An overview of ∞ -category and Higher Algebra

Jiacheng Liang

SUSTech Department of Mathematics

December 26, 2023

Motivation 1

The most significant motivation is to change the morphism set $Hom_{\mathcal{C}}(X, Y)$ in a category \mathcal{C} to a topological space $Map_{\mathcal{C}}(X, Y)$. Then we can have higher morphisms $\pi_n Map_{\mathcal{C}}(X, Y)$.

For example when considering the category of spectra, we have $\pi_n Map_{\mathcal{C}}(X, Y) = [\Sigma^n X, Y].$

Motivation 2

We want to **internalize** the category theory. In another way, we want to **characterize** a specific ∞ -category by a universal property in the ∞ -category of all ∞ -categories Cat_{∞} .

For instance, we will see the ∞ -category of spaces S is "free generated" by the single-point space $* \in S$.

Motivation 1

The most significant motivation is to change the morphism set $Hom_{\mathcal{C}}(X, Y)$ in a category \mathcal{C} to a topological space $Map_{\mathcal{C}}(X, Y)$. Then we can have higher morphisms $\pi_n Map_{\mathcal{C}}(X, Y)$.

For example when considering the category of spectra, we have $\pi_n Map_{\mathcal{C}}(X, Y) = [\Sigma^n X, Y].$

Motivation 2

We want to **internalize** the category theory. In another way, we want to **characterize** a specific ∞ -category by a universal property in the ∞ -category of all ∞ -categories Cat_{∞} .

For instance, we will see the ∞ -category of spaces S is "free generated" by the single-point space $* \in S$.

Extracting information from ∞ -category

The most intuitive model for ∞ -category is the <u>sSet</u>-enriched (or <u>Top</u>-enriched) category. Actually we have a Quillen equivalence <u>sSet_{Joyal} \rightleftharpoons <u>Cat_{\Delta}</u>.</u>

Mapping spaces

There are at least 4 definitions of the mapping space $Map_{\mathcal{C}}(X, Y)$ in an ∞ -category \mathcal{C} . But when we take their underlying $Ho(sSet_{Kan})$ -enriched categories, all of them are the same, written as <u>hC</u>. (* * * most important invariant)

How to extract useful and discard redundant information in certain circumstances is an art in ∞ -category's world.

Example

For example when we want to show a functor between ∞ -categories $F : \mathcal{C} \to \mathcal{D}$ is an equivalence, it suffices to show $\underline{hF} : \underline{hC} \to \underline{hD}$ is equivalent. But if we consider colimits in an ∞ -category \mathcal{C} , we need more homotopy coherent information than those in \underline{hC} . In this case, we can't reduce to \underline{hC} .

Extracting information from ∞ -category

The most intuitive model for ∞ -category is the <u>sSet</u>-enriched (or <u>Top</u>-enriched) category. Actually we have a Quillen equivalence <u>sSet_{Joyal} \rightleftharpoons <u>Cat_{\Delta}</u>.</u>

Mapping spaces

There are at least 4 definitions of the mapping space $Map_{\mathcal{C}}(X, Y)$ in an ∞ -category \mathcal{C} . But when we take their underlying $Ho(sSet_{Kan})$ -enriched categories, all of them are the same, written as <u>hC</u>. (* * * most important invariant)

How to extract useful and discard redundant information in certain circumstances is an art in ∞ -category's world.

Example

For example when we want to show a functor between ∞ -categories $F : \mathcal{C} \to \mathcal{D}$ is an equivalence, it suffices to show $\underline{hF} : \underline{hC} \to \underline{hD}$ is equivalent. But if we consider colimits in an ∞ -category \mathcal{C} , we need more homotopy coherent information than those in \underline{hC} . In this case, we can't reduce to \underline{hC} .

Why use the ∞ -category?

Some phenomenons or propositions can't be stated clearly without ∞ -category.

Example

(1) Chromatic convergence and chromatic pullback:

coherent diagrams $N_*(\mathbb{Z}_{\geq 0}^{op}) \to Sp$ and $\Lambda_2^2 \to Sp$. However, classical framework only provides homotopy diagrams, which can't be used to take homotopy limit. (2) Postnikov tower in the category of spaces S and its convergence are the same philosophy as above.

