Thom spectra, infinite loop spaces, generalized cocycles and -orientation

Jiacheng Liang

SUSTech Department of Mathematics

May 23, 2023
(1) Thom spectrum functor

- Thom spectrum functor
- Properties of the Thom spectrum functor
- Monad and Thom spectrum functor
- Diagonal and Thom isomorphism
(2) Infinite loop space machine and topological settings
- Infinite loop space machine
- n-cocycles in a Cartesian monoidal category
- n-cocycles in algebraic geometry and topology
(3) Cubical structures and σ-orientation
- n-cocycles of a line bundle
- Torsors and Thom sheaves
- Correspondence between orientations and Θ^{k}-structures
- σ-orientations for elliptic cohomology theories

Definition (Thom spectrum functor)

Let $(f: X \rightarrow B O) \in T o p_{\downarrow B O}$, then the standard filtration $X_{V}=f^{-1}(B O(V))$ gives a Thom prespectrum

$$
M_{p}(f)(V)=T h\left(E\left(X_{V}\right) \rightarrow X_{V}\right)=E\left(X_{V}\right)_{+} \wedge_{O(V)_{+}} S^{V}
$$

The spectrification $M(f)$ of $M_{p}(f)$ is called the Thom spectrum corresponding f.
 use $O(\infty)$ for convenience.

Definition (Thom spectrum functor)

Let $(f: X \rightarrow B O) \in T_{o p}^{\downarrow B O}$, then the standard filtration $X_{V}=f^{-1}(B O(V))$ gives a Thom prespectrum

$$
M_{p}(f)(V)=\operatorname{Th}\left(E\left(X_{V}\right) \rightarrow X_{V}\right)=E\left(X_{V}\right)_{+} \wedge_{O(V)_{+}} S^{V}
$$

The spectrification $M(f)$ of $M_{p}(f)$ is called the Thom spectrum corresponding f.

Remark

(i) Actually, any filtration $\lim _{V \subset \mathbb{R}^{\infty}} F_{V} X=X$ where $F_{V} X$ is a closed subspace of X such that $F_{V} X \subset X_{V}$ gives the same Thom spectra (though not the same prespectra). (ii) For $G=S p(\infty), U(\infty), S U(\infty), O(\infty), S O(\infty)$, almost all arguments about Thom spectra throughout this talk apply for them. In the following content we always use $O(\infty)$ for convenience.

For any spectrum $E \in S p$ and any $V \subset \mathbb{R}^{\infty}, \Omega^{\infty} E$ admits a right $O(V)$-action since $\Omega^{\infty} E=E_{0}=\Omega^{V} E_{V}=F\left(S^{V}, E_{V}\right)$. These actions are coherent between different V, so we actually get a right O-action on $\Omega^{\infty} E$.

Theorem

The Thom spectrum functor induces a continuous adjoint pair

$$
T o p_{\downarrow B O} \underset{E O \times{ }_{o} \Omega^{\infty}(-)}{\stackrel{M(-)}{\rightleftarrows}} S p
$$

For any spectrum $E \in S p$ and any $V \subset \mathbb{R}^{\infty}, \Omega^{\infty} E$ admits a right $O(V)$-action since $\Omega^{\infty} E=E_{0}=\Omega^{V} E_{V}=F\left(S^{V}, E_{V}\right)$. These actions are coherent between different V, so we actually get a right O-action on $\Omega^{\infty} E$.

Theorem

The Thom spectrum functor induces a continuous adjoint pair

$$
T o p_{\downarrow B O} \underset{E O \times{ }_{O} \Omega^{\infty}(-)}{\stackrel{M(-)}{\rightleftarrows}} S p
$$

Given a map $(f: X \rightarrow B O) \in \mathcal{U} / B O$ and $E \in S p$, then

$$
\operatorname{Hom}_{S p}(M f, E)=\operatorname{Hom}_{\mathcal{U}[O]}\left(f^{*} E O, \Omega^{\infty} E\right)=\operatorname{Hom}_{\mathcal{U} / B O}\left(X, E O \times{ }_{O} \Omega^{\infty} E\right)
$$

First

$$
\operatorname{Hom}_{S p}(M f, E)=\operatorname{Hom}_{S p}\left(\operatorname{colim}_{V} M X_{V}, E\right)=\lim _{V} \operatorname{Hom}_{S p}\left(M X_{V}, E\right)
$$

Second we define $E X_{V}$ and $Z(V)$ by pullback diagrams,

ther

Since equivariant maps from a principle G-bundle to a G-space are equivalent to sections of the associated bundle,

First

$$
\operatorname{Hom}_{S p}(M f, E)=\operatorname{Hom}_{S p}\left(\operatorname{colim}_{V} M X_{V}, E\right)=\lim _{V} \operatorname{Hom}_{S p}\left(M X_{V}, E\right)
$$

Second we define $E X_{V}$ and $Z(V)$ by pullback diagrams,

then
$\lim _{V} \operatorname{Hom}_{S p}\left(M X_{V}, E\right)=\lim _{V} \operatorname{Hom}_{\mathcal{U}_{*}}\left(E X_{V+} \wedge_{O(V)} S^{V}, E_{V}\right)=$
$\lim _{V} \operatorname{Hom}_{\mathcal{U}_{*}\left[O_{V+}\right]}\left(E X_{V+}, \Omega^{V} E_{V}\right)=\lim _{V} \operatorname{Hom}_{\mathcal{U}\left[O_{V}\right]}\left(E X_{V}, \Omega^{\infty} E\right)=$
$\lim _{V} \operatorname{Hom}_{\mathcal{U}[O]}\left(E X_{V} \times{ }_{O(V)} O, \Omega^{\infty} E\right)=\lim _{V} \operatorname{Hom}_{\mathcal{U}[O]}\left(Z_{V}, \Omega^{\infty} E\right)=\operatorname{Hom}_{\mathcal{U}[O]}\left(f^{*} E O, \Omega^{\infty} E\right)$
Since equivariant maps from a principle G-bundle to a G-space are equivalent to
sections of the associated bundle, i.e.

First

$$
\operatorname{Hom}_{S p}(M f, E)=\operatorname{Hom}_{S p}\left(\operatorname{colim}_{V} M X_{V}, E\right)=\lim _{V} \operatorname{Hom}_{S p}\left(M X_{V}, E\right)
$$

