Thom spectra, infinite loop spaces, generalized cocycles and $\sigma\text{-orientation}$

Jiacheng Liang

SUSTech Department of Mathematics

May 23, 2023

Table of Contents

Thom spectrum functor

- Thom spectrum functor
- Properties of the Thom spectrum functor
- Monad and Thom spectrum functor
- Diagonal and Thom isomorphism

2 Infinite loop space machine and topological settings

- Infinite loop space machine
- n-cocycles in a Cartesian monoidal category
- n-cocycles in algebraic geometry and topology

3 Cubical structures and σ -orientation

- n-cocycles of a line bundle
- Torsors and Thom sheaves
- \bullet Correspondence between orientations and $\Theta^k\mbox{-structures}$
- $\bullet~\sigma\textsc{-}\mbox{orientations}$ for elliptic cohomology theories

Definition (Thom spectrum functor)

Let $(f: X \to BO) \in Top_{\downarrow BO}$, then the standard filtration $X_V = f^{-1}(BO(V))$ gives a Thom prespectrum

$$M_p(f)(V) = Th(E(X_V) \to X_V) = E(X_V)_+ \wedge_{O(V)_+} S^V$$

The spectrification M(f) of $M_p(f)$ is called the Thom spectrum corresponding f.

Remark

(i) Actually, any filtration $\varinjlim_{V \subset \mathbb{R}^{\infty}} F_V X = X$ where $F_V X$ is a closed subspace of X such that $F_V X \subset X_V$ gives the same Thom spectra (though not the same prespectra). (ii) For $G = Sp(\infty), U(\infty), SU(\infty), O(\infty), SO(\infty)$, almost all arguments about Thom spectra throughout this talk apply for them. In the following content we always use $O(\infty)$ for convenience.

Definition (Thom spectrum functor)

Let $(f: X \to BO) \in Top_{\downarrow BO}$, then the standard filtration $X_V = f^{-1}(BO(V))$ gives a Thom prespectrum

$$M_p(f)(V) = Th(E(X_V) \to X_V) = E(X_V)_+ \wedge_{O(V)_+} S^V$$

The spectrification M(f) of $M_p(f)$ is called the Thom spectrum corresponding f.

Remark

(i) Actually, any filtration $\varinjlim_{V \subset \mathbb{R}^{\infty}} F_V X = X$ where $F_V X$ is a closed subspace of X such that $F_V X \subset X_V$ gives the same Thom spectra (though not the same prespectra). (ii) For $G = Sp(\infty), U(\infty), SU(\infty), O(\infty), SO(\infty)$, almost all arguments about Thom spectra throughout this talk apply for them. In the following content we always use $O(\infty)$ for convenience.

Properties of the Thom spectrum functor

For any spectrum $E \in Sp$ and any $V \subset \mathbb{R}^{\infty}$, $\Omega^{\infty}E$ admits a right O(V)-action since $\Omega^{\infty}E = E_0 = \Omega^V E_V = F(S^V, E_V)$. These actions are coherent between different V, so we actually get a right O-action on $\Omega^{\infty}E$.

Theorem

The Thom spectrum functor induces a continuous adjoint pair

$$Top_{\downarrow BO} \underset{EO \times_O \Omega^{\infty}(-)}{\overset{M(-)}{\rightleftharpoons}} Sp$$

Given a map $(f:X
ightarrow BO)\in \mathcal{U}/BO$ and $E\in Sp$, then

 $\operatorname{Hom}_{Sp}(Mf, E) = \operatorname{Hom}_{\mathcal{U}[O]}(f^*EO, \Omega^{\infty}E) = \operatorname{Hom}_{\mathcal{U}/BO}(X, EO \times_O \Omega^{\infty}E)$

Properties of the Thom spectrum functor

For any spectrum $E \in Sp$ and any $V \subset \mathbb{R}^{\infty}$, $\Omega^{\infty}E$ admits a right O(V)-action since $\Omega^{\infty}E = E_0 = \Omega^V E_V = F(S^V, E_V)$. These actions are coherent between different V, so we actually get a right O-action on $\Omega^{\infty}E$.

Theorem

The Thom spectrum functor induces a continuous adjoint pair

$$Top_{\downarrow BO} \underset{EO \times_O \Omega^{\infty}(-)}{\overset{M(-)}{\rightleftharpoons}} Sp$$

Given a map $(f:X
ightarrow BO) \in \mathcal{U}/BO$ and $E \in Sp$, then

 $\operatorname{Hom}_{Sp}(Mf, E) = \operatorname{Hom}_{\mathcal{U}[O]}(f^*EO, \Omega^{\infty}E) = \operatorname{Hom}_{\mathcal{U}/BO}(X, EO \times_O \Omega^{\infty}E)$

Proof

First

 $\operatorname{Hom}_{Sp}(Mf, E) = \operatorname{Hom}_{Sp}(\operatorname{colim}_V MX_V, E) = \lim_V \operatorname{Hom}_{Sp}(MX_V, E)$

Second we define EX_V and Z(V) by pullback diagrams,

then

 $\lim_{V} \operatorname{Hom}_{Sp}(MX_{V}, E) = \lim_{V} \operatorname{Hom}_{\mathcal{U}_{*}}(EX_{V+} \wedge_{O(V)} S^{V}, E_{V}) = \\ \lim_{V} \operatorname{Hom}_{\mathcal{U}_{*}[O_{V+}]}(EX_{V+}, \Omega^{V}E_{V}) = \lim_{V} \operatorname{Hom}_{\mathcal{U}[O_{V}]}(EX_{V}, \Omega^{\infty}E) =$

 $\lim_{V} \operatorname{Hom}_{\mathcal{U}[O]}(EX_V \times_{O(V)} O, \Omega^{\infty} E) = \lim_{V} \operatorname{Hom}_{\mathcal{U}[O]}(Z_V, \Omega^{\infty} E) = \operatorname{Hom}_{\mathcal{U}[O]}(f^* EO, \Omega^{\infty} E)$ Since equivariant maps from a principle *G*-bundle to a *G*-space are equivalent to sections of the associated bundle, i.e.

 $\operatorname{Hom}_{\mathcal{U}[\mathcal{O}]}(f^*EO, \Omega^{\infty}E) = \operatorname{Hom}_{\mathcal{U}/X}(X, f^*EO \times_O \Omega^{\infty}E) = \operatorname{Hom}_{\mathcal{U}/BO}(X, EO \times_O \Omega^{\infty}E)$

Proof

First

 $\operatorname{Hom}_{Sp}(Mf, E) = \operatorname{Hom}_{Sp}(\operatorname{colim}_V MX_V, E) = \lim_V \operatorname{Hom}_{Sp}(MX_V, E)$

Second we define EX_V and Z(V) by pullback diagrams,

 $EX_V \longrightarrow EO(V) \qquad Z_V \longrightarrow EO(V) \times_{O(V)} O$

then

 $\lim_{V} \operatorname{Hom}_{Sp}(MX_V, E) = \lim_{V} \operatorname{Hom}_{\mathcal{U}_*}(EX_{V+} \wedge_{O(V)} S^V, E_V) =$ $\lim_{V} \operatorname{Hom}_{\mathcal{U}_{v}[O_{V}]}(EX_{V+}, \Omega^{V}E_{V}) = \lim_{V} \operatorname{Hom}_{\mathcal{U}[O_{V}]}(EX_{V}, \Omega^{\infty}E) =$