Why use the ∞ -category?

Some phenomenons or propositions can't be stated clearly without ∞ -category.

Example

(1) Chromatic convergence and chromatic pullback:

$$\begin{array}{cccc} & & & & \\ & & \downarrow & & \\ & & \downarrow & & \downarrow & \\ & & \downarrow & & \downarrow & \\ & & \downarrow & & \downarrow & \\ & & \downarrow & & L_{n-1}X \longrightarrow L_{n-1}L_{K(n)}X \end{array}$$
 They are homotopy limits of **homotopy**
$$\begin{array}{cccc} & & & \\ & & & L_{n-1}X \longrightarrow L_{n-1}L_{K(n)}X \end{array}$$

coherent diagrams $N_*(\mathbb{Z}_{\geq 0}^{op}) \to Sp$ and $\Lambda_2^2 \to Sp$. However, classical framework only provides homotopy diagrams, which can't be used to take homotopy limit. (2) Postnikov tower in the category of spaces S and its convergence are the same philosophy as above.

Example

(2) Equivariant stable homotopy theory: there are plenty of model categories characterizing it, but all of their underlying ∞ -category are equivalent with Fun(BG, Sp), which is both simple and intuitive.

(3) In ∞ -framework, the E_{∞} -operad is just commutative operad. And E_{∞} spaces, E_{∞} -spectra are ∞ -commutative monoid objects.

(4) We have all kinds of well-defined moduli spaces, like $Fun^{\otimes}(C, D)$, $Fun^{lax}(C, D)$ and $CAl(C) \times_C \{X\}$.

(5) Bousfield localization of an E_{∞} -ring is still an E_{∞} -ring, this is directly by the fact $Sp^{\otimes} \rightleftharpoons Sp_E^{\otimes}$ is a symmetric monoidal adjunction, which will induce an adjunction $CAl(Sp) \rightleftharpoons CAl(Sp_E)$ by symmetric monoidal ∞ -categorical machine. However, both model category and EKMM can not provide such a machine.

(6) If C is a 1-category, then $Sp(C) \simeq \{*\}$ is trivial. The stabilization for 1-category is meaningless.

Preventing Russell's paradox

In order to consider the **category of all categories**, we need to add a set-theoretic axiom into ZFC, i.e. Grothendieck's Assumption:

∀ cardinal κ , there exists an inaccessible cardinal $\tau > \kappa$. (A good reference: Chap 1, 代数学方法 1, 李文威)

Methodology

By Grothendieck's Assumption,

1. When not involving **category of all categories**, technically we can treat all things as small. So all propositions not involving **category of all categories** will hold in any Grothendieck universe.

 When involving category of all categories, for example Cat_∞, we consider it as the ∞-category Cat_∞^τ of all τ-small categories for an inaccessible cardinal τ. Choose a bigger inaccessible τ₂ > τ, then technically we can treat Cat_∞^τ as a τ₂-small ∞-category in Cat_∞^{τ₂}.

Preventing Russell's paradox

In order to consider the **category of all categories**, we need to add a set-theoretic axiom into ZFC, i.e. Grothendieck's Assumption:

∀ cardinal κ , there exists an inaccessible cardinal $\tau > \kappa$. (A good reference: Chap 1, 代数学方法 1, 李文威)

Methodology

By Grothendieck's Assumption,

1. When not involving **category of all categories**, technically we can treat all things as small. So all propositions not involving **category of all categories** will hold in any Grothendieck universe.

2. When involving **category of all categories**, for example Cat_{∞} , we consider it as the ∞ -category Cat_{∞}^{τ} of all τ -small categories for an inaccessible cardinal τ . Choose a bigger inaccessible $\tau_2 > \tau$, then technically we can treat Cat_{∞}^{τ} as a τ_2 -small ∞ -category in $Cat_{\infty}^{\tau_2}$.

Definition (Kan extension along a full subcategory)

Let $i : \mathcal{C}_0 \subset \mathcal{C}$ be a full subcategory, we say a functor $F : \mathcal{C} \to \mathcal{D}$ is a left Kan extension along i iff $\forall X \in \mathcal{C}$, $(\mathcal{C}_0 \times_{\mathcal{C}} \mathcal{C}_{/X})^{\triangleright} \to \mathcal{C} \xrightarrow{F} \mathcal{D}$ is a colimit diagram, i.e. $colim_{A \to X, A \in \mathcal{C}_0} F(A) \simeq F(X)$.