Second we define $E X_{V}$ and $Z(V)$ by pullback diagrams,

then
$\lim _{V} \operatorname{Hom}_{S p}\left(M X_{V}, E\right)=\lim _{V} \operatorname{Hom}_{\mathcal{U}_{*}}\left(E X_{V+} \wedge_{O(V)} S^{V}, E_{V}\right)=$
$\lim _{V} \operatorname{Hom}_{\mathcal{U}_{*}\left[O_{V+}\right]}\left(E X_{V+}, \Omega^{V} E_{V}\right)=\lim _{V} \operatorname{Hom}_{\mathcal{U}\left[O_{V}\right]}\left(E X_{V}, \Omega^{\infty} E\right)=$
$\lim _{V} \operatorname{Hom}_{\mathcal{U}[O]}\left(E X_{V} \times{ }_{O(V)} O, \Omega^{\infty} E\right)=\lim _{V} \operatorname{Hom}_{\mathcal{U}[O]}\left(Z_{V}, \Omega^{\infty} E\right)=\operatorname{Hom}_{\mathcal{U}[O]}\left(f^{*} E O, \Omega^{\infty} E\right)$
Since equivariant maps from a principle G-bundle to a G-space are equivalent to sections of the associated bundle, i.e.
$\operatorname{Hom}_{\mathcal{U}[O]}\left(f^{*} E O, \Omega^{\infty} E\right)=\operatorname{Hom}_{\mathcal{U} / X}\left(X, f^{*} E O \times{ }_{O} \Omega^{\infty} E\right)=\operatorname{Hom}_{\mathcal{U} / B O}\left(X, E O \times{ }_{O} \Omega^{\infty} E\right)$

Proposition

This adjunction $T_{0} p_{\downarrow B O} \underset{E O \times O \Omega^{\infty}(-)}{\stackrel{M(-)}{\rightleftarrows}} S p$ is actually a Quillen adjunction since $M\left(S^{n-1} \rightarrow D^{n}\right)$ is a cell pair of spectra and $M\left(D^{n} \times 0 \rightarrow D^{n} \times I\right)$ is a weak equivalent cell pair for those morphisms over $B O$.

Proposition

Let $f: X \rightarrow B O$ be a map and A a space. Let g be the composite $X \times A \rightarrow X \rightarrow B O$, where the first map is the projection away from A. Then $T(g)=A_{+} \wedge T(f)$, which implies Thom spectrum functor preserves tensors, and hence is a topological Quillen functor.

Proposition

This adjunction $T_{0} p_{\downarrow B O} \underset{E O \times O \Omega^{\infty}(-)}{\stackrel{M(-)}{\rightleftarrows}} S p$ is actually a Quillen adjunction since $M\left(S^{n-1} \rightarrow D^{n}\right)$ is a cell pair of spectra and $M\left(D^{n} \times 0 \rightarrow D^{n} \times I\right)$ is a weak equivalent cell pair for those morphisms over $B O$.

Proposition

Let $f: X \rightarrow B O$ be a map and A a space. Let g be the composite $X \times A \rightarrow X \rightarrow B O$, where the first map is the projection away from A. Then $T(g)=A_{+} \wedge T(f)$, which implies Thom spectrum functor preserves tensors, and hence is a topological Quillen functor.

Proposition

Thom spectrum functor $T(-)$ preserves weak equivalences. Any Thom spectrum $T(f)$ from a map $F: X \rightarrow B O$ is (-1)-connective.

Proposition

Let $\mathcal{V}_{1}, \mathcal{V}_{2}$ be two real universes.
(i) Given maps $B \rightarrow \mathcal{L}\left(V_{1}, V_{2}\right)$ and $f: X \rightarrow B O\left(\mathcal{V}_{1}\right)$, denote g to be the composition $B \times X \rightarrow B \times B O\left(\mathcal{V}_{1}\right) \rightarrow B O\left(\mathcal{V}_{2}\right)$. Then we have the natural isomorphism $T(g) \cong B \ltimes T(f)$.
(ii) Given maps $f: X \rightarrow B O\left(\mathcal{V}_{1}\right)$ and $g: Y \rightarrow B O\left(\mathcal{V}_{2}\right)$, denote $f \times g$ to be the composition $X \times Y \rightarrow B O\left(\mathcal{V}_{1}\right) \times B O\left(\mathcal{V}_{2}\right) \rightarrow B O\left(\mathcal{V}_{1} \oplus \mathcal{V}_{2}\right)$. Then $T(f \times g) \cong T(f) \bar{\wedge} T(g)$.

Proposition

Let $\mathcal{L}(n)=\mathcal{L}\left(\mathbb{R}^{\infty \times n}, \mathbb{R}^{\infty}\right)$, then for any map $f: X \rightarrow B O$ we have

$$
T\left(\bigsqcup_{n \geq 0} \mathcal{L}(n) \times \Sigma_{n} X^{n} \rightarrow \bigsqcup_{n \geq 0} \mathcal{L}(n) \times \Sigma_{n} B O^{n} \rightarrow B O\right)=\bigvee_{n \geq 0} \mathcal{L}(n) \times \Sigma_{n} T(f)^{\bar{\wedge} n}
$$

Lemma

Let \mathcal{C} and \mathcal{D} be topological bicomplete categories, and $\mathbb{A}: \mathcal{C} \rightarrow \mathcal{C}$ and $\mathbb{B}: \mathcal{D} \rightarrow \mathcal{D}$ be continuous monads. Further suppose that there is a continuous functor $F: \mathcal{C} \rightarrow \mathcal{D}$ which is coherent with the monad structure and therefore yields a functor $F: \mathcal{C}[\mathbb{A}] \rightarrow \mathcal{D}[\mathbb{B}]$.
If $F: \mathcal{C} \rightarrow \mathcal{D}$ is left adjoint functor preserving tensors, and the monads \mathbb{A} and \mathbb{B} preserve reflexive coequalizers, then $F: \mathcal{C}[\mathbb{A}] \rightarrow \mathcal{D}[\mathbb{B}]$ is still a left adjoint functor preserving tensors.

Theorem

Thom spectrum functor induces topological Quillen adjoint pairs

$$
\operatorname{Top}[\mathcal{L}(1)]_{\downarrow B O} \rightleftharpoons S p[\mathcal{L}(1)] \quad \text { and } \quad \operatorname{Top}\left[E_{\infty}\right]_{\downarrow B O} \rightleftharpoons S p\left[E_{\infty}\right]
$$

Diagonal and Thom isomorphism

Definition (coaction)

For any map $f: X \rightarrow B O$, the diagonal induces a coaction $X \rightarrow X \times X$ in $\operatorname{Top}_{\downarrow}{ }^{\prime} B O$, where $X \times X \rightarrow B O$ is the projection of the second variable. It gives a natural coaction on Thom spectra: $M f \rightarrow X_{+} \wedge M f$.

Definition (Thom morphism)

With the same hypothesis above, given a homotopy commutative ring spectrum E and a morphism of spectra $M f \rightarrow E$ we have a natural morphism
$E \wedge M f \rightarrow E \wedge X_{+} \wedge M f \rightarrow E \wedge X_{+} \wedge E \rightarrow E \wedge X_{+}$in $H o(S p)$. It induces a natural homological morphism $\phi_{f}: E_{*}(M f) \rightarrow E_{*}(X)$.

Under certain condition ϕ_{f} will be an isomorphism, which is called Thom isomorphism.