$\lim_{V} \operatorname{Hom}_{\mathcal{U}[O]}(EX_V \times_{O(V)} O, \Omega^{\infty} E) = \lim_{V} \operatorname{Hom}_{\mathcal{U}[O]}(Z_V, \Omega^{\infty} E) = \operatorname{Hom}_{\mathcal{U}[O]}(f^* EO, \Omega^{\infty} E)$

 $\operatorname{Hom}_{\mathcal{U}[O]}(f^*EO, \Omega^{\infty}E) = \operatorname{Hom}_{\mathcal{U}/X}(X, f^*EO \times_O \Omega^{\infty}E) = \operatorname{Hom}_{\mathcal{U}/BO}(X, EO \times_O \Omega^{\infty}E)$ ^{8/53}

Proof

First

 $\operatorname{Hom}_{Sp}(Mf, E) = \operatorname{Hom}_{Sp}(\operatorname{colim}_V MX_V, E) = \lim_V \operatorname{Hom}_{Sp}(MX_V, E)$

Second we define EX_V and Z(V) by pullback diagrams,

then

 $\lim_{V} \operatorname{Hom}_{Sp}(MX_{V}, E) = \lim_{V} \operatorname{Hom}_{\mathcal{U}_{*}}(EX_{V+} \wedge_{O(V)} S^{V}, E_{V}) = \\ \lim_{V} \operatorname{Hom}_{\mathcal{U}_{*}[O_{V+}]}(EX_{V+}, \Omega^{V}E_{V}) = \lim_{V} \operatorname{Hom}_{\mathcal{U}[O_{V}]}(EX_{V}, \Omega^{\infty}E) =$

 $\lim_{V} \operatorname{Hom}_{\mathcal{U}[O]}(EX_{V} \times_{O(V)} O, \Omega^{\infty} E) = \lim_{V} \operatorname{Hom}_{\mathcal{U}[O]}(Z_{V}, \Omega^{\infty} E) = \operatorname{Hom}_{\mathcal{U}[O]}(f^{*}EO, \Omega^{\infty} E)$ Since equivariant maps from a principle *G*-bundle to a *G*-space are equivalent to sections of the associated bundle, i.e.

 $\operatorname{Hom}_{\mathcal{U}[O]}(f^*EO, \Omega^{\infty}E) = \operatorname{Hom}_{\mathcal{U}/X}(X, f^*EO \times_O \Omega^{\infty}E) = \operatorname{Hom}_{\mathcal{U}/BO}(X, EO \times_O \Omega^{\infty}E)$ 9/53

Properties of the Thom spectrum functor

Proposition

This adjunction $Top_{\downarrow BO} \xrightarrow[EO \times_O \Omega^{\infty}(-)]{EO} Sp$ is actually a Quillen adjunction since $M(S^{n-1} \to D^n)$ is a cell pair of spectra and $M(D^n \times 0 \to D^n \times I)$ is a weak equivalent cell pair for those morphisms over BO.

Proposition

Let $f: X \to BO$ be a map and A a space. Let g be the composite $X \times A \to X \to BO$, where the first map is the projection away from A. Then $T(g) = A_+ \wedge T(f)$, which implies Thom spectrum functor preserves tensors, and hence is a topological Quillen functor.

Proposition

Thom spectrum functor T(-) preserves weak equivalences. Any Thom spectrum T(f) from a map $F: X \to BO$ is (-1)-connective.

Properties of the Thom spectrum functor

Proposition

This adjunction $Top_{\downarrow BO} \xrightarrow[EO \times_O \Omega^{\infty}(-)]{\rightleftharpoons} Sp$ is actually a Quillen adjunction since $M(S^{n-1} \to D^n)$ is a cell pair of spectra and $M(D^n \times 0 \to D^n \times I)$ is a weak equivalent cell pair for those morphisms over BO.

Proposition

Let $f: X \to BO$ be a map and A a space. Let g be the composite $X \times A \to X \to BO$, where the first map is the projection away from A. Then $T(g) = A_+ \wedge T(f)$, which implies Thom spectrum functor preserves tensors, and hence is a topological Quillen functor.

Proposition

Thom spectrum functor T(-) preserves weak equivalences. Any Thom spectrum T(f) from a map $F: X \to BO$ is (-1)-connective.

Monad and Thom spectrum functor

Proposition

Let $\mathcal{V}_1, \mathcal{V}_2$ be two real universes.

(i) Given maps $B \to \mathcal{L}(V_1, V_2)$ and $f: X \to BO(\mathcal{V}_1)$, denote g to be the composition $B \times X \to B \times BO(\mathcal{V}_1) \to BO(\mathcal{V}_2)$. Then we have the natural isomorphism $T(g) \cong B \ltimes T(f)$. (ii) Given maps $f: X \to BO(\mathcal{V}_1)$ and $g: Y \to BO(\mathcal{V}_2)$, denote $f \times g$ to be the composition $X \times Y \to BO(\mathcal{V}_1) \times BO(\mathcal{V}_2) \to BO(\mathcal{V}_1 \oplus \mathcal{V}_2)$. Then $T(f \times g) \cong T(f) \land T(g)$.

Proposition

Let $\mathcal{L}(n) = \mathcal{L}(\mathbb{R}^{\infty \times n}, \mathbb{R}^{\infty})$, then for any map $f: X \to BO$ we have

$$T(\bigsqcup_{n\geq 0}\mathcal{L}(n)\times_{\Sigma_n}X^n\to\bigsqcup_{n\geq 0}\mathcal{L}(n)\times_{\Sigma_n}BO^n\to BO)=\bigvee_{n\geq 0}\mathcal{L}(n)\times_{\Sigma_n}T(f)^{\overline{\wedge}n}$$

Lemma

Let C and D be topological bicomplete categories, and $\mathbb{A} : C \to C$ and $\mathbb{B} : D \to D$ be continuous monads. Further suppose that there is a continuous functor $F : C \to D$ which is coherent with the monad structure and therefore yields a functor $F : C[\mathbb{A}] \to D[\mathbb{B}]$. If $F : C \to D$ is left adjoint functor preserving tensors, and the monads \mathbb{A} and \mathbb{B} preserve reflexive coequalizers, then $F : C[\mathbb{A}] \to D[\mathbb{B}]$ is still a left adjoint functor preserving tensors.

Theorem

Thom spectrum functor induces topological Quillen adjoint pairs

 $Top[\mathcal{L}(1)]_{\downarrow BO} \rightleftharpoons Sp[\mathcal{L}(1)]$ and $Top[E_{\infty}]_{\downarrow BO} \rightleftharpoons Sp[E_{\infty}].$

Definition (coaction)

For any map $f: X \to BO$, the diagonal induces a coaction $X \to X \times X$ in $Top_{\downarrow BO}$, where $X \times X \to BO$ is the projection of the second variable. It gives a natural coaction on Thom spectra: $Mf \to X_+ \wedge Mf$.

Definition (Thom morphism)

With the same hypothesis above, given a homotopy commutative ring spectrum E and a morphism of spectra $Mf \to E$ we have a natural morphism $E \land Mf \to E \land X_+ \land Mf \to E \land X_+ \land E \to E \land X_+$ in Ho(Sp). It induces a natural homological morphism $\phi_f : E_*(Mf) \to E_*(X)$.