Theorem

The restriction $Fun^{LKan}(\mathcal{C}, \mathcal{D}) \xrightarrow{\sim} Fun^{\exists LKan}(\mathcal{C}_0, \mathcal{D})$ is a categorical equivalence.

Example

Let C be a small category and D be a category that admits small colimits, then (1) A functor $F : \mathcal{P}(C) \to D$ is a left Kan extension along the Yoneda embedding $i : C \to \mathcal{P}(C)$ iff F preserves small colimits. (2) For any $f \in Fun(C, D)$, there exists a left Kan extension $F : \mathcal{P}(C) \to D$ along (3) And hence we have $Fun^{colim}(\mathcal{P}(C), D) \to Fun(C, D)$ is an equivalence. (e.g.

$$sSet \rightarrow Top$$

Definition (Kan extension along a full subcategory)

Let $i : \mathcal{C}_0 \subset \mathcal{C}$ be a full subcategory, we say a functor $F : \mathcal{C} \to \mathcal{D}$ is a left Kan extension along i iff $\forall X \in \mathcal{C}$, $(\mathcal{C}_0 \times_{\mathcal{C}} \mathcal{C}_{/X})^{\triangleright} \to \mathcal{C} \xrightarrow{F} \mathcal{D}$ is a colimit diagram, i.e. $colim_{A \to X, A \in \mathcal{C}_0} F(A) \simeq F(X)$.

Theorem

The restriction $Fun^{LKan}(\mathcal{C}, \mathcal{D}) \xrightarrow{\sim} Fun^{\exists LKan}(\mathcal{C}_0, \mathcal{D})$ is a categorical equivalence.

Example

Let C be a small category and D be a category that admits small colimits, then (1) A functor $F : \mathcal{P}(C) \to D$ is a left Kan extension along the Yoneda embedding $i : C \to \mathcal{P}(C)$ iff F preserves small colimits. (2) For any $f \in Fun(C, D)$, there exists a left Kan extension $F : \mathcal{P}(C) \to D$ along i(3) And hence we have $Fun^{colim}(\mathcal{P}(C), D) \to Fun(C, D)$ is an equivalence. (e.g. $sSet \to Top$)

Definition (Kan extension along a full subcategory)

Let $i : \mathcal{C}_0 \subset \mathcal{C}$ be a full subcategory, we say a functor $F : \mathcal{C} \to \mathcal{D}$ is a left Kan extension along i iff $\forall X \in \mathcal{C}$, $(\mathcal{C}_0 \times_{\mathcal{C}} \mathcal{C}_{/X})^{\triangleright} \to \mathcal{C} \xrightarrow{F} \mathcal{D}$ is a colimit diagram, i.e. $colim_{A \to X, A \in \mathcal{C}_0} F(A) \simeq F(X)$.

Theorem

The restriction $Fun^{LKan}(\mathcal{C}, \mathcal{D}) \xrightarrow{\sim} Fun^{\exists LKan}(\mathcal{C}_0, \mathcal{D})$ is a categorical equivalence.

Example

Let \mathcal{C} be a small category and \mathcal{D} be a category that admits small colimits, then (1) A functor $F : \mathcal{P}(\mathcal{C}) \to \mathcal{D}$ is a left Kan extension along the Yoneda embedding $i: \mathcal{C} \to \mathcal{P}(\mathcal{C})$ iff F preserves small colimits. (2) For any $f \in Fun(\mathcal{C}, \mathcal{D})$, there exists a left Kan extension $F : \mathcal{P}(\mathcal{C}) \to \mathcal{D}$ along i. (3) And hence we have $Fun^{colim}(\mathcal{P}(\mathcal{C}), \mathcal{D}) \to Fun(\mathcal{C}, \mathcal{D})$ is an equivalence. (e.g. $sSet \to Top$)