Diagonal and Thom isomorphism

Theorem (Thom isomorphism)

Let $G=S p(\infty), U(\infty), S U(\infty), O(\infty), S O(\infty)$ or $\operatorname{Spin}(\infty)$. Let E be a homotopy commutative ring (phantom-)spectrum.
(i) Given a (phantom) ring spectrum morphism $M G \rightarrow E$, then for any map $X \rightarrow B G$ the Thom morphism $E_{*}(M f) \rightarrow E_{*}(X)$ is an isomorphism.
Moreover, if X is E_{∞} and f is an E_{∞} map, then $E_{*}(M f) \rightarrow E_{*}(X)$ is an isomorphism of E_{*}-algebras.
(ii) Given an E_{∞} space X and an $E_{\infty} \operatorname{map} f: X \rightarrow B G$. Let $M f \rightarrow E$ be a (phantom) ring spectrum morphism. If X is 0 -connected, then $E_{*}(M f) \rightarrow E_{*}(X)$ is an isomorphism of E_{*}-algebras.

Diagonal and Thom isomorphism

Theorem (Thom isomorphism)

Let $G=S p(\infty), U(\infty), S U(\infty), O(\infty), S O(\infty)$ or $\operatorname{Spin}(\infty)$. Let E be a homotopy commutative ring (phantom-)spectrum.
(i) Given a (phantom) ring spectrum morphism $M G \rightarrow E$, then for any map $X \rightarrow B G$ the Thom morphism $E_{*}(M f) \rightarrow E_{*}(X)$ is an isomorphism.
Moreover, if X is E_{∞} and f is an E_{∞} map, then $E_{*}(M f) \rightarrow E_{*}(X)$ is an isomorphism of E_{*}-algebras.
(ii) Given an E_{∞} space X and an $E_{\infty} \operatorname{map} f: X \rightarrow B G$. Let $M f \rightarrow E$ be a (phantom) ring spectrum morphism. If X is 0 -connected, then $E_{*}(M f) \rightarrow E_{*}(X)$ is an isomorphism of E_{*}-algebras.

Example

Let $M O \rightarrow H \mathbb{Z} / 2$ and $M U \rightarrow H \mathbb{Z}$ be ring spectrum morphisms from the 0 -th postnikov tower. Then we have natural Thom isomorphisms $H_{*}(M O ; \mathbb{Z} / 2) \rightarrow H_{*}(B O ; \mathbb{Z} / 2)$ and $H_{*}(M U) \rightarrow H_{*}(B U)$.

Infinite loop space machine

We first introduce some consequences of infinite loop space machine.
Theorem (Additive infinite loop space machine, in ABGHR)
Let C be a cofibrant unital E_{∞} operad in Top and $f: C_{*} \rightarrow \Omega^{\infty} \Sigma^{\infty}$ be a morphism of monads on $T o p_{*}$. Then the Quillen pair (Σ^{f}, Ω^{f}) induces a equivalence of categories enriched in $H o(T o p)$ if we restrict it to the following subcategories

$$
\text { group-like } H o\left(E_{\infty} \text {-spaces }\right) \rightleftharpoons(-1) \text {-connective } H o(S p)
$$

where $\Sigma^{f}(-)=\Sigma^{\infty} \otimes_{C_{*}}(-)$ is the coequalizer of the following diagram in $S p$

And $\Omega^{f} X=\Omega^{\infty} X$ is endowed with the C_{*}-action $C_{*} \Omega^{\infty} X \rightarrow \Omega^{\infty} \Sigma^{\infty} \Omega^{\infty} X \rightarrow \Omega^{\infty} X$.

Uniqueness of infinite loop space machine

Theorem (Uniqueness of additive infinite loop space machine, May 77)
We define an infinite loop space machine to be an adjoint pair (F, G)
$H o\left(E_{\infty}\right.$-spaces $) \underset{G}{\stackrel{F}{\rightleftarrows}}(-1)$-connective $H o(S p)$ such that
(1) The composition
(-1)-connective $H o(S p) \xrightarrow{G} H o\left(E_{\infty}\right.$-spaces $) \rightarrow C M o n\left(H o\left(\operatorname{Top}_{*}\right)\right)$ is equivalent to Ω^{∞};
(2) For any $X \in H o\left(E_{\infty}\right.$-spaces), $X \rightarrow G F(X)$ is a group completion, which means $\pi_{0} G F(X)$ is a group and $H_{*}(X)\left[\left(\pi_{0} X\right)^{-1}\right] \rightarrow H_{*} G F(X)$ is isomorphic.
Now, if $\left(F_{1}, G_{1}\right)$ and $\left(F_{2}, G_{2}\right)$ are two infinite loop space machines, then there exists a natural equivalence between F_{1} and F_{2}.

Theorem (Uniqueness of additive infinite loop space machine, May 77)

We define an infinite loop space machine to be an adjoint pair (F, G)
$H o\left(E_{\infty}\right.$-spaces $) \underset{G}{\stackrel{F}{\rightleftarrows}}(-1)$-connective $H o(S p)$ such that
(1) The composition
(-1)-connective $H o(S p) \xrightarrow{G} H o\left(E_{\infty}\right.$-spaces $) \rightarrow C M o n\left(H o\left(\right.\right.$ Top $\left.\left._{*}\right)\right)$ is equivalent to Ω^{∞}; (2) For any $X \in H o\left(E_{\infty}\right.$-spaces), $X \rightarrow G F(X)$ is a group completion, which means $\pi_{0} G F(X)$ is a group and $H_{*}(X)\left[\left(\pi_{0} X\right)^{-1}\right] \rightarrow H_{*} G F(X)$ is isomorphic.
Now, if $\left(F_{1}, G_{1}\right)$ and $\left(F_{2}, G_{2}\right)$ are two infinite loop space machines, then there exists a natural equivalence between F_{1} and F_{2}.

Remark

The existence of infinite loop space implies that for any group-like E_{∞}-space X, the induced pointed H-space of it is actually an H-group because $X \cong \Omega^{\infty} F X$ in $C M o n\left(H o\left(\right.\right.$ Top $\left.\left._{*}\right)\right)$ and $\Omega^{\infty} F X$ is a pointed H-group.

We also consider the connective complex K-theory $b u$, so $b u^{*}=\mathbb{Z}[v],|v|=-2$ and $b u^{2 t}(X)=[X, B U\langle 2 t\rangle]$. To make this true when $t=0$, we adopt the convention that $B U\langle 0\rangle=\mathbb{Z} \times B U$. Multiplication by $v^{t}: \Sigma^{2 t} b u \rightarrow b u$ gives the $(2 t-1)$-connective cover of $b u$. We define $B U\langle 2 t\rangle=\Omega^{\infty} \Sigma^{2 t} b u$. Under this identification, we a sequence of morphisms in $\operatorname{Ho}\left(\operatorname{Top}\left[E_{\infty}\right]\right)$

$$
\ldots \rightarrow B U\langle 2 k\rangle \rightarrow \ldots \rightarrow B U\langle 6\rangle \rightarrow B S U \rightarrow B U \rightarrow B U\langle 0\rangle
$$

derived from infinite loop space machine.