Under certain condition ϕ_f will be an isomorphism, which is called Thom isomorphism.

Theorem (Thom isomorphism)

Let $G = Sp(\infty), U(\infty), SU(\infty), O(\infty), SO(\infty)$ or $Spin(\infty)$. Let E be a homotopy commutative ring (phantom-)spectrum. (i) Given a (phantom) ring spectrum morphism $MG \to E$, then for any map $X \to BG$ the Thom morphism $E_*(Mf) \to E_*(X)$ is an isomorphism. Moreover, if X is E_{∞} and f is an E_{∞} map, then $E_*(Mf) \to E_*(X)$ is an isomorphism of E_* -algebras. (ii) Given an E_{∞} space X and an E_{∞} map $f : X \to BG$. Let $Mf \to E$ be a (phantom) ring spectrum morphism. If X is 0-connected, then $E_*(Mf) \to E_*(X)$ is an isomorphism of E_* -algebras.

Example

Let $MO \to H\mathbb{Z}/2$ and $MU \to H\mathbb{Z}$ be ring spectrum morphisms from the 0-th postnikov tower. Then we have natural Thom isomorphisms $H_*(MO; \mathbb{Z}/2) \to H_*(BO; \mathbb{Z}/2)$ and $H_*(MU) \to H_*(BU)$.

Theorem (Thom isomorphism)

Let $G = Sp(\infty), U(\infty), SU(\infty), O(\infty), SO(\infty)$ or $Spin(\infty)$. Let E be a homotopy commutative ring (phantom-)spectrum. (i) Given a (phantom) ring spectrum morphism $MG \to E$, then for any map $X \to BG$ the Thom morphism $E_*(Mf) \to E_*(X)$ is an isomorphism. Moreover, if X is E_{∞} and f is an E_{∞} map, then $E_*(Mf) \to E_*(X)$ is an isomorphism of E_* -algebras. (ii) Given an E_{∞} space X and an E_{∞} map $f : X \to BG$. Let $Mf \to E$ be a (phantom) ring spectrum morphism. If X is 0-connected, then $E_*(Mf) \to E_*(X)$ is an isomorphism of E_* -algebras.

Example

Let $MO \to H\mathbb{Z}/2$ and $MU \to H\mathbb{Z}$ be ring spectrum morphisms from the 0-th postnikov tower. Then we have natural Thom isomorphisms $H_*(MO; \mathbb{Z}/2) \to H_*(BO; \mathbb{Z}/2)$ and $H_*(MU) \to H_*(BU)$.

Infinite loop space machine

We first introduce some consequences of infinite loop space machine.

Theorem (Additive infinite loop space machine, in ABGHR)

Let C be a cofibrant unital E_{∞} operad in Top and $f: C_* \to \Omega^{\infty} \Sigma^{\infty}$ be a morphism of monads on Top_{*}. Then the Quillen pair (Σ^f, Ω^f) induces a equivalence of categories enriched in Ho(Top) if we restrict it to the following subcategories

group-like $Ho(E_{\infty}$ -spaces) $\rightleftharpoons (-1)$ -connective Ho(Sp)

where $\Sigma^{f}(-) = \Sigma^{\infty} \otimes_{C_{*}} (-)$ is the coequalizer of the following diagram in Sp

And $\Omega^f X = \Omega^{\infty} X$ is endowed with the C_* -action $C_* \Omega^{\infty} X \to \Omega^{\infty} \Sigma^{\infty} \Omega^{\infty} X \to \Omega^{\infty} X$.

Theorem (Uniqueness of additive infinite loop space machine, May 77)

We define an infinite loop space machine to be an adjoint pair (F, G) $Ho(E_{\infty}\text{-spaces}) \stackrel{1}{\rightleftharpoons} (-1)\text{-connective } Ho(Sp)$ such that (1) The composition (-1)-connective $Ho(Sp) \xrightarrow{G} Ho(E_{\infty}$ -spaces) $\rightarrow CMon(Ho(Top_*))$ is equivalent to Ω^{∞} ; (2) For any $X \in Ho(E_{\infty}$ -spaces), $X \to GF(X)$ is a group completion, which means $\pi_0 GF(X)$ is a group and $H_*(X)[(\pi_0 X)^{-1}] \to H_* GF(X)$ is isomorphic. Now, if (F_1, G_1) and (F_2, G_2) are two infinite loop space machines, then there exists a natural equivalence between F_1 and F_2 .

Remark

The existence of infinite loop space implies that for any group-like E_{∞} -space X, the induced pointed H-space of it is actually an H-group because $X \cong \Omega^{\infty} FX$ in $CMon(Ho(\mathsf{Top}_*))$ and $\Omega^{\infty} FX$ is a pointed H-group.

Theorem (Uniqueness of additive infinite loop space machine, May 77)

We define an infinite loop space machine to be an adjoint pair (F, G) $Ho(E_{\infty}\text{-spaces}) \stackrel{1}{\rightleftharpoons} (-1)\text{-connective } Ho(Sp)$ such that (1) The composition (-1)-connective $Ho(Sp) \xrightarrow{G} Ho(E_{\infty}$ -spaces) $\rightarrow CMon(Ho(Top_*))$ is equivalent to Ω^{∞} ; (2) For any $X \in Ho(E_{\infty}$ -spaces), $X \to GF(X)$ is a group completion, which means $\pi_0 GF(X)$ is a group and $H_*(X)[(\pi_0 X)^{-1}] \to H_* GF(X)$ is isomorphic. Now, if (F_1, G_1) and (F_2, G_2) are two infinite loop space machines, then there exists a natural equivalence between F_1 and F_2 .

Remark

The existence of infinite loop space implies that for any group-like E_{∞} -space X, the induced pointed H-space of it is actually an H-group because $X \cong \Omega^{\infty} FX$ in $CMon(Ho(\mathsf{Top}_*))$ and $\Omega^{\infty} FX$ is a pointed H-group.

Connective K-theory and E_{∞} structures

We also consider the connective complex K-theory bu, so $bu^* = \mathbb{Z}[v], |v| = -2$ and $bu^{2t}(X) = [X, BU\langle 2t \rangle]$. To make this true when t = 0, we adopt the convention that $BU\langle 0 \rangle = \mathbb{Z} \times BU$. Multiplication by $v^t : \Sigma^{2t}bu \to bu$ gives the (2t - 1)-connective cover of bu. We define $BU\langle 2t \rangle = \Omega^{\infty}\Sigma^{2t}bu$. Under this identification, we a sequence of morphisms in $Ho(Top[E_{\infty}])$

 $\ldots \rightarrow BU\left< 2k \right> \rightarrow \ldots \rightarrow BU\left< 6 \right> \rightarrow BSU \rightarrow BU \rightarrow BU\left< 0 \right>$

derived from infinite loop space machine.