Definition

Let \mathbb{K} be a collection of simplicial sets. We say that an ∞ -category \mathcal{C} is \mathbb{K} -cocomplete if it admits K-diagram colimits, for each $K \in \mathbb{K}$. We say that a functor of ∞ -categories $h : \mathcal{C} \to \widehat{\mathcal{C}}$ exhibits $\widehat{\mathcal{C}}$ as a \mathbb{K} -cocompletion of \mathcal{C} if the ∞ -category $\widehat{\mathcal{C}}$ is \mathbb{K} -cocomplete and for every \mathbb{K} -cocomplete ∞ -category \mathcal{D} , precomposition with h induces an equivalence of ∞ -categories $\operatorname{Fun}^{\mathbb{K}}(\widehat{\mathcal{C}}, \mathcal{D}) \xrightarrow{\sim} \operatorname{Fun}(\mathcal{C}, \mathcal{D})$.

[heorem]

Let \mathbb{K} be a (small) collection of simplicial sets, then for any (small) ∞ -category C, there exists a \mathbb{K} -completion $C \to P^{\mathbb{K}}(C)$. That gives an adjunction $Cat_{\infty} \rightleftharpoons Cat(\mathbb{K})_{\infty}$. e.g. $P^{small}(C) = Fun(C,S)$ and $P^{small}(*) = S$.

Definition

Let \mathbb{K} be a collection of simplicial sets. We say that an ∞ -category \mathcal{C} is \mathbb{K} -cocomplete if it admits K-diagram colimits, for each $K \in \mathbb{K}$. We say that a functor of ∞ -categories $h : \mathcal{C} \to \widehat{\mathcal{C}}$ exhibits $\widehat{\mathcal{C}}$ as a \mathbb{K} -cocompletion of \mathcal{C} if the ∞ -category $\widehat{\mathcal{C}}$ is \mathbb{K} -cocomplete and for every \mathbb{K} -cocomplete ∞ -category \mathcal{D} , precomposition with h induces an equivalence of ∞ -categories $\operatorname{Fun}^{\mathbb{K}}(\widehat{\mathcal{C}}, \mathcal{D}) \xrightarrow{\sim} \operatorname{Fun}(\mathcal{C}, \mathcal{D})$.

Theorem

Let \mathbb{K} be a (small) collection of simplicial sets, then for any (small) ∞ -category C, there exists a \mathbb{K} -completion $C \to P^{\mathbb{K}}(C)$. That gives an adjunction $Cat_{\infty} \rightleftharpoons Cat(\mathbb{K})_{\infty}$. e.g. $P^{small}(C) = Fun(C, S)$ and $P^{small}(*) = S$.

Let \mathcal{D} be an ∞ -category.

Theorem (Pointedlization)

If \mathcal{D} admits final object, then there exists a pointedlization $\mathcal{D}_{*/} \to \mathcal{D}$ such that for any pointed ∞ -category \mathcal{C} the forgetful functor θ : Fun' $(\mathcal{C}, \mathcal{D}_*) \to \operatorname{Fun'}(\mathcal{C}, \mathcal{D})$ is an equivalence. That provides an adjunction $\operatorname{Cat}_{\infty}^{Final, pt} \rightleftharpoons \operatorname{Cat}_{\infty}^{Final}$.

Theorem (Stabilization)

If \mathcal{D} admits finite limits, then there exists a stabilization $Sp(\mathcal{D}) \to \mathcal{D}$ such that for any stable ∞ -category \mathcal{C} the forgetful functor $\theta : \operatorname{Fun}^{Flim}(\mathcal{C}, \mathcal{D}_*) \to \operatorname{Fun}^{Flim}(\mathcal{C}, \mathcal{D})$ is an equivalence. That provides an adjunction $Cat_{\infty}^{Flim,st} \rightleftharpoons Cat_{\infty}^{Flim}$.

Example

The category spectra Sp(P(*)) is the stabilization of the cocompletion of the trivial ∞ -category.

Let \mathcal{D} be an ∞ -category.

Theorem (Pointedlization)

If \mathcal{D} admits final object, then there exists a pointedlization $\mathcal{D}_{*/} \to \mathcal{D}$ such that for any pointed ∞ -category \mathcal{C} the forgetful functor θ : Fun' $(\mathcal{C}, \mathcal{D}_*) \to \operatorname{Fun'}(\mathcal{C}, \mathcal{D})$ is an equivalence. That provides an adjunction $\operatorname{Cat}_{\infty}^{Final, pt} \rightleftharpoons \operatorname{Cat}_{\infty}^{Final}$.