We also consider the connective complex K-theory $b u$, so $b u^{*}=\mathbb{Z}[v],|v|=-2$ and $b u^{2 t}(X)=[X, B U\langle 2 t\rangle]$. To make this true when $t=0$, we adopt the convention that $B U\langle 0\rangle=\mathbb{Z} \times B U$. Multiplication by $v^{t}: \Sigma^{2 t} b u \rightarrow b u$ gives the $(2 t-1)$-connective cover of $b u$. We define $B U\langle 2 t\rangle=\Omega^{\infty} \Sigma^{2 t} b u$. Under this identification, we a sequence of morphisms in $\operatorname{Ho}\left(\operatorname{Top}\left[E_{\infty}\right]\right)$

$$
\ldots \rightarrow B U\langle 2 k\rangle \rightarrow \ldots \rightarrow B U\langle 6\rangle \rightarrow B S U \rightarrow B U \rightarrow B U\langle 0\rangle
$$

derived from infinite loop space machine.

Proposition

Combine with the Thom spectrum functor $\operatorname{Top}\left[E_{\infty}\right]_{\downarrow B U} \rightleftharpoons S p\left[E_{\infty}\right]$, the sequence above induces a new sequence of morphisms in $\mathrm{Ho}\left(S p\left[E_{\infty}\right]\right)$

$$
\ldots \rightarrow M U\langle 2 k\rangle \rightarrow \ldots \rightarrow M U\langle 6\rangle \rightarrow M S U \rightarrow M U \rightarrow M P .
$$

Connective K-theory and cocycles

Firstly define the map $\rho_{0}: P \rightarrow 1 \times B U \subset B U\langle 0\rangle$ just to be the map classifying the tautological line bundle L.
As for $t>0$, let L_{1}, \ldots, L_{t} be the obvious line bundles over P^{t}. Let $x_{i} \in b u^{2}\left(P^{t}\right)$ be the $b u$-theory Euler class, given by the formula

$$
v x_{i}=1-L_{i} .
$$

Then we have the isomorphisms

The class \prod_{i}

Remark

Note that the composition

Connective K-theory and cocycles

Firstly define the map $\rho_{0}: P \rightarrow 1 \times B U \subset B U\langle 0\rangle$ just to be the map classifying the tautological line bundle L.
As for $t>0$, let L_{1}, \ldots, L_{t} be the obvious line bundles over P^{t}. Let $x_{i} \in b u^{2}\left(P^{t}\right)$ be the $b u$-theory Euler class, given by the formula

$$
v x_{i}=1-L_{i} .
$$

Then we have the isomorphisms

$$
b u^{*}\left(P^{t}\right) \cong \mathbb{Z}[v]\left[\left[x_{1}, \ldots, x_{t}\right]\right]
$$

The class $\prod_{i} x_{i} \in b u^{2 t}\left(P^{t}\right)$ gives the map $\rho_{t}: P^{t}=\left(\mathbb{C} P^{\infty}\right)^{t} \rightarrow B U\langle 2 t\rangle$.

Remark

Note that the composition $P^{t} \xrightarrow{\rho_{t}} B U\langle 2 t\rangle \rightarrow B U\langle 0\rangle$ classifies the bundle $\prod_{i}\left(1-L_{i}\right)$.

Definition

Let C be a category admitting finite products. If A and T are abelian monoid objects in $C M o n(C)$, we define $C^{0}(A, T)$ to be the group

$$
C^{0}(A, T) \stackrel{\text { def }}{=} \operatorname{Hom}_{C}(A, T)
$$

and for $k \geq 1$ we let $C^{k}(A, T)$ be the subgroup of $f \in \operatorname{Hom}_{C}\left(A^{k}, T\right)$ such that
(a) $f\left(a_{1}, \ldots, a_{k-1}, 0\right)=0$
(b) $f\left(a_{1}, \ldots, a_{k}\right)$ is symmetric in the a_{i};
(c) $f\left(a_{1}, a_{2}, a_{3}, \ldots, a_{k}\right)+f\left(a_{0}, a_{1}+a_{2}, a_{3}, \ldots, a_{k}\right)=$
$f\left(a_{0}+a_{1}, a_{2}, a_{3}, \ldots, a_{k}\right)+f\left(a_{0}, a_{1}, a_{3}, \ldots, a_{k}\right)$, when $\mathrm{k} \geq 2$.

Remark

We refer to (c) as the "cocycle" condition for f. If T is an abelian group object, then in definition (a) can be replaced by (a)': $f(0,0, \ldots, 0)=0$.

From definition we can make n-cocycles a sheaf as the following: let X, Y are commutative momoid fppf sheaves over S, we define $\underline{C}^{k}(X, Y)(T)=C^{k}\left(X_{T}, Y_{T}\right)$. It is actually a representable commutative monoid sheaf in $S h(S c h / S)_{f p p f}$ in certain case.

Proposition

Let G be a formal group over a scheme S. Then for all k, the functor $\underline{C}^{k}\left(G, \mathbb{G}_{m}\right)$ is an S-affine commutative group scheme.

From definition we can make n-cocycles a sheaf as the following: let X, Y are commutative momoid fppf sheaves over S, we define $\underline{C}^{k}(X, Y)(T)=C^{k}\left(X_{T}, Y_{T}\right)$. It is actually a representable commutative monoid sheaf in $S h(S c h / S)_{f p p f}$ in certain case.

Proposition

Let G be a formal group over a scheme S. Then for all k, the functor $\underline{C}^{k}\left(G, \mathbb{G}_{m}\right)$ is an S-affine commutative group scheme.
Proof: It suffices to work $k \geq 1$ and locally on S, so we may assume $S=\operatorname{Spec}(R)$ and choose a coordinate x on G. We define power series g_{0}, \ldots, g_{k} by

$$
g_{i}= \begin{cases}i=0 & f(0, \ldots, 0) \\ i<k & f\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, x_{i}, \ldots, x_{k}\right) f\left(x_{1}, \ldots, x_{k}\right)^{-1} \\ i=k & f\left(x_{1}, \ldots, x_{k}\right) f\left(x_{0}+{ }_{F} x_{1}, x_{2}, \ldots\right)^{-1} f\left(x_{0}, x_{1}+{ }_{F} x_{2}, \ldots\right) f\left(x_{0}, x_{1}, x_{3}, \ldots\right)^{-1}\end{cases}
$$

Let I be the ideal in R generated by all the coefficients of all the power series $g_{i}-1$. It is not hard to check $\operatorname{Spec}(R / I)$ has the universal property that defines $\underline{C}^{k}\left(G, \mathbb{G}_{m}\right)$.

Definition

We say a space X to be "even" iff $H_{*}(X)$ is concentrated in even degrees and $H_{n}(X)$ is free abelian for all n.

Lemma (Hatcher 4C.1)
If X is even and simply-connected, then there exists a CW approximation $W \rightarrow X$ such that W only consists of cells of even degrees.

Definition

We say a space X to be "even" iff $H_{*}(X)$ is concentrated in even degrees and $H_{n}(X)$ is free abelian for all n.

Lemma (Hatcher 4C.1)

If X is even and simply-connected, then there exists a CW approximation $W \rightarrow X$ such that W only consists of cells of even degrees.

Proposition

(1) Let E be an EWP commutative ring (phantom-)spectrum. Then for any even space X, the $A-T$ spectral sequence $H_{*}\left(X ; E_{*}\right) \Longrightarrow E_{*}(X)$ collapses. Therefore $E_{*}(X)$ is a free E_{*}-module and $E^{*}(X) \rightarrow \operatorname{Hom}_{E_{*}}^{*}\left(E_{*} X, E_{*}\right)$ is bijective.
(2) The $E_{0}(X)$ is a cocommutative E_{0}-coalgebra by kunneth theorem. If X is an even H-space, we define $X_{E}=\operatorname{Spf} E^{0} X$, then the natural Cartier morphism Spec $E_{0} X \rightarrow \underline{H o m}_{G r p / E}\left(X_{E}, \mathbb{G}_{m, E}\right)$ is isomorphic, which is the special Cartier duality.

Proposition

Let X be an even commutative H-space, we have the following diagram in CMon(Sets) for any $k \geq 0$,

$$
\begin{array}{r}
C^{k}(P, X) \longrightarrow C_{E_{0}-C c o A l}^{k}\left(E_{0} P, E_{0} X\right) \ldots \ldots \operatorname{Hom}_{\text {Mon } / E}\left(X^{E}, \underline{C}^{k}\left(P_{E}, \mathbb{G}_{m, E}\right)\right) \\
\downarrow \\
\underline{C}^{k}\left(P_{E}, \mathbb{M}_{m, E}\right)\left(\operatorname{Spec} E_{0} X\right) \longleftrightarrow \ldots \ldots \underline{C}^{k}\left(P_{E}, \mathbb{G}_{m, E}\right)\left(\operatorname{Spec} E_{0} X\right)
\end{array}
$$

where $P=\mathbb{C} P^{\infty}$ is with the H-structure by tensor product of line bundles, and where $P_{E}=\operatorname{Spf} E^{0} P, X^{E}=\operatorname{Spec} E_{0} X$. The dashed liftings exist only when $k \geq 1$ or X is an H-group, and in those 2 cases all cocycle sets above are abelian groups.

Apply it to $\rho_{t} \in C^{t}(P, B U\langle 2 t\rangle)$, we get morphisms of commutative group schemes over $\operatorname{Spec}\left(E_{0}\right)$ for all $t \geq 0$

$$
f_{t}: \operatorname{Spec} E_{0} B U\langle 2 t\rangle \rightarrow \underline{C}^{k}\left(P_{E}, \mathbb{G}_{m, E}\right)
$$

Algebro-geometric interpretation of some E-homology rings

The classical theory about the complex orientation tells us f_{0} and f_{1} are isomorphisms.
Furthermore, we have the following

Theorem (Ando-Hopkins-Strickland)

The morphism $f_{k}:$ Spec $E_{0} B U\langle 2 k\rangle \rightarrow \underline{C}^{k}\left(P_{E}, \mathbb{G}_{m, E}\right)$ is an isomorphism of group schemes over Spec E_{0} when $0 \leq k \leq 3$.

This theorem is, actually, the most technical part in [AHS], which involves amounts of calculus in both algebraic topology and algebraic geometry.

Algebro-geometric interpretation of some E-homology rings

The classical theory about the complex orientation tells us f_{0} and f_{1} are isomorphisms. Furthermore, we have the following

Theorem (Ando-Hopkins-Strickland)

The morphism $f_{k}:$ Spec $E_{0} B U\langle 2 k\rangle \rightarrow \underline{C}^{k}\left(P_{E}, \mathbb{G}_{m, E}\right)$ is an isomorphism of group schemes over Spec E_{0} when $0 \leq k \leq 3$.

This theorem is, actually, the most technical part in [AHS], which involves amounts of calculus in both algebraic topology and algebraic geometry.
Now let us delay the proof and consider the following definition

Definition

If G and T are abelian group objects, and if $k \geq 0$ and $f \in C^{k}(G, T)$, then let $\delta(f) \in C^{k+1}(G, T)$ be the map given by the formula for $k \geq 1$
$\delta(f)\left(a_{0}, \ldots, a_{k}\right)=f\left(a_{0}, a_{2}, \ldots, a_{k}\right)+f\left(a_{1}, a_{2}, \ldots, a_{k}\right)-f\left(a_{0}+a_{1}, a_{2}, \ldots, a_{k}\right)$.
For $k=0$, the map should be $\delta(f)(a)=f(0)-f(a)$

-maps

It is clear that δ generalizes to abelian groups in any category with products. We leave it to the reader to verify the following.

Proposition

For $k \geq 0$, the map δ induces a homomorphism of groups

$$
\delta: C^{k}(G, T) \rightarrow C^{k+1}(G, T)
$$

Moreover, if G and T are formal groups over a scheme S, then δ induces a homomorphism of group schemes $\delta: \underline{C}^{k}(G, T) \rightarrow \underline{C}^{k+1}(G, T)$.

Proposition

The map ρ_{t} is contained in the subgroup $C^{t}(P, B U\langle 2 t\rangle)$ of bu bu $u^{2 t}\left(P^{t}\right)$ and satisfies

$$
v_{*} \rho_{t+1}=\delta\left(\rho_{t}\right) \in C^{t+1}(P, B U\langle 2 t\rangle)
$$

-maps

Proof of the proposition above: When $t \geq 1, v_{*} \rho_{t+1}=v \cdot x_{1} \cdot x_{2} \cdot \ldots \cdot x_{t+1}$ and $\delta\left(\rho_{t}\right)=x_{0} \cdot x_{2} \cdot \ldots \cdot x_{t+1}+x_{1} \cdot x_{2} \cdot \ldots \cdot x_{t+1}-\left(x_{0}{ }_{b u} x_{1}\right) \cdot x_{2} \cdot \ldots \cdot x_{t+1}=v \cdot x_{1} \cdot x_{2} \cdot \ldots \cdot x_{t+1}$.

$$
=\left[x_{0}+x_{1}-\left(x_{0}+x_{1}-v \cdot x_{1} x_{2}\right)\right] \cdot x_{2} \cdot \ldots \cdot x_{t+1}=v \cdot x_{1} \cdot x_{2} \cdot \ldots \cdot x_{t+1}
$$

, i.e. $v_{*} \rho_{t+1}=\delta\left(\rho_{t}\right) \in C^{t+1}(P, B U\langle 2 t\rangle)$.

Corollary

By the fact $v_{*} \rho_{t+1}=\delta\left(\rho_{t}\right) \in C^{t+1}(P, B U\langle 2 t\rangle)$, we have the following diagram

$$
\begin{aligned}
& B U\langle 2 t\rangle^{E} \xrightarrow{f_{t}} \underline{C}^{t}\left(P_{E}, \mathbb{G}_{m, E}\right) \\
& \downarrow \quad t \geq 0 \quad \downarrow \\
& B U\langle 2 t+2\rangle^{E} \xrightarrow{f_{t+1}} \underline{C}^{t+1}\left(P_{E}, \mathbb{G}_{m, E}\right)
\end{aligned}
$$

Definition

Suppose that $k \geq 1$ and G is an abelian big-Zariski-sheaf over S. Given a subset $I \subseteq\{1, \ldots, k\}$, we define $\sigma_{I}: G_{S}^{k} \rightarrow G$ by $\sigma_{I}\left(a_{1}, \ldots, a_{k}\right)=\sum_{i \in I} a_{i}$, and we write $\mathcal{L}_{I}=\sigma_{I}^{*} \mathcal{L}$, which is a line bundle over G_{S}^{k}. We also define the line bundle $\Theta^{k}(\mathcal{L})$ over G_{S}^{k} by the formula

$$
\Theta^{k}(\mathcal{L}) \stackrel{\text { def }}{=} \bigotimes_{I \subset\{1, \ldots, k\}}\left(\mathcal{L}_{I}\right)^{(-1)^{|I|}}
$$

Finally, we define $\Theta^{0}(\mathcal{L})=\mathcal{L}$ For example we have

$$
\begin{aligned}
\Theta^{0}(\mathcal{L})_{a} & =\mathcal{L}_{a}, \Theta^{1}(\mathcal{L})_{a}=\frac{\mathcal{L}_{0}}{\mathcal{L}_{a}}, \Theta^{2}(\mathcal{L})_{a, b}=\frac{\mathcal{L}_{0} \otimes \mathcal{L}_{a+b}}{\mathcal{L}_{a} \otimes \mathcal{L}_{b}} \\
\Theta^{3}(\mathcal{L})_{a, b, c} & =\frac{\mathcal{L}_{0} \otimes \mathcal{L}_{a+b} \otimes \mathcal{L}_{a+c} \otimes \mathcal{L}_{b+c}}{\mathcal{L}_{a} \otimes \mathcal{L}_{b} \otimes \mathcal{L}_{c} \otimes \mathcal{L}_{a+b+c}}
\end{aligned}
$$

We observe three facts about these bundles.
(i) $\Theta^{k}(\mathcal{L})$ has a natural rigid structure for $k>0$.
(ii) For each permutation $\sigma \in \Sigma_{k}$, there is a canonical isomorphism

$$
\xi_{\sigma}: \pi_{\sigma}^{*} \Theta^{k}(\mathcal{L}) \cong \Theta^{k}(\mathcal{L})
$$

where $\pi_{\sigma}: G_{S}^{k} \rightarrow G_{S}^{k}$ permutes the factors. Moreover, these isomorphisms compose in the obvious way.
(iii) There is a canonical identification (of rigid line bundles over G_{S}^{k+1})
$\Theta^{k}(\mathcal{L})_{a_{1}, a_{2}, \ldots}$
$\otimes \Theta^{k}(\mathcal{L})_{a_{0}+a_{1}, a_{2}, \ldots}^{-1}$
$\otimes \Theta^{k}(\mathcal{L})_{a_{0}, a_{1}+a_{2}, \ldots}$
$\otimes \Theta^{k}(\mathcal{L})_{a_{0}, a_{1}, \ldots}^{-1} \cong 1$

Definition

A Θ^{k}-structure on a line bundle \mathcal{L} over a group G is a trivialization s of the line bundle $\Theta^{k}(\mathcal{L})$ such that
(i) for $k>0, s$ is a rigid section;
(ii) s is symmetric in the sense that for each $\sigma \in \Sigma_{k}$, we have $\xi_{\sigma} \pi_{\sigma}^{*} s=s$;
(iii) the section
$s\left(a_{1}, a_{2}, \ldots\right) \otimes s\left(a_{0}+a_{1}, a_{2}, \ldots\right)^{-1} \otimes s\left(a_{0}, a_{1}+a_{2}, \ldots\right) \otimes s\left(a_{0}, a_{1}, \ldots\right)^{-1}$
corresponds to 1 under the isomorphism above.

A Θ^{3}-structure on a line bundles is called by a cubical structure.

Definition

We write $C^{k}(G ; \mathcal{L})$ for the set of Θ^{k}-structures on \mathcal{L} over G. Note that $C^{0}(G ; \mathcal{L})$ is just the set of trivializations of \mathcal{L}, and $C^{1}(G ; \mathcal{L})$ is the set of rigid trivializations of $\Theta^{1}(\mathcal{L})$. We also define a functor from rings to sets by

$$
\underline{C}^{k}(G ; \mathcal{L})(R)=\left\{(u, f) \mid u: \operatorname{spec}(R) \rightarrow S, f \in C_{\mathrm{spec}(R)}^{k}\left(u^{*} G ; u^{*} \mathcal{L}\right)\right\}
$$

Remark

Note that for the trivial line bundle \mathcal{O}_{G}, the set $C^{k}\left(G ; \mathcal{O}_{G}\right)$ reduces to that of the group $\mathbb{C}^{k}\left(G, \mathbb{G}_{m}\right)$ of cocycles introduced previously.

For any two line bundles $\mathcal{L}_{1}, \mathcal{L}_{2}$, we have natural
$C^{k}\left(G ; \mathcal{L}_{1}\right) \times C^{k}\left(G ; \mathcal{L}_{2}\right) \rightarrow C^{k}\left(G ; \mathcal{L}_{1} \otimes \mathcal{L}_{2}\right)$ by $\left(s_{1}, s_{2}\right) \mapsto s_{1} \otimes s_{2}$. Consequently, let \mathcal{L}_{1} be trivial, then we can get a natural group action
$C^{k}\left(G ; \mathbb{G}_{m}\right) \times C^{k}(G ; \mathcal{L}) \rightarrow C^{k}(G ; \mathcal{L})$ for any line bundle \mathcal{L}.

Proposition

If G is a formal group over S, and \mathcal{L} is a line bundle over G trivializable Zariski locally on S, then the functor $\underline{C}^{k}(G ; \mathcal{L})$ is a scheme, whose formation commutes with change of base. Moreover, $\underline{C}^{k}(G ; \mathcal{L})$ is a torsor for $\underline{C}^{k}\left(G, \mathbb{G}_{m}\right)$.

Now turn to the topology.

For any two line bundles $\mathcal{L}_{1}, \mathcal{L}_{2}$, we have natural
$C^{k}\left(G ; \mathcal{L}_{1}\right) \times C^{k}\left(G ; \mathcal{L}_{2}\right) \rightarrow C^{k}\left(G ; \mathcal{L}_{1} \otimes \mathcal{L}_{2}\right)$ by $\left(s_{1}, s_{2}\right) \mapsto s_{1} \otimes s_{2}$. Consequently, let \mathcal{L}_{1} be trivial, then we can get a natural group action $C^{k}\left(G ; \mathbb{G}_{m}\right) \times C^{k}(G ; \mathcal{L}) \rightarrow C^{k}(G ; \mathcal{L})$ for any line bundle \mathcal{L}.

Proposition

If G is a formal group over S, and \mathcal{L} is a line bundle over G trivializable Zariski locally on S, then the functor $\underline{C}^{k}(G ; \mathcal{L})$ is a scheme, whose formation commutes with change of base. Moreover, $\underline{C}^{k}(G ; \mathcal{L})$ is a torsor for $\underline{C}^{k}\left(G, \mathbb{G}_{m}\right)$.

Now turn to the topology.

Definition

Suppose that X is a finite even complex and V is a virtual complex vector bundle classified by a $X \rightarrow Z \times B U$. We write X^{V} for its Thom spectrum. The coaction of the Thom spectrum makes $E^{0} X^{V}$ an $E^{0} X$-module. By Thom isomorphism Zariski locally, it is a line bundle further.

Proposition

Suppose that X is a finite complex and V is a virtual bundle over X. We shall write $\mathbb{L}(V)$ for line bundle $E^{0} X^{V}$, and \mathbb{L} defines a functor from vector bundles over X to line bundles over X_{E}.
(i) If V and W are two virtual complex vector bundles over X then there is a natural isomorphism

$$
\mathbb{L}(V \oplus W) \cong \mathbb{L}(V) \otimes \mathbb{L}(W)
$$

and so $\mathbb{L}(V-W)=\mathbb{L}(V) \otimes \mathbb{L}(W)^{-1}$.
(ii) Moreover, if $f: Y \rightarrow X$ is a map of spaces, then there is a natural isomorphism $f^{*} \mathbb{L}(V) \cong \mathbb{L}\left(f^{*} V\right)$ of line bundles over Y_{E}.

If X is an (infinite) even complex and V is a virtual bundle classified by
$f: X \rightarrow B U\langle 0\rangle$, then $\mathbb{L}(V)$ is a quasi-coherent sheaf on $\operatorname{Spf} E^{0} X$ by taking colimits. Moreover, the proposition above also applies for infinite even complex

Proposition

Suppose that X is a finite complex and V is a virtual bundle over X. We shall write $\mathbb{L}(V)$ for line bundle $E^{0} X^{V}$, and \mathbb{L} defines a functor from vector bundles over X to line bundles over X_{E}.
(i) If V and W are two virtual complex vector bundles over X then there is a natural isomorphism

$$
\mathbb{L}(V \oplus W) \cong \mathbb{L}(V) \otimes \mathbb{L}(W)
$$

and so $\mathbb{L}(V-W)=\mathbb{L}(V) \otimes \mathbb{L}(W)^{-1}$.
(ii) Moreover, if $f: Y \rightarrow X$ is a map of spaces, then there is a natural isomorphism $f^{*} \mathbb{L}(V) \cong \mathbb{L}\left(f^{*} V\right)$ of line bundles over Y_{E}.

If X is an (infinite) even complex and V is a virtual bundle classified by $f: X \rightarrow B U\langle 0\rangle$, then $\mathbb{L}(V)$ is a quasi-coherent sheaf on $\operatorname{Spf} E^{0} X$ by taking colimits. Moreover, the proposition above also applies for infinite even complex X.

Relation to $\mathrm{MU}<2 \mathrm{k}>$

Lemma

Let $T\left(\rho_{0}\right)=\Sigma^{\infty} T h(\mathcal{L})$ is the Thom spectrum associated with $\rho_{0}: P \rightarrow Z \times B U$ by the tautological bundle \mathcal{L}. Then the Thom sheaf $E^{0} T\left(\rho_{0}\right)$ is naturally isomorphic to $\mathcal{I}(0)=\operatorname{ker}\left(E^{0} P \rightarrow E^{0}\right)$ in $Q \operatorname{coh}\left(P_{E}\right)$. This isomorphism is induced by a homotopy equivalence of P_{+}-comodule pointed spaces $P \rightarrow \operatorname{Th}(\mathcal{L})$.

Passing to Thom spectra gives a map
which determines an element

Relation to $\mathrm{MU}<2 \mathrm{k}>$

Lemma

Let $T\left(\rho_{0}\right)=\Sigma^{\infty} T h(\mathcal{L})$ is the Thom spectrum associated with $\rho_{0}: P \rightarrow Z \times B U$ by the tautological bundle \mathcal{L}. Then the Thom sheaf $E^{0} T\left(\rho_{0}\right)$ is naturally isomorphic to $\mathcal{I}(0)=\operatorname{ker}\left(E^{0} P \rightarrow E^{0}\right)$ in $Q \operatorname{coh}\left(P_{E}\right)$. This isomorphism is induced by a homotopy equivalence of P_{+}-comodule pointed spaces $P \rightarrow \operatorname{Th}(\mathcal{L})$.

For $1 \leq i \leq k$, let L_{i} be the line bundle over the i factor of P^{k}. Recall that the map $\rho_{k}: P^{k} \rightarrow B U\langle 2 k\rangle$ pulls the tautological virtual bundle over $B U\langle 2 k\rangle$ back to the bundle

$$
V=\bigotimes_{i}\left(1-L_{i}\right)
$$

Passing to Thom spectra gives a map

$$
\left(P^{k}\right)^{V} \rightarrow M U\langle 2 k\rangle
$$

which determines an element s_{k} of $E_{0} M U\langle 2 k\rangle \widehat{\otimes} E^{0}\left(\left(P^{k}\right)^{V}\right)$.

Together with properties of \mathbb{L} give an isomorphism

$$
\mathbb{L}(V) \cong \Theta^{k}(\mathcal{I}(0))
$$

of line bundles over P_{E}^{k}. With this identification, s_{k} is a section of the pull-back of $\Theta^{k}(\mathcal{I}(0))$ along the projection $M U\langle 2 k\rangle^{E} \rightarrow S_{E}$.

Proposition

The section s_{k} is a Θ^{k}-structure, and hence an element of $\underline{C}^{k}\left(P_{E} ; \mathcal{I}(0)\right)\left(M U\langle 2 k\rangle^{E}\right)$. Proof: This is analogous to the case of ρ_{k}.
be the map classifying the Θ^{k}-structure s_{k}. We note that the isomorphism
\square scheme $B U\langle 2 k\rangle^{E}$ when $k \leq 3$. It is worth noting that an equivariant morphism between torsors automatically become an isomorphism. Actually, the g_{k} is the case.

Together with properties of \mathbb{L} give an isomorphism

$$
\mathbb{L}(V) \cong \Theta^{k}(\mathcal{I}(0))
$$

of line bundles over P_{E}^{k}. With this identification, s_{k} is a section of the pull-back of $\Theta^{k}(\mathcal{I}(0))$ along the projection $M U\langle 2 k\rangle^{E} \rightarrow S_{E}$.

Proposition

The section s_{k} is a Θ^{k}-structure, and hence an element of $\underline{C}^{k}\left(P_{E} ; \mathcal{I}(0)\right)\left(M U\langle 2 k\rangle^{E}\right)$. Proof: This is analogous to the case of ρ_{k}.

Let

$$
M U\langle 2 k\rangle^{E} \xrightarrow{g_{k}} \underline{C}^{k}\left(P_{E} ; \mathcal{I}(0)\right)
$$

be the map classifying the Θ^{k}-structure s_{k}. We note that the isomorphism $B U\langle 2 k\rangle^{E} \cong \underline{C}^{k}\left(P_{E}, \mathbb{G}_{m}\right)$ gives $\underline{C}^{k}\left(P_{E} ; \mathcal{I}(0)\right)$ the structure of a torsor for the group scheme $B U\langle 2 k\rangle^{E}$ when $k \leq 3$. It is worth noting that an equivariant morphism between torsors automatically become an isomorphism. Actually, the g_{k} is the case.