Proposition

Combine with the Thom spectrum functor $Top[E_{\infty}]_{\downarrow BU} \rightleftharpoons Sp[E_{\infty}]$, the sequence above induces a new sequence of morphisms in $Ho(Sp[E_{\infty}])$

 $\ldots \rightarrow MU\left< 2k \right> \rightarrow \ldots \rightarrow MU\left< 6 \right> \rightarrow MSU \rightarrow MU \rightarrow MP.$

Connective K-theory and E_{∞} structures

We also consider the connective complex K-theory bu, so $bu^* = \mathbb{Z}[v], |v| = -2$ and $bu^{2t}(X) = [X, BU\langle 2t \rangle]$. To make this true when t = 0, we adopt the convention that $BU\langle 0 \rangle = \mathbb{Z} \times BU$. Multiplication by $v^t : \Sigma^{2t}bu \to bu$ gives the (2t - 1)-connective cover of bu. We define $BU\langle 2t \rangle = \Omega^{\infty}\Sigma^{2t}bu$. Under this identification, we a sequence of morphisms in $Ho(Top[E_{\infty}])$

 $\ldots \to BU\left< 2k \right> \to \ldots \to BU\left< 6 \right> \to BSU \to BU \to BU\left< 0 \right>$

derived from infinite loop space machine.

Proposition

Combine with the Thom spectrum functor $Top[E_{\infty}]_{\downarrow BU} \rightleftharpoons Sp[E_{\infty}]$, the sequence above induces a new sequence of morphisms in $Ho(Sp[E_{\infty}])$

 $\ldots \to MU \left< 2k \right> \to \ldots \to MU \left< 6 \right> \to MSU \to MU \to MP.$

Connective K-theory and cocycles

Firstly define the map $\rho_0: P \to 1 \times BU \subset BU(0)$ just to be the map classifying the tautological line bundle L.

As for t > 0, let L_1, \ldots, L_t be the obvious line bundles over P^t . Let $x_i \in bu^2(P^t)$ be the *bu*-theory Euler class, given by the formula

$$vx_i = 1 - L_i.$$

Then we have the isomorphisms

 $bu^*\left(P^t\right)\cong\mathbb{Z}[v][[x_1,\ldots,x_t]]$

The class $\prod_{i} x_{i} \in bu^{2t} (P^{t})$ gives the map $\rho_{t} : P^{t} = (\mathbb{C}P^{\infty})^{t} \to BU\langle 2t \rangle$

Remark

Note that the composition $P^t \xrightarrow{\rho_t} BU(2t) \to BU(0)$ classifies the bundle $\prod_i (1-L_i)$

Connective K-theory and cocycles

Firstly define the map $\rho_0: P \to 1 \times BU \subset BU\langle 0 \rangle$ just to be the map classifying the tautological line bundle L.

As for t > 0, let L_1, \ldots, L_t be the obvious line bundles over P^t . Let $x_i \in bu^2(P^t)$ be the *bu*-theory Euler class, given by the formula

$$vx_i = 1 - L_i.$$

Then we have the isomorphisms

$$bu^*(P^t) \cong \mathbb{Z}[v][[x_1,\ldots,x_t]]$$

The class $\prod_i x_i \in bu^{2t}(P^t)$ gives the map $\rho_t : P^t = (\mathbb{C}P^{\infty})^t \to BU\langle 2t \rangle$.

Remark

Note that the composition $P^t \xrightarrow{\rho_t} BU\langle 2t \rangle \to BU\langle 0 \rangle$ classifies the bundle $\prod_i (1-L_i)$.

Definition

Let C be a category admitting finite products. If A and T are abelian monoid objects in CMon(C), we define $C^0(A, T)$ to be the group

 $C^0(A, T) \stackrel{\mathsf{def}}{=} \operatorname{Hom}_C(A, T)$

and for $k \ge 1$ we let $C^k(A, T)$ be the subgroup of $f \in \text{Hom}_C(A^k, T)$ such that (a) $f(a_1, ..., a_{k-1}, 0) = 0$ (b) $f(a_1, ..., a_k)$ is symmetric in the a_i ; (c) $f(a_1, a_2, a_3, ..., a_k) + f(a_0, a_1 + a_2, a_3, ..., a_k) = f(a_0 + a_1, a_2, a_3, ..., a_k) + f(a_0, a_1, a_3, ..., a_k)$, when $k \ge 2$.

Remark

We refer to (c) as the "cocycle" condition for f. If T is an abelian group object, then in definition (a) can be replaced by (a)': f(0, 0, ..., 0) = 0.

n-cocycles in algebraic geometry

From definition we can make *n*-cocycles a sheaf as the following: let X, Y are commutative momoid fppf sheaves over S, we define $\underline{C}^k(X, Y)(T) = C^k(X_T, Y_T)$. It is actually a representable commutative monoid sheaf in $Sh(Sch/S)_{fppf}$ in certain case.

Proposition

Let G be a formal group over a scheme S. Then for all k, the functor $\underline{C}^k(G, \mathbb{G}_m)$ is an S-affine commutative group scheme.

Proof: It suffices to work $k \ge 1$ and locally on S, so we may assume S = Spec(R) and choose a coordinate x on G. We define power series g_0, \ldots, g_k by

$$g_i = \begin{cases} i = 0 & f(0, \dots, 0) \\ i < k & f(x_1, \dots, x_{i-1}, x_{i+1}, x_i, \dots, x_k) f(x_1, \dots, x_k)^{-1} \\ i = k & f(x_1, \dots, x_k) f(x_0 + x_1, x_2, \dots)^{-1} f(x_0, x_1 + x_2, \dots) f(x_0, x_1, x_3, \dots)^{-1} \end{cases}$$

Let I be the ideal in R generated by all the coefficients of all the power series $g_i - 1$. It is not hard to check $\operatorname{Spec}(R/I)$ has the universal property that defines $\underline{C}^k(G, \mathbb{G}_m)$

n-cocycles in algebraic geometry

From definition we can make *n*-cocycles a sheaf as the following: let X, Y are commutative momoid fppf sheaves over S, we define $\underline{C}^k(X, Y)(T) = C^k(X_T, Y_T)$. It is actually a representable commutative monoid sheaf in $Sh(Sch/S)_{fppf}$ in certain case.

Proposition

Let G be a formal group over a scheme S. Then for all k, the functor $\underline{C}^k(G, \mathbb{G}_m)$ is an S-affine commutative group scheme. Proof: It suffices to work $k \ge 1$ and locally on S, so we may assume S = Spec(R) and choose a coordinate x on G. We define power series g_0, \ldots, g_k by

$$g_{i} = \begin{cases} i = 0 \quad f(0, \dots, 0) \\ i < k \quad f(x_{1}, \dots, x_{i-1}, x_{i+1}, x_{i}, \dots, x_{k}) f(x_{1}, \dots, x_{k})^{-1} \\ i = k \quad f(x_{1}, \dots, x_{k}) f(x_{0} + x_{1}, x_{2}, \dots)^{-1} f(x_{0}, x_{1} + x_{2}, \dots) f(x_{0}, x_{1}, x_{3}, \dots)^{-1} \end{cases}$$

Let I be the ideal in R generated by all the coefficients of all the power series $g_i - 1$. It is not hard to check $\operatorname{Spec}(R/I)$ has the universal property that defines $\underline{C}^k(G, \mathbb{G}_m)$.

Definition

We say a space X to be "even" iff $H_*(X)$ is concentrated in even degrees and $H_n(X)$ is free abelian for all n.

Lemma (Hatcher 4C.1)

If X is even and simply-connected, then there exists a CW approximation $W \to X$ such that W only consists of cells of even degrees.