Theorem (Stabilization)

If \mathcal{D} admits finite limits, then there exists a stabilization $Sp(\mathcal{D}) \to \mathcal{D}$ such that for any stable ∞ -category \mathcal{C} the forgetful functor θ : $\operatorname{Fun}^{Flim}(\mathcal{C}, \mathcal{D}_*) \to \operatorname{Fun}^{Flim}(\mathcal{C}, \mathcal{D})$ is an equivalence. That provides an adjunction $Cat_{\infty}^{Flim,st} \rightleftharpoons Cat_{\infty}^{Flim}$.

Example

The category spectra Sp(P(*)) is the stabilization of the cocompletion of the trivial ∞ -category.

Let \mathcal{D} be an ∞ -category.

Theorem (Pointedlization)

If \mathcal{D} admits final object, then there exists a pointedlization $\mathcal{D}_{*/} \to \mathcal{D}$ such that for any pointed ∞ -category \mathcal{C} the forgetful functor θ : Fun' $(\mathcal{C}, \mathcal{D}_*) \to \operatorname{Fun'}(\mathcal{C}, \mathcal{D})$ is an equivalence. That provides an adjunction $\operatorname{Cat}_{\infty}^{Final, pt} \rightleftharpoons \operatorname{Cat}_{\infty}^{Final}$.

Theorem (Stabilization)

If \mathcal{D} admits finite limits, then there exists a stabilization $Sp(\mathcal{D}) \to \mathcal{D}$ such that for any stable ∞ -category \mathcal{C} the forgetful functor θ : $\operatorname{Fun}^{Flim}(\mathcal{C}, \mathcal{D}_*) \to \operatorname{Fun}^{Flim}(\mathcal{C}, \mathcal{D})$ is an equivalence. That provides an adjunction $Cat_{\infty}^{Flim,st} \rightleftharpoons Cat_{\infty}^{Flim}$.

Example

The category spectra Sp(P(*)) is the stabilization of the cocompletion of the trivial ∞ -category.

Definition

Let $n \ge -2$, an object Z in an ∞ -category C is *n*-truncated if, for every object $Y \in C$, the space $Map_C(Y, Z)$ is *n*-truncated space.

Theorem (Truncation)

If C is a presentable ∞ -category, then there exists an *n*-truncation functor $C \to \tau_{\leq n} C$. Suppose that \mathcal{D} is a presentable that all objects are *n*-truncated, i.e. it's an (n + 1)-category. Then composition with $\tau_{\leq n}$ induces an equivalence $s : \operatorname{Fun}^{\mathrm{L}}(\tau_{\leq n} \mathcal{C}, \mathcal{D}) \to \operatorname{Fun}^{\mathrm{L}}(\mathcal{C}, \mathcal{D})$. That provides an adjunction $Pr^{L} \rightleftharpoons Pr^{L}_{\leq (n+1)}$.

Example

(1) An space X in S is n-truncated iff all $\pi_i X$ vanish when i > n. Particularly $S_{\leq 0} \simeq N(Set)$. (2) An n-truncated object Cat_{∞} is exactly an n-category. And all n-categories form an (n+1)-category $(Cat_{\infty})_{\leq n}$.

Definition

Let $n \ge -2$, an object Z in an ∞ -category C is *n*-truncated if, for every object $Y \in C$, the space $Map_C(Y, Z)$ is *n*-truncated space.

Theorem (Truncation)

If C is a presentable ∞ -category, then there exists an *n*-truncation functor $C \to \tau_{\leq n} C$. Suppose that \mathcal{D} is a presentable that all objects are *n*-truncated, i.e. it's an (n + 1)-category. Then composition with $\tau_{\leq n}$ induces an equivalence $s : \operatorname{Fun}^{\mathrm{L}}(\tau_{\leq n} \mathcal{C}, \mathcal{D}) \to \operatorname{Fun}^{\mathrm{L}}(\mathcal{C}, \mathcal{D})$. That provides an adjunction $Pr^{L} \rightleftharpoons Pr^{L}_{\leq (n+1)}$.

