueness of infinite loop space machine

Theorem (Uniqueness of additive infinite loop space machine, May 77)
We define an infinite loop space machine to be an adjoint pair (F ,G)

Ho(E∞-spaces)
F
⇄
G

(−1)-connective Ho(Sp) such that

(1) The composition
(−1)-connective Ho(Sp) G→ Ho(E∞-spaces) → CMon(Ho(Top∗)) is equivalent to Ω∞;
(2) For any X ∈ Ho(E∞-spaces), X → GF(X) is a group completion, which means
π0GF(X) is a group and H∗(X)[(π0X)−1] → H∗GF(X) is isomorphic.
Now, if (F1,G1) and (F2,G2) are two infinite loop space machines, then there exists a
natural equivalence between F1 and F2.

Remark
The existence of infinite loop space implies that for any group-like E∞-space X , the
induced pointed H -space of it is actually an H -group because X ∼= Ω∞FX in
CMon(Ho(Top∗)) and Ω∞FX is a pointed H -group.
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Connective K-theory and E∞ structures
We also consider the connective complex K -theory bu, so bu∗ = Z[v], |v| = −2 and
bu2t(X) = [X ,BU 〈2t〉]. To make this true when t = 0, we adopt the convention that
BU 〈0〉 = Z× BU . Multiplication by vt : Σ2tbu → bu gives the (2t − 1)-connective
cover of bu. We define BU 〈2t〉 = Ω∞Σ2tbu. Under this identification, we a sequence
of morphisms in Ho(Top[E∞])

... → BU 〈2k〉 → ... → BU 〈6〉 → BSU → BU → BU 〈0〉

derived from infinite loop space machine.

Proposition
Combine with the Thom spectrum functor Top[E∞]↓BU ⇌ Sp[E∞], the sequence
above induces a new sequence of morphisms in Ho(Sp[E∞])

... → MU 〈2k〉 → ... → MU 〈6〉 → MSU → MU → MP.
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Connective K-theory and cocycles
Firstly define the map ρ0 : P → 1× BU ⊂ BU 〈0〉 just to be the map classifying the
tautological line bundle L.
As for t > 0, let L1, . . . ,Lt be the obvious line bundles over P t . Let xi ∈ bu2

(
P t) be

the bu-theory Euler class, given by the formula

vxi = 1− Li .

Then we have the isomorphisms

bu∗ (P t) ∼= Z[v][[x1, . . . , xt ]]

The class
∏

i xi ∈ bu2t (P t) gives the map ρt : P t = (CP∞)t → BU 〈2t〉.

Remark

Note that the composition P t ρt−→ BU 〈2t〉 → BU 〈0〉 classifies the bundle
∏

i (1− Li).
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n-cocycles in a Cartesian monoidal category

Definition
Let C be a category admitting finite products. If A and T are abelian monoid objects
in CMon(C ), we define C 0(A,T ) to be the group

C 0(A,T )
def
= HomC (A,T )

and for k ≥ 1 we let C k(A,T ) be the subgroup of f ∈ HomC (Ak ,T ) such that
(a) f (a1, . . . , ak−1, 0) = 0
(b) f (a1, . . . , ak) is symmetric in the ai ;
(c) f (a1, a2, a3, . . . , ak) + f (a0, a1 + a2, a3, . . . , ak) =
f (a0 + a1, a2, a3, . . . , ak) + f (a0, a1, a3, . . . , ak) , when k ≥ 2.

Remark
We refer to (c) as the “cocycle” condition for f . If T is an abelian group object, then
in definition (a) can be replaced by (a)’: f (0, 0, ..., 0) = 0.
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n-cocycles in algebraic geometry
From definition we can make n-cocycles a sheaf as the following: let X ,Y are
commutative momoid fppf sheaves over S , we define C k(X ,Y )(T ) = C k(XT ,YT ). It
is actually a representable commutative monoid sheaf in Sh(Sch/S)fppf in certain case.