Proposition

(1) Let *E* be an EWP commutative ring (phantom-)spectrum. Then for any even space *X*, the A-T spectral sequence $H_*(X; E_*) \implies E_*(X)$ collapses. Therefore $E_*(X)$ is a free E_* -module and $E^*(X) \rightarrow Hom^*_{E_*}(E_*X, E_*)$ is bijective. (2) The $E_0(X)$ is a cocommutative E_0 -coalgebra by kunneth theorem. If *X* is an even *H*-space, we define $X_E = \operatorname{Spf} E^0 X$, then the natural Cartier morphism $\operatorname{Spec} E_0 X \rightarrow \underline{Hom}_{Grp/E}(X_E, \mathbb{G}_{m,E})$ is isomorphic, which is the special Cartier duality.

Definition

We say a space X to be "even" iff $H_*(X)$ is concentrated in even degrees and $H_n(X)$ is free abelian for all n.

Lemma (Hatcher 4C.1)

If X is even and simply-connected, then there exists a CW approximation $W \to X$ such that W only consists of cells of even degrees.

Proposition

(1) Let *E* be an EWP commutative ring (phantom-)spectrum. Then for any even space *X*, the *A*-*T* spectral sequence $H_*(X; E_*) \implies E_*(X)$ collapses. Therefore $E_*(X)$ is a free E_* -module and $E^*(X) \rightarrow Hom^*_{E_*}(E_*X, E_*)$ is bijective. (2) The $E_0(X)$ is a cocommutative E_0 -coalgebra by kunneth theorem. If *X* is an even *H*-space, we define $X_E = \operatorname{Spf} E^0 X$, then the natural Cartier morphism $\operatorname{Spec} E_0 X \rightarrow \underline{Hom}_{Grp/E}(X_E, \mathbb{G}_{m,E})$ is isomorphic, which is the special Cartier duality.

Proposition

Let X be an even commutative H-space, we have the following diagram in CMon(Sets) for any $k \ge 0$,

where $P = \mathbb{C}P^{\infty}$ is with the H-structure by tensor product of line bundles, and where $P_E = \operatorname{Spf} E^0 P$, $X^E = \operatorname{Spec} E_0 X$. The dashed liftings exist only when $k \ge 1$ or X is an H-group, and in those 2 cases all cocycle sets above are abelian groups.

Apply it to $\rho_t \in C^t(P, BU\langle 2t \rangle)$, we get morphisms of commutative group schemes over $\text{Spec}(E_0)$ for all $t \ge 0$

 $f_t : \operatorname{Spec} E_0 BU\langle 2t \rangle \to \underline{C}^k(P_E, \mathbb{G}_{m,E}).$

Algebro-geometric interpretation of some E-homology rings

The classical theory about the complex orientation tells us f_0 and f_1 are isomorphisms. Furthermore, we have the following

Theorem (Ando-Hopkins-Strickland)

The morphism f_k : Spec $E_0 BU(2k) \rightarrow \underline{C}^k(P_E, \mathbb{G}_{m,E})$ is an isomorphism of group schemes over Spec E_0 when $0 \le k \le 3$.

This theorem is, actually, the most technical part in [AHS], which involves amounts of calculus in both algebraic topology and algebraic geometry.

Now let us delay the proof and consider the following definition

Definition

If G and T are abelian group objects, and if $k \ge 0$ and $f \in C^k(G, T)$, then let $\delta(f) \in C^{k+1}(G, T)$ be the map given by the formula for $k \ge 1$ $\delta(f) (a_0, \ldots, a_k) = f(a_0, a_2, \ldots, a_k) + f(a_1, a_2, \ldots, a_k) - f(a_0 + a_1, a_2, \ldots, a_k)$. For k = 0, the map should be $\delta(f)(a) = f(0) - f(a)$

Algebro-geometric interpretation of some E-homology rings

The classical theory about the complex orientation tells us f_0 and f_1 are isomorphisms. Furthermore, we have the following

Theorem (Ando-Hopkins-Strickland)

The morphism f_k : Spec $E_0 BU(2k) \rightarrow \underline{C}^k(P_E, \mathbb{G}_{m,E})$ is an isomorphism of group schemes over Spec E_0 when $0 \le k \le 3$.

This theorem is, actually, the most technical part in [AHS], which involves amounts of calculus in both algebraic topology and algebraic geometry. Now let us delay the proof and consider the following definition

Definition

If G and T are abelian group objects, and if $k \ge 0$ and $f \in C^k(G, T)$, then let $\delta(f) \in C^{k+1}(G, T)$ be the map given by the formula for $k \ge 1$ $\delta(f) (a_0, \ldots, a_k) = f (a_0, a_2, \ldots, a_k) + f (a_1, a_2, \ldots, a_k) - f (a_0 + a_1, a_2, \ldots, a_k)$. For k = 0, the map should be $\delta(f)(a) = f (0) - f (a)$

It is clear that δ generalizes to abelian groups in any category with products. We leave it to the reader to verify the following.

Proposition

For $k \geq 0$, the map δ induces a homomorphism of groups

 $\delta: C^k(G, T) \to C^{k+1}(G, T)$

Moreover, if G and T are formal groups over a scheme S, then δ induces a homomorphism of group schemes $\delta : \underline{C}^k(G, T) \to \underline{C}^{k+1}(G, T)$.

Proposition

The map ρ_t is contained in the subgroup $C^t(P, BU(2t))$ of bu $bu^{2t}(P^t)$ and satisfies

 $v_*\rho_{t+1} = \delta\left(\rho_t\right) \in C^{t+1}(P, BU\langle 2t\rangle).$

δ -maps

Proof of the proposition above: When $t \ge 1$, $v_*\rho_{t+1} = v \cdot x_1 \cdot x_2 \cdot \ldots \cdot x_{t+1}$ and $\delta(\rho_t) = x_0 \cdot x_2 \cdot \ldots \cdot x_{t+1} + x_1 \cdot x_2 \cdot \ldots \cdot x_{t+1} - (x_0 + bu x_1) \cdot x_2 \cdot \ldots \cdot x_{t+1} = v \cdot x_1 \cdot x_2 \cdot \ldots \cdot x_{t+1}$.

$$= [x_0 + x_1 - (x_0 + x_1 - v \cdot x_1 x_2)] \cdot x_2 \cdot \ldots \cdot x_{t+1} = v \cdot x_1 \cdot x_2 \cdot \ldots \cdot x_{t+1}$$

, i.e. $v_*\rho_{t+1} = \delta\left(\rho_t\right) \in C^{t+1}(P, BU\langle 2t \rangle).$

Corollary

By the fact $v_*
ho_{t+1}=\delta\left(
ho_t
ight)\in C^{t+1}(P,BU\langle 2t
angle)$, we have the following diagram

$$\begin{array}{ccc} BU\langle 2t\rangle^E & \xrightarrow{f_t} & \underline{C}^t(P_E, \mathbb{G}_{m,E}) \\ & \downarrow & t \ge 0 & \downarrow \delta \\ BU\langle 2t+2\rangle^E & \xrightarrow{f_{t+1}} & \underline{C}^{t+1}(P_E, \mathbb{G}_{m,E}) \end{array}$$

n-cocycles of a line bundle

Definition

Suppose that $k \ge 1$ and G is an abelian big-Zariski-sheaf over S. Given a subset $I \subseteq \{1, \ldots, k\}$, we define $\sigma_I : G_S^k \to G$ by $\sigma_I(a_1, \ldots, a_k) = \sum_{i \in I} a_i$, and we write $\mathcal{L}_I = \sigma_I^* \mathcal{L}$, which is a line bundle over G_S^k . We also define the line bundle $\Theta^k(\mathcal{L})$ over G_S^k by the formula

$$\Theta^{k}(\mathcal{L}) \stackrel{\text{def}}{=} \bigotimes_{I \subset \{1, \dots, k\}} (\mathcal{L}_{I})^{(-1)^{|I|}}$$