Example

(1) An space X in S is *n*-truncated iff all $\pi_i X$ vanish when i > n. Particularly $S_{\leq 0} \simeq N(Set)$. (2) An *n*-truncated object Cat_{∞} is exactly an *n*-category. And all *n*-categories form an (n + 1)-category $(Cat_{\infty})_{\leq n}$.

Definition (Reformulate commutative monoid)

A commutative monoid in an ordinary category C which admits finite products is a functor $M: (Fin_*)_{\leq 3} \to C$ such that the canonical maps $M(\rho_i): M(\langle n \rangle) \to M(\langle 1 \rangle)$ exhibit $M(\langle n \rangle) \simeq \prod_{1 < i < n} M(\langle 1 \rangle)$ in the C for $0 \le n \le 3$.

Definition

Let C be an ∞ -category with finite products, we define a commutative monoid as a a functor $M: N_*(Fin_*) \to C$ such that the canonical maps $M(\rho_i): M(\langle n \rangle) \to M(\langle 1 \rangle)$ exhibit $M(\langle n \rangle) \simeq \prod_{1 \le i \le n} M(\langle 1 \rangle)$ in the C for all $n \ge 0$.

Proposition

Let C be an n-category with finite products, then $Fun^{CM}(N_*(Fin_*), C) \xrightarrow{\sim} Fun^{CM}(N_*(Fin_*)_{\leq (n+2)}, C)$ is categorical equivalent since in this case any commutative monoid $M : N_*(Fin_*) \to C$ is a right Kan extension along $N_*(Fin_*)_{\leq (n+2)}$.

Definition (Reformulate commutative monoid)

A commutative monoid in an ordinary category C which admits finite products is a functor $M: (Fin_*)_{\leq 3} \to C$ such that the canonical maps $M(\rho_i): M(\langle n \rangle) \to M(\langle 1 \rangle)$ exhibit $M(\langle n \rangle) \simeq \prod_{1 \leq i \leq n} M(\langle 1 \rangle)$ in the C for $0 \leq n \leq 3$.

Definition

Let C be an ∞ -category with finite products, we define a commutative monoid as a a functor $M: N_*(Fin_*) \to C$ such that the canonical maps $M(\rho_i): M(\langle n \rangle) \to M(\langle 1 \rangle)$ exhibit $M(\langle n \rangle) \simeq \prod_{1 \le i \le n} M(\langle 1 \rangle)$ in the C for all $n \ge 0$.

Proposition

Let C be an n-category with finite products, then $Fun^{CM}(N_*(Fin_*), C) \xrightarrow{\sim} Fun^{CM}(N_*(Fin_*)_{\leq (n+2)}, C)$ is categorical equivalent since in this case any commutative monoid $M : N_*(Fin_*) \to C$ is a right Kan extension along $N_*(Fin_*)_{\leq (n+2)}$.

Definition (Reformulate commutative monoid)

A commutative monoid in an ordinary category C which admits finite products is a functor $M: (Fin_*)_{\leq 3} \to C$ such that the canonical maps $M(\rho_i): M(\langle n \rangle) \to M(\langle 1 \rangle)$ exhibit $M(\langle n \rangle) \simeq \prod_{1 \leq i \leq n} M(\langle 1 \rangle)$ in the C for $0 \leq n \leq 3$.

Definition

Let C be an ∞ -category with finite products, we define a commutative monoid as a a functor $M: N_*(Fin_*) \to C$ such that the canonical maps $M(\rho_i): M(\langle n \rangle) \to M(\langle 1 \rangle)$ exhibit $M(\langle n \rangle) \simeq \prod_{1 \le i \le n} M(\langle 1 \rangle)$ in the C for all $n \ge 0$.

Proposition

Let C be an n-category with finite products, then $Fun^{CM}(N_*(Fin_*), C) \xrightarrow{\sim} Fun^{CM}(N_*(Fin_*)_{\leq (n+2)}, C)$ is categorical equivalent since in this case any commutative monoid $M : N_*(Fin_*) \to C$ is a right Kan extension along $N_*(Fin_*)_{\leq (n+2)}$.