Proposition
Let G be a formal group over a scheme S . Then for all k, the functor C k (G,Gm) is
an S-affine commutative group scheme.
Proof: It suffices to work k ≥ 1 and locally on S , so we may assume S = Spec(R) and
choose a coordinate x on G. We define power series g0, . . . , gk by

gi =


i = 0 f (0, . . . , 0)
i < k f (x1, . . . , xi−1, xi+1, xi , . . . , xk) f (x1, . . . , xk)

−1

i = k f (x1, . . . , xk) f (x0 +F x1, x2, . . .)−1f (x0, x1 +F x2, . . .)f (x0, x1, x3, . . .)−1

Let I be the ideal in R generated by all the coefficients of all the power series gi − 1.
It is not hard to check Spec(R/I ) has the universal property that defines C k (G,Gm).
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Even spaces

Definition
We say a space X to be “even” iff H∗(X) is concentrated in even degrees and Hn(X)
is free abelian for all n.

Lemma (Hatcher 4C.1)
If X is even and simply-connected, then there exists a CW approximation W → X
such that W only consists of cells of even degrees.

Proposition
(1) Let E be an EWP commutative ring (phantom-)spectrum. Then for any even
space X , the A-T spectral sequence H∗(X ;E∗) =⇒ E∗(X) collapses . Therefore
E∗(X) is a free E∗-module and E∗(X) → Hom∗

E∗
(E∗X ,E∗) is bijective.

(2) The E0(X) is a cocommutative E0-coalgebra by kunneth theorem. If X is an even
H-space, we define XE = Spf E0X , then the natural Cartier morphism
Spec E0X → HomGrp/E(XE ,Gm,E) is isomorphic, which is the special Cartier duality.
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n-cocycles in topology

Proposition
Let X be an even commutative H-space, we have the following diagram in
CMon(Sets) for any k ≥ 0,
C k(P,X) C k

E0−CcoAl(E0P,E0X) HomMon/E(XE ,C k(PE ,Gm,E))

C k(PE ,Mm,E)(Spec E0X) C k(PE ,Gm,E)(Spec E0X)

where P = CP∞ is with the H-structure by tensor product of line bundles, and where
PE = Spf E0P, XE = Spec E0X . The dashed liftings exist only when k ≥ 1 or X is an
H -group, and in those 2 cases all cocycle sets above are abelian groups.

Apply it to ρt ∈ C t(P,BU 〈2t〉), we get morphisms of commutative group schemes
over Spec(E0) for all t ≥ 0

ft : Spec E0BU 〈2t〉 → C k(PE ,Gm,E).
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Algebro-geometric interpretation of some E-homology rings
The classical theory about the complex orientation tells us f0 and f1 are isomorphisms.
Furthermore, we have the following

Theorem (Ando-Hopkins-Strickland)

The morphism fk : Spec E0BU 〈2k〉 → C k(PE ,Gm,E) is an isomorphism of group
schemes over Spec E0 when 0 ≤ k ≤ 3.

This theorem is, actually, the most technical part in [AHS], which involves amounts of
calculus in both algebraic topology and algebraic geometry.
Now let us delay the proof and consider the following definition

Definition
If G and T are abelian group objects, and if k ≥ 0 and f ∈ C k(G,T ), then let
δ(f ) ∈ C k+1(G,T ) be the map given by the formula for k ≥ 1
δ(f ) (a0, . . . , ak) = f (a0, a2, . . . , ak) + f (a1, a2, . . . , ak)− f (a0 + a1, a2, . . . , ak) .
For k = 0, the map should be δ(f )(a) = f (0)− f (a)
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δ-maps
It is clear that δ generalizes to abelian groups in any category with products. We leave
it to the reader to verify the following.
Proposition
For k ≥ 0, the map δ induces a homomorphism of groups

δ : C k(G,T ) → C k+1(G,T )

Moreover, if G and T are formal groups over a scheme S , then δ induces a
homomorphism of group schemes δ : C k(G,T ) → C k+1(G,T ).

Proposition
The map ρt is contained in the subgroup C t(P,BU 〈2t〉) of bu bu2t (P t) and satisfies

v∗ρt+1 = δ (ρt) ∈ C t+1(P,BU 〈2t〉).
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δ-maps
Proof of the proposition above: When t ≥ 1, v∗ρt+1 = v · x1 · x2 · ... · xt+1 and
δ (ρt) = x0 ·x2 · ... ·xt+1+x1 ·x2 · ... ·xt+1− (x0+bu x1) ·x2 · ... ·xt+1 = v ·x1 ·x2 · ... ·xt+1.

= [x0 + x1 − (x0 + x1 − v · x1x2)] · x2 · ... · xt+1 = v · x1 · x2 · ... · xt+1

, i.e. v∗ρt+1 = δ (ρt) ∈ C t+1(P,BU 〈2t〉).

Corollary
By the fact v∗ρt+1 = δ (ρt) ∈ C t+1(P,BU 〈2t〉) , we have the following diagram

BU 〈2t〉E C t(PE ,Gm,E)

BU 〈2t + 2〉E C t+1(PE ,Gm,E)

ft

t ≥ 0 δ

ft+1
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n-cocycles of a line bundle

Definition
Suppose that k ≥ 1 and G is an abelian big-Zariski-sheaf over S . Given a subset
I ⊆ {1, . . . , k}, we define σI : Gk

S → G by σI (a1, . . . , ak) =
∑

i∈I ai , and we write
LI = σ∗

IL, which is a line bundle over Gk
S . We also define the line bundle Θk(L) over

Gk
S by the formula

Θk(L) def
=

⊗
I⊂{1,...,k}

(LI )
(−1)|I|

Finally, we define Θ0(L) = L For example we have

Θ0(L)a = La , Θ
1(L)a =

L0

La
, Θ2(L)a,b =

L0 ⊗ La+b
La ⊗ Lb

Θ3(L)a,b,c =
L0 ⊗ La+b ⊗ La+c ⊗ Lb+c
La ⊗ Lb ⊗ Lc ⊗ La+b+c
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We observe three facts about these bundles.
(i) Θk(L) has a natural rigid structure for k > 0.
(ii) For each permutation σ ∈ Σk , there is a canonical isomorphism

ξσ : π∗
σΘ

k(L) ∼= Θk(L)
where πσ : Gk

S → Gk
S permutes the factors. Moreover, these isomorphisms compose in

the obvious way.
(iii) There is a canonical identification (of rigid line bundles over Gk+1

S )
Θk(L)a1,a2,... ⊗Θk(L)−1

a0+a1,a2,... ⊗Θk(L)a0,a1+a2,... ⊗Θk(L)−1
a0,a1,...

∼= 1

Definition
A Θk-structure on a line bundle L over a group G is a trivialization s of the line
bundle Θk(L) such that
(i) for k > 0, s is a rigid section;
(ii) s is symmetric in the sense that for each σ ∈ Σk , we have ξσπ

∗
σs = s;

(iii) the section
s (a1, a2, . . .)⊗ s (a0 + a1, a2, . . .)−1 ⊗ s (a0, a1 + a2, . . .)⊗ s (a0, a1, . . .)−1

corresponds to 1 under the isomorphism above.
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n-cocycles of a line bundle
A Θ3-structure on a line bundles is called by a cubical structure.

Definition
We write C k(G;L) for the set of Θk-structures on L over G. Note that C 0(G;L) is
just the set of trivializations of L, and C 1(G;L) is the set of rigid trivializations of
Θ1(L). We also define a functor from rings to sets by

C k(G;L)(R) =
{
(u, f ) | u : spec(R) → S , f ∈ C k

spec(R) (u
∗G; u∗L)

}

Remark
Note that for the trivial line bundle OG , the set C k (G;OG) reduces to that of the
group Ck (G,Gm) of cocycles introduced previously.
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Torsors and Thom sheaves
For any two line bundles L1,L2, we have natural
C k(G;L1)× C k(G;L2) → C k(G;L1 ⊗ L2) by (s1, s2) 7→ s1 ⊗ s2. Consequently, let
L1 be trivial, then we can get a natural group action
C k(G;Gm)× C k(G;L) → C k(G;L) for any line bundle L.