Finally, we define $\Theta^0(\mathcal{L}) = \mathcal{L}$ For example we have

$$\Theta^{0}(\mathcal{L})_{a} = \mathcal{L}_{a}, \Theta^{1}(\mathcal{L})_{a} = \frac{\mathcal{L}_{0}}{\mathcal{L}_{a}}, \Theta^{2}(\mathcal{L})_{a,b} = \frac{\mathcal{L}_{0} \otimes \mathcal{L}_{a+b}}{\mathcal{L}_{a} \otimes \mathcal{L}_{b}}$$
$$\Theta^{3}(\mathcal{L})_{a,b,c} = \frac{\mathcal{L}_{0} \otimes \mathcal{L}_{a+b} \otimes \mathcal{L}_{a+c} \otimes \mathcal{L}_{b+c}}{\mathcal{L}_{a} \otimes \mathcal{L}_{b} \otimes \mathcal{L}_{c} \otimes \mathcal{L}_{a+b+c}}$$

We observe three facts about these bundles.

(i) $\Theta^k(\mathcal{L})$ has a natural rigid structure for k > 0.

(ii) For each permutation $\sigma \in \Sigma_k$, there is a canonical isomorphism

 $\xi_{\sigma}: \pi_{\sigma}^* \Theta^k(\mathcal{L}) \cong \Theta^k(\mathcal{L})$

where $\pi_{\sigma}: G_S^k \to G_S^k$ permutes the factors. Moreover, these isomorphisms compose in the obvious way.

(iii) There is a canonical identification (of rigid line bundles over G_S^{k+1}) $\Theta^k(\mathcal{L})_{a_1,a_2,\ldots} \otimes \Theta^k(\mathcal{L})_{a_0+a_1,a_2,\ldots}^{-1} \otimes \Theta^k(\mathcal{L})_{a_0,a_1+a_2,\ldots} \otimes \Theta^k(\mathcal{L})_{a_0,a_1,\ldots}^{-1} \cong 1$

Definition

A Θ^k -structure on a line bundle \mathcal{L} over a group G is a trivialization s of the line bundle $\Theta^k(\mathcal{L})$ such that

(i) for k > 0, s is a rigid section;

(ii) s is symmetric in the sense that for each $\sigma \in \Sigma_k$, we have $\xi_\sigma \pi_\sigma^* s = s$; (iii) the section

 $s(a_1, a_2, \ldots) \otimes s(a_0 + a_1, a_2, \ldots)^{-1} \otimes s(a_0, a_1 + a_2, \ldots) \otimes s(a_0, a_1, \ldots)^{-1}$ corresponds to 1 under the isomorphism above.

n-cocycles of a line bundle

A Θ^3 -structure on a line bundles is called by a cubical structure.

Definition

We write $C^k(G; \mathcal{L})$ for the set of Θ^k -structures on \mathcal{L} over G. Note that $C^0(G; \mathcal{L})$ is just the set of trivializations of \mathcal{L} , and $C^1(G; \mathcal{L})$ is the set of rigid trivializations of $\Theta^1(\mathcal{L})$. We also define a functor from rings to sets by

$$\underline{C}^{k}(G;\mathcal{L})(R) = \left\{ (u,f) \mid u : \operatorname{spec}(R) \to S, f \in C^{k}_{\operatorname{spec}(R)}\left(u^{*}G; u^{*}\mathcal{L}\right) \right\}$$

Remark

Note that for the trivial line bundle \mathcal{O}_G , the set $C^k(G; \mathcal{O}_G)$ reduces to that of the group $\mathbb{C}^k(G, \mathbb{G}_m)$ of cocycles introduced previously.

Torsors and Thom sheaves

For any two line bundles $\mathcal{L}_1, \mathcal{L}_2$, we have natural $C^k(G; \mathcal{L}_1) \times C^k(G; \mathcal{L}_2) \to C^k(G; \mathcal{L}_1 \otimes \mathcal{L}_2)$ by $(s_1, s_2) \mapsto s_1 \otimes s_2$. Consequently, let \mathcal{L}_1 be trivial, then we can get a natural group action $C^k(G; \mathbb{G}_m) \times C^k(G; \mathcal{L}) \to C^k(G; \mathcal{L})$ for any line bundle \mathcal{L} .

Proposition

If G is a formal group over S, and \mathcal{L} is a line bundle over G trivializable Zariski locally on S, then the functor $\underline{C}^k(G; \mathcal{L})$ is a scheme, whose formation commutes with change of base. Moreover, $\underline{C}^k(G; \mathcal{L})$ is a torsor for $\underline{C}^k(G, \mathbb{G}_m)$.

Now turn to the topology.

Definition

Suppose that X is a finite even complex and V is a virtual complex vector bundle classified by a $X \to Z \times BU$. We write X^V for its Thom spectrum. The coaction of the Thom spectrum makes $E^0 X^V$ an $E^0 X$ -module. By Thom isomorphism Zariski locally, it is a line bundle further.

Torsors and Thom sheaves

For any two line bundles $\mathcal{L}_1, \mathcal{L}_2$, we have natural $C^k(G; \mathcal{L}_1) \times C^k(G; \mathcal{L}_2) \to C^k(G; \mathcal{L}_1 \otimes \mathcal{L}_2)$ by $(s_1, s_2) \mapsto s_1 \otimes s_2$. Consequently, let \mathcal{L}_1 be trivial, then we can get a natural group action $C^k(G; \mathbb{G}_m) \times C^k(G; \mathcal{L}) \to C^k(G; \mathcal{L})$ for any line bundle \mathcal{L} .

Proposition

If G is a formal group over S, and \mathcal{L} is a line bundle over G trivializable Zariski locally on S, then the functor $\underline{C}^k(G; \mathcal{L})$ is a scheme, whose formation commutes with change of base. Moreover, $\underline{C}^k(G; \mathcal{L})$ is a torsor for $\underline{C}^k(G; \mathbb{G}_m)$.

Now turn to the topology.

Definition

Suppose that X is a finite even complex and V is a virtual complex vector bundle classified by a $X \to Z \times BU$. We write X^V for its Thom spectrum. The coaction of the Thom spectrum makes $E^0 X^V$ an $E^0 X$ -module. By Thom isomorphism Zariski locally, it is a line bundle further.

Proposition

Suppose that X is a finite complex and V is a virtual bundle over X. We shall write $\mathbb{L}(V)$ for line bundle $\widetilde{E^0X^V}$, and \mathbb{L} defines a functor from vector bundles over X to line bundles over X_E .

(i) If V and W are two virtual complex vector bundles over X then there is a natural isomorphism

 $\mathbb{L}(V \oplus W) \cong \mathbb{L}(V) \otimes \mathbb{L}(W)$

and so $\mathbb{L}(V - W) = \mathbb{L}(V) \otimes \mathbb{L}(W)^{-1}$.