Definition

A symmetric monoidal ∞ -category is a commutative monoid in Cat_{∞} . Particularly, when a symmetric monoidal ∞ -category C is 1-category, it is a commutative monoid in the $(Cat_{\infty})_{\leq 1}$, which is a 2-category. So we have $CMon(Cat_{\leq 1}) \xrightarrow{\sim} Fun^{CM}(N_*(Fin_*)_{\leq 4}, (Cat_{\infty})_{\leq 1}).$

By (un)straightening equivalence $Fun(N_*(Fin_*), Cat_{\infty}) \simeq CoCart_{/N_*(Fin_*)}$, we get the following equivalent definition.

Definition

A symmetric monoidal ∞ -category is a coCartesian fibration of simplicial sets $p: \mathcal{C}^{\otimes} \to N_*(Fin_*)$ with the following property: For each $n \geq 0$, the maps $\{\rho^i : \langle n \rangle \to \langle 1 \rangle\}_{1 \leq i \leq n}$ induce functors $\rho^i_! : \mathcal{C}^{\otimes}_{\langle n \rangle} \to \mathcal{C}^{\otimes}_{\langle 1 \rangle}$ which determine an equivalence $\mathcal{C}^{\otimes}_{\langle n \rangle} \simeq (\mathcal{C}^{\otimes}_{\langle 1 \rangle})^n$. And define $\mathcal{C}^{\otimes}_{\langle 1 \rangle}$ as its underlying ∞ -category.

Definition

A symmetric monoidal ∞ -category is a commutative monoid in Cat_{∞} . Particularly, when a symmetric monoidal ∞ -category C is 1-category, it is a commutative monoid in the $(Cat_{\infty})_{\leq 1}$, which is a 2-category. So we have $CMon(Cat_{\leq 1}) \xrightarrow{\sim} Fun^{CM}(N_*(Fin_*)_{\leq 4}, (Cat_{\infty})_{\leq 1}).$

By (un)straightening equivalence $Fun(N_*(Fin_*), Cat_{\infty}) \simeq CoCart_{/N_*(Fin_*)}$, we get the following equivalent definition.

Definition

A symmetric monoidal ∞ -category is a coCartesian fibration of simplicial sets $p: \mathcal{C}^{\otimes} \to N_*(Fin_*)$ with the following property: For each $n \geq 0$, the maps $\{\rho^i : \langle n \rangle \to \langle 1 \rangle\}_{1 \leq i \leq n}$ induce functors $\rho_!^i : \mathcal{C}_{\langle n \rangle}^{\otimes} \to \mathcal{C}_{\langle 1 \rangle}^{\otimes}$ which determine an equivalence $\mathcal{C}_{\langle n \rangle}^{\otimes} \simeq (\mathcal{C}_{\langle 1 \rangle}^{\otimes})^n$. And define $\mathcal{C}_{\langle 1 \rangle}^{\otimes}$ as its underlying ∞ -category.

Tensor product of ∞ -categories

Let \mathbb{K} be the collection of all small simplicial sets.

Definition

Given 2 cocomplete ∞ -categories C and D, we define the tensor product as a functor $C \times D \to C \otimes D$ such that for any cocomplete E, we have $Fun^{\mathbb{K}}(C \otimes D, E) \xrightarrow{\sim} Fun^{\mathbb{K} \boxtimes \mathbb{K}}(C \times D, E)$. Such tensor product always exists because the natural functor $C \times D \to \mathcal{P}_{\mathbb{K} \boxtimes \mathbb{K}}^{\mathbb{K}}(C \times D)$ satisfies that.

Theorem

The above gives a symmetric monoidal structure $\widehat{Cat}_{\infty}(\mathbb{K})^{\otimes} \to N_{*}(Fin_{*})$ and makes the cocompletion funcor a symmetric monoidal adjunction $\widehat{Cat}_{\infty}^{\otimes} \rightleftharpoons \widehat{Cat}_{\infty}(\mathbb{K})^{\otimes}$. So $\mathcal{S} = \mathcal{P}(*)$ is the unit in $\widehat{Cat}_{\infty}(\mathbb{K})^{\otimes}$.

Tensor product of ∞ -categories

Let \mathbb{K} be the collection of all small simplicial sets.

Definition

Given 2 cocomplete ∞ -categories C and D, we define the tensor product as a functor $C \times D \to C \otimes D$ such that for any cocomplete E, we have $Fun^{\mathbb{K}}(C \otimes D, E) \xrightarrow{\sim} