Goerss Hopkins obstruction theory

Yingxin Li

March 7, 2023

1 The moduli space of realizations

2 Decomposition of $\mathcal{TM}_{\infty}(A)$

Obstruction theory

Given

- *E*: a homotopy commutative ring spectrum satisfying the Adams condition,
- A: an algebra in the category of E_*E -comodules.

Given

- *E*: a homotopy commutative ring spectrum satisfying the Adams condition.
- A: an algebra in the category of E_*E -comodules.

Q: When is there an E_{∞} -ring spectrum X such that $E_*X \cong A$?

Given

- E: a homotopy commutative ring spectrum satisfying the Adams condition,
- A: an algebra in the category of E_*E -comodules.

Q: When is there an E_{∞} -ring spectrum X such that $E_*X \cong A$? Let $\mathcal{E}(A)$ be a category with objects E_{∞} -ring X with $E_*X \cong A$ and morphisms of E_{∞} -rings which are E_* -isomorphisms. Let

$$\mathcal{TM}(A) = B\mathcal{E}(A)$$
.

Given

- E: a homotopy commutative ring spectrum satisfying the Adams condition,
- A: an algebra in the category of E_*E -comodules.

Q: When is there an E_{∞} -ring spectrum X such that $E_*X \cong A$? Let $\mathcal{E}(A)$ be a category with objects E_{∞} -ring X with $E_*X \cong A$ and morphisms of E_{∞} -rings which are E_* -isomorphisms. Let

$$\mathcal{TM}(A) = B\mathcal{E}(A).$$

Q: Whether $\mathcal{TM}(A)$ is nonempty?

Simplicial Operad

They study $\mathcal{TM}(A)$ by relating it to the moduli space $\mathcal{TM}_{\infty}(A)$ of simplicial E_{∞} -rings X with $\pi_*E_*X=\pi_0E_*X=A$.

Simplicial Operad

They study $\mathcal{TM}(A)$ by relating it to the moduli space $\mathcal{TM}_{\infty}(A)$ of simplicial E_{∞} -rings X with $\pi_*E_*X=\pi_0E_*X=A$.

Theorem

Let C be an E_{∞} -operad. Then there exists an argumented simplicial operad $T \to C$ s.t.

- Each $T_n(k)$ is Σ_k -free.
- $|T| \rightarrow C$ is a weak equivalence.

Simplicial Operad

They study $\mathcal{TM}(A)$ by relating it to the moduli space $\mathcal{TM}_{\infty}(A)$ of simplicial E_{∞} -rings X with $\pi_*E_*X=\pi_0E_*X=A$.

$\mathsf{Theorem}$

Let C be an E_{∞} -operad. Then there exists an argumented simplicial operad $T \to C$ s.t.

- Each $T_n(k)$ is Σ_k -free.
- $|T| \rightarrow C$ is a weak equivalence.

Let $sAlg_T$ be the category of simplicial T-algebras in spectra.

$$X \in sAlg_T \implies |X| \in Alg_{|T|}.$$

Remark

(1) E satisfies Adams condition: There is a simplicial model structure on $sAlg_T$ determined by a collection of spectra \mathcal{P} generated by DE_{α} .

Remark

- (1) E satisfies Adams condition: There is a simplicial model structure on $sAlg_T$ determined by a collection of spectra \mathcal{P} generated by DE_{α} .
- (2) Let X be a simplicial T algebra, we have a spectral sequence comes from the skeletal filtration of X_* :

$$E_{p,q}^2 = \pi_p E_q X := \pi_p(\pi_q(E \wedge X)) \Rightarrow E_{p+q}(|X|).$$

Remark

- (1) E satisfies Adams condition: There is a simplicial model structure on $sAlg_T$ determined by a collection of spectra \mathcal{P} generated by DE_{α} .
- (2) Let X be a simplicial T algebra, we have a spectral sequence comes from the skeletal filtration of X_* :

$$E_{p,q}^2 = \pi_p E_q X := \pi_p(\pi_q(E \wedge X)) \Rightarrow E_{p+q}(|X|).$$

Then

$$X \in \mathcal{TM}_{\infty}(A) \implies |X| \in \mathcal{TM}(A),$$

and the geometric realization functor gives a weak equivalence $\mathcal{TM}_{\infty}(A) \simeq \mathcal{TM}(A)$.

the spiral exact sequence

Let

$$\pi_{p,q}(E \wedge X) := [\Delta^p/\partial \Delta^p \wedge S^q, E \wedge X].$$

the spiral exact sequence

Let

$$\pi_{p,q}(E \wedge X) := [\Delta^p/\partial \Delta^p \wedge S^q, E \wedge X].$$

The exact couple related to the above spectral sequence gives a long exact sequence called the spiral exact sequence:

$$\rightarrow \pi_{p-1,q+1}(E \wedge X) \rightarrow \pi_{p,q}(E \wedge X) \rightarrow \pi_p E_q X \rightarrow \pi_{p-2,q+1}(E \wedge X) \rightarrow$$

the spiral exact sequence

Let

$$\pi_{p,q}(E \wedge X) := [\Delta^p/\partial \Delta^p \wedge S^q, E \wedge X].$$

The exact couple related to the above spectral sequence gives a long exact sequence called the spiral exact sequence:

$$\rightarrow \pi_{p-1,q+1}(E \wedge X) \rightarrow \pi_{p,q}(E \wedge X) \rightarrow \pi_p E_q X \rightarrow \pi_{p-2,q+1}(E \wedge X) \rightarrow$$

If
$$X \in \mathcal{TM}_{\infty}(A)$$
, then $\pi_{p,*}(E \wedge X) \cong \Omega^p(A)$ for all $p \geq 0$.

Postnikov system for simplicial algebras in spectra

Definition

Let $X \in sAlg_T$. A Postnikov tower for X is a tower of simplicial T-algebras under X

$$X \to \cdots \to P_n X \to P_{n-1} X \to \cdots \to P_0 X$$
,

s.t. for every $f: X \to P_n X$,

$$f_*: \pi_{i,*}(E \wedge X) \xrightarrow{\cong} \pi_{i,*}(E \wedge P_nX), \quad i \leq n,$$

and s.t. $\pi_{i,*}(E \wedge P_n X) = 0$ for i > n.

Definition

Let $X \in sAlg_T$. We say that X is a potential n-stage for A if

$$\pi_i E_* X \cong \begin{cases} A & \text{if } i = 0 \\ 0 & \text{if } 1 \le i \le n+1 \end{cases}$$

and
$$\pi_{i,*}(E \wedge X) = 0$$
 for $i > n$.

Definition

Let $X \in sAlg_T$. We say that X is a potential n-stage for A if

$$\pi_i E_* X \cong \begin{cases} A & \text{if } i = 0 \\ 0 & \text{if } 1 \le i \le n+1 \end{cases}$$

and $\pi_{i,*}(E \wedge X) = 0$ for i > n.

In this case,

$$\pi_{i,*}(E \wedge X) \cong \begin{cases} \Omega^i A & \text{if } i \leq n \\ 0 & \text{if } i > n \end{cases}$$

Definition

Let $X \in sAlg_T$. We say that X is a potential n-stage for A if

$$\pi_i E_* X \cong \begin{cases} A & \text{if } i = 0 \\ 0 & \text{if } 1 \le i \le n+1 \end{cases}$$

and $\pi_{i,*}(E \wedge X) = 0$ for i > n.

In this case,

$$\pi_{i,*}(E \wedge X) \cong \begin{cases} \Omega^i A & \text{if } i \leq n \\ 0 & \text{if } i > n \end{cases}$$

Let $TM_n(A)$ be the moduli space of potential *n*-stages for A, then the Postnikov section induces

$$\mathcal{TM}_{\infty}(A) \to \cdots \to \mathcal{TM}_{n}(A) \to \mathcal{TM}_{n-1}(A) \to \ldots \mathcal{TM}_{0}(A).$$

Now we can try to build $X \in \mathcal{TM}_{\infty}(A)$ inductively.

Now we can try to build $X \in \mathcal{TM}_{\infty}(A)$ inductively.

Definition

(1) A simplicial T-algebra is of type B_A if $\pi_{0,*}(E \wedge X) \cong A$ and $\pi_{i,*}X = 0$ for i>0, and for all simplicial T-algebras Y, the natural map

$$[Y,X] \rightarrow \mathsf{hom}_{E_*C}(\pi_0 E_*Y,A)$$

is an isomorphism.

Now we can try to build $X \in \mathcal{TM}_{\infty}(A)$ inductively.

Definition

(1) A simplicial T-algebra is of type B_A if $\pi_{0,*}(E \wedge X) \cong A$ and $\pi_{i,*}X = 0$ for i > 0, and for all simplicial T-algebras Y, the natural map

$$[Y,X] \to \mathsf{hom}_{E_*C}(\pi_0 E_*Y,A)$$

is an isomorphism.

(2) Given an A-module M, a morphism $X \to Y$ of T-algebras is of type $B_A(M,n)$ if X is type B_A , $\pi_{0,*}(E \wedge X) \to \pi_{0,*}(E \wedge Y)$ is an isomorphism, and

$$\pi_{i,*}(E \wedge Y) \cong \begin{cases} M & \text{if } i = n \\ 0 & \text{if } i \neq 0, n \end{cases}$$

By Brown representability, B_A and $B_A(M, n)$ exist:

By Brown representability, B_A and $B_A(M, n)$ exist:

Proposition

There is a natural map $E_*B_A(M,n) \to K_A(M,n)$ which induces an isomorphism

$$\mathsf{hom}_{\mathit{sAlg}_T/B_A}(X,B_A(M,n)) \to \mathsf{hom}_{\mathit{sAlg}_{E_*T/E_*E}/A}(E_*(X),K_A(M,n)).$$

Here
$$K_A(M, n) = K(M, n) \rtimes A \in sAlg_{E_*T/E_*E}$$
.

By Brown representability, B_A and $B_A(M, n)$ exist:

Proposition

There is a natural map $E_*B_A(M,n) \to K_A(M,n)$ which induces an isomorphism

$$\mathsf{hom}_{sAlg_T/B_A}(X,B_A(M,n)) \to \mathsf{hom}_{sAlg_{E_*T/E_*E}/A}(E_*(X),K_A(M,n)).$$

Here
$$K_A(M, n) = K(M, n) \rtimes A \in sAlg_{E_*T/E_*E}$$
.

If
$$X \in \mathcal{TM}_n(A)$$
, $Y = P_{n-1}X$, then

$$\begin{array}{ccc}
X & \longrightarrow & B_A \\
\downarrow & & \downarrow \\
Y & \stackrel{f}{\longrightarrow} & B_A(\Omega^n A, n+1)
\end{array}$$

Obstruction theory

•

Proposition

If $Y \in \mathcal{TM}_{n-1}(A)$, then $X \in \mathcal{TM}_n(A)$ if and only if the map $E_*(Y) \to \mathcal{K}_A(\Omega^n A, n+1)$ induced by f is a weak equivalence.

Let $Y \in \mathcal{TM}_{n-1}(A)$, then

$$E_*Y \xrightarrow{\Gamma} A$$

$$\downarrow \qquad \qquad \downarrow$$

$$A \simeq P_0 E_*Y \longrightarrow K_A(\Omega^n A, n+2)$$

Obstruction theory

Danisation

Proposition

If $Y \in \mathcal{TM}_{n-1}(A)$, then $X \in \mathcal{TM}_n(A)$ if and only if the map $E_*(Y) \to \mathcal{K}_A(\Omega^n A, n+1)$ induced by f is a weak equivalence.

Let $Y \in \mathcal{TM}_{n-1}(A)$, then

$$E_*Y \xrightarrow{\Gamma} A$$

$$\downarrow \qquad \qquad \downarrow$$

$$A \simeq P_0 E_*Y \longrightarrow K_A(\Omega^n A, n+2)$$

Corollary

There are obstructions $\theta_n \in \text{hom}_{sAlg_{E_*T/E_*E}/A}(A, K_A(M, n))$ to existance of a commutative S-algebra X with $E_*X \cong A$.

Let

$$\mathcal{H}^{n}(A; M) = \operatorname{\mathsf{hom}}_{\mathsf{sAlg}_{\mathsf{E}_{*}T/\mathsf{E}_{*}E}/A}(A, K_{A}(M, n)),$$
 $\hat{\mathcal{H}}^{n}(A; M) = \mathcal{H}^{n}(A; M) \times_{\operatorname{\mathsf{Aut}}(A, M)} \operatorname{\mathsf{EAut}}(A, M).$

Let

$$\mathcal{H}^{n}(A; M) = \text{hom}_{sAlg_{E_{*}T/E_{*}E}/A}(A, K_{A}(M, n)),$$

 $\hat{\mathcal{H}}^{n}(A; M) = \mathcal{H}^{n}(A; M) \times_{Aut(A, M)} EAut(A, M).$

$\mathsf{Theorem}$

The following is a homotopy pullback square:

$$\mathcal{TM}_{n}(A) \longrightarrow BAut(A, \Omega^{n}A)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{TM}_{n-1}(A) \longrightarrow \hat{\mathcal{H}}^{n+2}(A; \Omega^{n}A)$$