Proposition
If G is a formal group over S , and L is a line bundle over G trivializable Zariski locally
on S , then the functor C k(G;L) is a scheme, whose formation commutes with change
of base. Moreover, C k(G;L) is a torsor for C k (G,Gm).

Now turn to the topology.

Definition
Suppose that X is a finite even complex and V is a virtual complex vector bundle
classified by a X → Z × BU . We write XV for its Thom spectrum. The coaction of
the Thom spectrum makes E0XV an E0X -module. By Thom isomorphism Zariski
locally, it is a line bundle further.
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Torsors and Thom sheaves

Proposition
Suppose that X is a finite complex and V is a virtual bundle over X . We shall write
L(V ) for line bundle Ẽ0XV , and L defines a functor from vector bundles over X to
line bundles over XE .
(i) If V and W are two virtual complex vector bundles over X then there is a natural
isomorphism

L(V ⊕ W ) ∼= L(V )⊗ L(W )

and so L(V − W ) = L(V )⊗ L(W )−1.
(ii) Moreover, if f : Y → X is a map of spaces, then there is a natural isomorphism
f ∗L(V ) ∼= L (f ∗V ) of line bundles over YE .

If X is an (infinite) even complex and V is a virtual bundle classified by
f : X → BU 〈0〉, then L(V ) is a quasi-coherent sheaf on Spf E0X by taking colimits.
Moreover, the proposition above also applies for infinite even complex X .
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Relation to MU<2k>

Lemma
Let T (ρ0) = Σ∞Th(L) is the Thom spectrum associated with ρ0 : P → Z × BU by
the tautological bundle L. Then the Thom sheaf E0T (ρ0) is naturally isomorphic to
I(0) = ker(E0P → E0) in Qcoh(PE). This isomorphism is induced by a homotopy
equivalence of P+-comodule pointed spaces P → Th(L).

For 1 ≤ i ≤ k, let Li be the line bundle over the i factor of Pk . Recall that the map
ρk : Pk → BU 〈2k〉 pulls the tautological virtual bundle over BU 〈2k〉 back to the
bundle

V =
⊗

i
(1− Li)

Passing to Thom spectra gives a map

(Pk)V → MU 〈2k〉

which determines an element sk of E0MU 〈2k〉⊗̂E0
(
(Pk)V )

.
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Thom sheaves and Θk-structures
Together with properties of L give an isomorphism

L(V ) ∼= Θk(I(0))

of line bundles over Pk
E . With this identification, sk is a section of the pull-back of

Θk(I(0)) along the projection MU 〈2k〉E → SE .

Proposition
The section sk is a Θk-structure, and hence an element of C k (PE ; I(0)) (MU 〈2k〉E).
Proof: This is analogous to the case of ρk .

Let
MU 〈2k〉E gk−→ C k (PE ; I(0))

be the map classifying the Θk-structure sk . We note that the isomorphism
BU 〈2k〉E ∼= C k (PE ,Gm) gives C k (PE ; I(0)) the structure of a torsor for the group
scheme BU 〈2k〉E when k ≤ 3. It is worth noting that an equivariant morphism
between torsors automatically become an isomorphism. Actually, the gk is the case.
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Orientations and Θk-structures

Proposition
The following diagram is commutative

BU 〈2k〉E × MU 〈2k〉E C k (PE ;Gm,E)× C k (PE ; I(0))

MU 〈2k〉E C k (PE ; I(0))

which is concluded by the following naturality of coactions on Thom spectra

(Pk)V Pk
+ ∧ (Pk)V

MU 〈2k〉 BU 〈2k〉+ ∧ MU 〈2k〉
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Orientations and Θk-structures

Theorem (Ando-Hopkins-Strickland)

The morphism MU 〈2k〉E gk−→ C k (PE ; I(0)) is an isomorphism of BU 〈2k〉E -torsors
when 0 ≤ k ≤ 3.