Proposition

The following diagram is commutative

$$
\begin{aligned}
& B U\langle 2 k\rangle^{E} \times M U\langle 2 k\rangle^{E} \longrightarrow \underline{C}^{k}\left(P_{E} ; \mathbb{G}_{m, E}\right) \times \underline{C}^{k}\left(P_{E} ; \mathcal{I}(0)\right) \\
& M U\langle 2 k\rangle^{E} \longrightarrow \underline{C}^{k}\left(P_{E} ; \mathcal{I}(0)\right)
\end{aligned}
$$

which is concluded by the following naturality of coactions on Thom spectra

Orientations and
 -structures

Theorem (Ando-Hopkins-Strickland)

The morphism $M U\langle 2 k\rangle^{E} \xrightarrow{g_{k}} \underline{C}^{k}\left(P_{E} ; \mathcal{I}(0)\right)$ is an isomorphism of $B U\langle 2 k\rangle^{E}$-torsors when $0 \leq k \leq 3$.
isomorphisms

Corollary (Orientations correspond -structures)
 the isomorphism a_{k} induces a bijection

Orientations and

Theorem (Ando-Hopkins-Strickland)

The morphism $M U\langle 2 k\rangle^{E} \xrightarrow{g_{k}} \underline{C}^{k}\left(P_{E} ; \mathcal{I}(0)\right)$ is an isomorphism of $B U\langle 2 k\rangle^{E}$-torsors when $0 \leq k \leq 3$.

Since $M U\langle 2 k\rangle$ is a bounded-below even spectrum when $k \leq 3$, we have natural isomorphisms

$$
\begin{aligned}
& {[M U\langle 2 k\rangle, E]=E^{0}(M U\langle 2 k\rangle) \rightarrow \operatorname{Hom}_{E_{*}}\left(E_{*} M U\langle 2 k\rangle, E_{*}\right)=\operatorname{Hom}_{E_{0}}\left(E_{0} M U\langle 2 k\rangle, E_{0}\right)} \\
& \text { and } \quad[M U\langle 2 k\rangle, E]_{\text {ring }}=\operatorname{Hom}_{E_{0}-A l}\left(E_{0} M U\langle 2 k\rangle, E_{0}\right)=M U\langle 2 k\rangle^{E}\left(S^{E}\right) .
\end{aligned}
$$

Corollary (Orientations correspond -structures)
When $k \leq 3$, the isomorphism g_{k} induces a bijection

$$
[M U\langle 2 k\rangle, E]_{\text {ring }} \rightarrow C^{k}\left(P_{E} ; \mathcal{I}(0)\right)\left(S^{E}\right)
$$

Theorem (Theorem of the cube)

Let $X \rightarrow S$ be an abelian scheme over S. Then for any $\mathcal{L} \in \operatorname{Pic}(X)$, the $\Theta^{3}(\mathcal{L}) \cong p^{*} \mathcal{M}$ for some $\mathcal{M} \in \operatorname{Pic}(S)$ where p denote the projection $X_{S} \times X_{S} \times{ }_{S} X \rightarrow S$.
Furthermore, $\mathcal{O}_{S} \cong e^{*} \Theta^{3}(\mathcal{L})$ is naturally rigidificated, so $\mathcal{M} \cong e^{*} p^{*} \mathcal{M} \cong e^{*} \Theta^{3}(\mathcal{L}) \cong \mathcal{O}_{S}$ is trivial, and hence $\Theta^{3}(\mathcal{L})$ is also trivial.

Lemma

Let $p: X \rightarrow S$ be a proper smooth morphism with geometrically connected fibers, then (i) The natural $\mathcal{O}_{S} \rightarrow p_{*} \mathcal{O}_{X}$ is isomorphic;
(ii) Let $e: S \rightarrow X$ be a section, and let $\mathcal{L}_{1}, \mathcal{L}_{2}$ be trivializable line bundles on X, then

$$
\operatorname{Hom}_{\mathcal{O}_{X}}\left(\mathcal{L}_{1}, \mathcal{L}_{2}\right) \rightarrow \operatorname{Hom}_{\mathcal{O}_{S}}\left(e^{*} \mathcal{L}_{1}, e^{*} \mathcal{L}_{2}\right)
$$

is bijective.

Preliminaries for algebraic geometry

Theorem (Unique cubical structure for abelian schemes)
Let $p: X \rightarrow S$ be an abelian scheme over S. Then for any $\mathcal{L} \in \operatorname{Pic}(X)$, there exists exactly one Θ^{3}-structure on \mathcal{L}.

Preliminaries for algebraic geometry

Theorem (Unique cubical structure for abelian schemes)

Let $p: X \rightarrow S$ be an abelian scheme over S. Then for any $\mathcal{L} \in \operatorname{Pic}(X)$, there exists exactly one Θ^{3}-structure on \mathcal{L}.

Proof: Since $\operatorname{Hom}_{\mathcal{O}_{X^{3}}}\left(\mathcal{O}_{X^{3}}, \Theta^{3}(\mathcal{L})\right) \rightarrow \operatorname{Hom}_{\mathcal{O}_{S}}\left(\mathcal{O}_{S}, e^{*} \Theta^{3}(\mathcal{L})\right)$ is bijective by lemma above. The natural rigidification $\mathcal{O}_{S} \xrightarrow{1} e^{*} \Theta^{3}(\mathcal{L})$ determines unique trivialization $u: \mathcal{O}_{X^{3}} \rightarrow \Theta^{3}(\mathcal{L})$. Recall the axioms of cubical structures:
(i) $s(0)=1$;
(ii) $s\left(a_{\sigma_{1}}, a_{\sigma_{2}}, a_{\sigma_{3}}\right)=s\left(a_{1}, a_{2}, a_{3}\right)$ is symmetric for any $\sigma \in \Sigma_{3}$;
(iii) the section
$s\left(a_{1}, a_{2}, a_{3}\right) \otimes s\left(a_{0}+a_{1}, a_{2}, a_{3}\right)^{-1} \otimes s\left(a_{0}, a_{1}+a_{2}, a_{3}\right) \otimes s\left(a_{0}, a_{1}, a_{3}\right)^{-1}=1$.
However, all conditions automatically hold for u by $u(0)=1$ when we pullback to S along e, which means u is exactly the unique cubical structure.

-orientations for elliptic cohomology theories

Proposition
Let $E \rightarrow F$ be a ring (phantom-)morphism between EWP ring (phantom-)spectra, and $M U\langle 2 k\rangle \rightarrow E$ and $M U\langle 2 k\rangle \rightarrow F$ be two orientations. Then

commutes if and only if

-orientations for elliptic cohomology theories

Theorem

(I) For any elliptic cohomology theories E we have natural σ-orientation $M U\langle 6\rangle \rightarrow E$. (II) The σ-orientations commute for any morphism of elliptic cohomology theories $E \rightarrow F$ with morphism $C_{1} \rightarrow C_{2}$ of elliptic curves.

commutes by

For $k=2, B U\langle 2 k\rangle=B S U$. Consider the fiber sequence $B S U \rightarrow B U \xrightarrow{\text { det }} P$, which induces the following diagram of affine group schemes over S^{E}

The simplest, also important, example is $E=H P=\bigvee_{i \in \mathbb{Z}} \Sigma^{2 i} H Z$.