(ii) Moreover, if $f: Y \to X$ is a map of spaces, then there is a natural isomorphism $f^* \mathbb{L}(V) \cong \mathbb{L}(f^*V)$ of line bundles over Y_E .

If X is an (infinite) even complex and V is a virtual bundle classified by $f: X \to BU\langle 0 \rangle$, then $\mathbb{L}(V)$ is a quasi-coherent sheaf on $\mathrm{Spf} E^0 X$ by taking colimits. Moreover, the proposition above also applies for infinite even complex X.

Proposition

Suppose that X is a finite complex and V is a virtual bundle over X. We shall write $\mathbb{L}(V)$ for line bundle $\widetilde{E^0X^V}$, and \mathbb{L} defines a functor from vector bundles over X to line bundles over X_E .

(i) If V and W are two virtual complex vector bundles over X then there is a natural isomorphism

 $\mathbb{L}(V \oplus W) \cong \mathbb{L}(V) \otimes \mathbb{L}(W)$

and so $\mathbb{L}(V - W) = \mathbb{L}(V) \otimes \mathbb{L}(W)^{-1}$.

(ii) Moreover, if $f : Y \to X$ is a map of spaces, then there is a natural isomorphism $f^* \mathbb{L}(V) \cong \mathbb{L}(f^* V)$ of line bundles over Y_E .

If X is an (infinite) even complex and V is a virtual bundle classified by $f: X \to BU\langle 0 \rangle$, then $\mathbb{L}(V)$ is a quasi-coherent sheaf on $\operatorname{Spf} E^0 X$ by taking colimits. Moreover, the proposition above also applies for infinite even complex X.

Lemma

Let $T(\rho_0) = \Sigma^{\infty} Th(\mathcal{L})$ is the Thom spectrum associated with $\rho_0 : P \to Z \times BU$ by the tautological bundle \mathcal{L} . Then the Thom sheaf $E^0 T(\rho_0)$ is naturally isomorphic to $\mathcal{I}(0) = ker(E^0 P \to E^0)$ in $Qcoh(P_E)$. This isomorphism is induced by a homotopy equivalence of P_+ -comodule pointed spaces $P \to Th(\mathcal{L})$.

For $1 \leq i \leq k$, let L_i be the line bundle over the *i* factor of P^k . Recall that the map $\rho_k : P^k \to BU\langle 2k \rangle$ pulls the tautological virtual bundle over $BU\langle 2k \rangle$ back to the bundle

$$V = \bigotimes_{i} \left(1 - L_{i}\right)$$

Passing to Thom spectra gives a map

 $(P^k)^V \to MU\langle 2k \rangle$

which determines an element s_k of $E_0 M U \langle 2k
angle \widehat{\otimes} E^0 \left((P^k)^V
ight)$

Lemma

Let $T(\rho_0) = \Sigma^{\infty} Th(\mathcal{L})$ is the Thom spectrum associated with $\rho_0 : P \to Z \times BU$ by the tautological bundle \mathcal{L} . Then the Thom sheaf $E^0 T(\rho_0)$ is naturally isomorphic to $\mathcal{I}(0) = ker(E^0 P \to E^0)$ in $Qcoh(P_E)$. This isomorphism is induced by a homotopy equivalence of P_+ -comodule pointed spaces $P \to Th(\mathcal{L})$.

For $1 \leq i \leq k$, let L_i be the line bundle over the *i* factor of P^k . Recall that the map $\rho_k: P^k \to BU\langle 2k \rangle$ pulls the tautological virtual bundle over $BU\langle 2k \rangle$ back to the bundle

$$V = \bigotimes_{i} \left(1 - L_{i}\right)$$

Passing to Thom spectra gives a map

$$(P^k)^V \to MU\langle 2k \rangle$$

which determines an element s_k of $E_0 M U \langle 2k \rangle \widehat{\otimes} E^0 ((P^k)^V)$.

Together with properties of ${\mathbb L}$ give an isomorphism

 $\mathbb{L}(V) \cong \Theta^k(\mathcal{I}(0))$

of line bundles over P_E^k . With this identification, s_k is a section of the pull-back of $\Theta^k(\mathcal{I}(0))$ along the projection $MU\langle 2k\rangle^E \to S_E$.

Proposition

The section s_k is a Θ^k -structure, and hence an element of $\underline{C}^k(P_E; \mathcal{I}(0))(MU\langle 2k \rangle^E)$. Proof: This is analogous to the case of ρ_k .

Let

$$MU\langle 2k\rangle^E \xrightarrow{g_k} \underline{C}^k(P_E;\mathcal{I}(0))$$

be the map classifying the Θ^k -structure s_k . We note that the isomorphism $BU\langle 2k\rangle^E \cong \underline{C}^k (P_E, \mathbb{G}_m)$ gives $\underline{C}^k (P_E; \mathcal{I}(0))$ the structure of a torsor for the group scheme $BU\langle 2k\rangle^E$ when $k \leq 3$. It is worth noting that an equivariant morphism between torsors automatically become an isomorphism. Actually, the g_k is the case.

Together with properties of ${\mathbb L}$ give an isomorphism

 $\mathbb{L}(V) \cong \Theta^k(\mathcal{I}(0))$

of line bundles over P_E^k . With this identification, s_k is a section of the pull-back of $\Theta^k(\mathcal{I}(0))$ along the projection $MU\langle 2k\rangle^E \to S_E$.

Proposition

The section s_k is a Θ^k -structure, and hence an element of $\underline{C}^k(P_E; \mathcal{I}(0))(MU\langle 2k \rangle^E)$. Proof: This is analogous to the case of ρ_k .

Let

$MU\langle 2k\rangle^E \xrightarrow{g_k} \underline{C}^k(P_E;\mathcal{I}(0))$

be the map classifying the Θ^k -structure s_k . We note that the isomorphism $BU\langle 2k\rangle^E \cong \underline{C}^k (P_E, \mathbb{G}_m)$ gives $\underline{C}^k (P_E; \mathcal{I}(0))$ the structure of a torsor for the group scheme $BU\langle 2k\rangle^E$ when $k \leq 3$. It is worth noting that an equivariant morphism between torsors automatically become an isomorphism. Actually, the g_k is the case.

Orientations and Θ^k -structures

Proposition

The following diagram is commutative

$$\begin{array}{cccc} BU\langle 2k\rangle^E \times MU\langle 2k\rangle^E & \longrightarrow \underline{C}^k \left(P_E; \mathbb{G}_{m,E} \right) \times \underline{C}^k \left(P_E; \mathcal{I}(0) \right) \\ & & \downarrow \\ & & \downarrow \\ MU\langle 2k\rangle^E & \longrightarrow \underline{C}^k \left(P_E; \mathcal{I}(0) \right) \end{array}$$

which is concluded by the following naturality of coactions on Thom spectra

Theorem (Ando-Hopkins-Strickland)

The morphism $MU\langle 2k\rangle^E \xrightarrow{g_k} \underline{C}^k(P_E;\mathcal{I}(0))$ is an isomorphism of $BU\langle 2k\rangle^E$ -torsors when $0 \leq k \leq 3$.