Since MU 〈2k〉 is a bounded-below even spectrum when k ≤ 3, we have natural
isomorphisms
[MU 〈2k〉,E ] = E0(MU 〈2k〉) → HomE∗(E∗MU 〈2k〉,E∗) = HomE0(E0MU 〈2k〉,E0)
and

[MU 〈2k〉,E ]ring = HomE0−Al(E0MU 〈2k〉,E0) = MU 〈2k〉E(SE).

Corollary (Orientations correspond Θk-structures)
When k ≤ 3, the isomorphism gk induces a bijection

[MU 〈2k〉,E ]ring → C k (PE ; I(0)) (SE).
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Preliminaries for algebraic geometry

Theorem (Theorem of the cube)
Let X → S be an abelian scheme over S . Then for any L ∈ Pic(X), the
Θ3(L) ∼= p∗M for some M ∈ Pic(S) where p denote the projection
XS × XS ×S X → S .
Furthermore, OS ∼= e∗Θ3(L) is naturally rigidificated, so
M ∼= e∗p∗M ∼= e∗Θ3(L) ∼= OS is trivial, and hence Θ3(L) is also trivial.

Lemma
Let p : X → S be a proper smooth morphism with geometrically connected fibers, then
(i) The natural OS → p∗OX is isomorphic;
(ii) Let e : S → X be a section, and let L1,L2 be trivializable line bundles on X , then

HomOX (L1,L2) → HomOS (e
∗L1, e∗L2)

is bijective.
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Preliminaries for algebraic geometry

Theorem (Unique cubical structure for abelian schemes)
Let p : X → S be an abelian scheme over S . Then for any L ∈ Pic(X), there exists
exactly one Θ3-structure on L.

Proof: Since HomOX3 (OX3 ,Θ3(L)) → HomOS (OS , e∗Θ3(L)) is bijective by lemma
above. The natural rigidification OS

1−→ e∗Θ3(L) determines unique trivialization
u : OX3 → Θ3(L). Recall the axioms of cubical structures:
(i) s(0) = 1;
(ii) s(aσ1 , aσ2 , aσ3) = s(a1, a2, a3) is symmetric for any σ ∈ Σ3 ;
(iii) the section
s (a1, a2, a3)⊗ s (a0 + a1, a2, a3)−1 ⊗ s (a0, a1 + a2, a3)⊗ s (a0, a1, a3)−1 = 1.
However, all conditions automatically hold for u by u(0) = 1 when we pullback to S
along e, which means u is exactly the unique cubical structure.
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σ-orientations for elliptic cohomology theories

Proposition
Let E → F be a ring (phantom-)morphism between EWP ring (phantom-)spectra, and
MU 〈2k〉 → E and MU 〈2k〉 → F be two orientations. Then

MU 〈2k〉

E F

commutes if and only if

SF SE

MU 〈2k〉F MU 〈2k〉E

commutes for the corresponding sections. 51 / 53



σ-orientations for elliptic cohomology theories

Theorem
(I) For any elliptic cohomology theories E we have natural σ-orientation MU 〈6〉 → E .
(II) The σ-orientations commute for any morphism of elliptic cohomology theories
E → F with morphism C1 → C2 of elliptic curves.

MU 〈2k〉

E F
commutes by

MU 〈6〉F C 3 (PF ; I(0)) C 3 (C1; I(0)) SF

MU 〈6〉E C 3 (PE ; I(0)) C 3 (C2; I(0)) SE

' '

' '
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A sketch of proof of A-H-S theorem

For k = 2, BU 〈2k〉 = BSU . Consider the fiber sequence BSU → BU det−−→ P, which
induces the following diagram of affine group schemes over SE

PE BU E BSU E

HomGrp/E(PE ,Gm,E) C 1(PE ,Gm,E) C 2(PE ,Gm,E)
f 7→1/f δ

The simplest, also important, example is E = HP =
∨

i∈ZΣ
2iHZ .
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