Since $MU\langle 2k \rangle$ is a bounded-below even spectrum when $k \leq 3$, we have natural isomorphisms $[MU\langle 2k \rangle, E] = E^0(MU\langle 2k \rangle) \rightarrow Hom_{E_*}(E_*MU\langle 2k \rangle, E_*) = Hom_{E_0}(E_0MU\langle 2k \rangle, E_0)$ and $[MU\langle 2k \rangle, E]_{rise} = Hom_{E_*} \downarrow (E_0MU\langle 2k \rangle, E_0) = MU\langle 2k \rangle^E(S^E)$

Corollary (Orientations correspond Θ^k -structures)

When $k \leq 3$, the isomorphism g_k induces a bijection

 $[MU\langle 2k\rangle, E]_{ring} \to C^k(P_E; \mathcal{I}(0))(S^E).$

Theorem (Ando-Hopkins-Strickland)

The morphism $MU\langle 2k\rangle^E \xrightarrow{g_k} \underline{C}^k(P_E;\mathcal{I}(0))$ is an isomorphism of $BU\langle 2k\rangle^E$ -torsors when $0 \leq k \leq 3$.

Since $MU\langle 2k \rangle$ is a bounded-below even spectrum when $k \leq 3$, we have natural isomorphisms $[MU\langle 2k \rangle, E] = E^0(MU\langle 2k \rangle) \rightarrow Hom_{E_*}(E_*MU\langle 2k \rangle, E_*) = Hom_{E_0}(E_0MU\langle 2k \rangle, E_0)$ and $[MU\langle 2k \rangle, E]_{ring} = Hom_{E_{0-}Al}(E_0MU\langle 2k \rangle, E_0) = MU\langle 2k \rangle^E(S^E).$

Corollary (Orientations correspond Θ^k -structures)

When $k \leq 3$, the isomorphism g_k induces a bijection

 $[MU\langle 2k\rangle, E]_{ring} \to C^k(P_E; \mathcal{I}(0))(S^E).$

Theorem (Theorem of the cube)

Let $X \to S$ be an abelian scheme over S. Then for any $\mathcal{L} \in Pic(X)$, the $\Theta^{3}(\mathcal{L}) \cong p^{*}\mathcal{M}$ for some $\mathcal{M} \in Pic(S)$ where p denote the projection $X_{S} \times X_{S} \times_{S} X \to S$. Furthermore, $\mathcal{O}_{S} \cong e^{*}\Theta^{3}(\mathcal{L})$ is naturally rigidificated, so $\mathcal{M} \cong e^{*}p^{*}\mathcal{M} \cong e^{*}\Theta^{3}(\mathcal{L}) \cong \mathcal{O}_{S}$ is trivial, and hence $\Theta^{3}(\mathcal{L})$ is also trivial.

Lemma

Let $p: X \to S$ be a proper smooth morphism with geometrically connected fibers, then (i) The natural $\mathcal{O}_S \to p_*\mathcal{O}_X$ is isomorphic; (ii) Let $e: S \to X$ be a section, and let $\mathcal{L}_1, \mathcal{L}_2$ be trivializable line bundles on X, then

$$Hom_{\mathcal{O}_X}(\mathcal{L}_1, \mathcal{L}_2) \to Hom_{\mathcal{O}_S}(e^*\mathcal{L}_1, e^*\mathcal{L}_2)$$

is bijective.

Theorem (Unique cubical structure for abelian schemes)

Let $p: X \to S$ be an abelian scheme over S. Then for any $\mathcal{L} \in Pic(X)$, there exists exactly one Θ^3 -structure on \mathcal{L} .

Proof: Since $Hom_{\mathcal{O}_{X^3}}(\mathcal{O}_{X^3}, \Theta^3(\mathcal{L})) \to Hom_{\mathcal{O}_S}(\mathcal{O}_S, e^*\Theta^3(\mathcal{L}))$ is bijective by lemma above. The natural rigidification $\mathcal{O}_S \xrightarrow{1} e^*\Theta^3(\mathcal{L})$ determines unique trivialization $u: \mathcal{O}_{X^3} \to \Theta^3(\mathcal{L})$. Recall the axioms of cubical structures: (i) s(0) = 1; (ii) $s(a_{\sigma_1}, a_{\sigma_2}, a_{\sigma_3}) = s(a_1, a_2, a_3)$ is symmetric for any $\sigma \in \Sigma_3$; (iii) the section $s(a_1, a_2, a_3) \otimes s(a_0 + a_1, a_2, a_3)^{-1} \otimes s(a_0, a_1 + a_2, a_3) \otimes s(a_0, a_1, a_3)^{-1} = 1$. However, all conditions automatically hold for u by u(0) = 1 when we pullback to Salong e, which means u is exactly the unique cubical structure.

Theorem (Unique cubical structure for abelian schemes)

Let $p: X \to S$ be an abelian scheme over S. Then for any $\mathcal{L} \in Pic(X)$, there exists exactly one Θ^3 -structure on \mathcal{L} .

Proof: Since $Hom_{\mathcal{O}_{X^3}}(\mathcal{O}_{X^3},\Theta^3(\mathcal{L})) \to Hom_{\mathcal{O}_S}(\mathcal{O}_S,e^*\Theta^3(\mathcal{L}))$ is bijective by lemma above. The natural rigidification $\mathcal{O}_S \xrightarrow{1} e^*\Theta^3(\mathcal{L})$ determines unique trivialization $u: \mathcal{O}_{X^3} \to \Theta^3(\mathcal{L})$. Recall the axioms of cubical structures: (i) s(0) = 1; (ii) $s(a_{\sigma_1}, a_{\sigma_2}, a_{\sigma_3}) = s(a_1, a_2, a_3)$ is symmetric for any $\sigma \in \Sigma_3$; (iii) the section $s(a_1, a_2, a_3) \otimes s(a_0 + a_1, a_2, a_3)^{-1} \otimes s(a_0, a_1 + a_2, a_3) \otimes s(a_0, a_1, a_3)^{-1} = 1$. However, all conditions automatically hold for u by u(0) = 1 when we pullback to S

along e, which means u is exactly the unique cubical structure.

σ -orientations for elliptic cohomology theories

Proposition

Let $E \to F$ be a ring (phantom-)morphism between EWP ring (phantom-)spectra, and $MU\langle 2k \rangle \to E$ and $MU\langle 2k \rangle \to F$ be two orientations. Then

commutes if and only if

commutes for the corresponding sections.

Theorem

(1) For any elliptic cohomology theories E we have natural σ -orientation $MU\langle 6 \rangle \rightarrow E$. (11) The σ -orientations commute for any morphism of elliptic cohomology theories $E \rightarrow F$ with morphism $C_1 \rightarrow C_2$ of elliptic curves.

commutes by

A sketch of proof of A-H-S theorem

For k = 2, $BU\langle 2k \rangle = BSU$. Consider the fiber sequence $BSU \rightarrow BU \xrightarrow{det} P$, which induces the following diagram of affine group schemes over S^E

$$\begin{array}{cccc} P^E & \longrightarrow & BU^E & \longrightarrow & BSU^E \\ & & \downarrow & & \downarrow & \\ \underline{Hom}_{Grp/E}(P_E, \mathbb{G}_{m,E}) & \xrightarrow{f\mapsto 1/f} & \underline{C}^1(P_E, \mathbb{G}_{m,E}) & \xrightarrow{\delta} & \underline{C}^2(P_E, \mathbb{G}_{m,E}) \end{array}$$

The simplest, also important, example is $E = HP = \bigvee_{i \in \mathbb{Z}} \Sigma^{2i} HZ$.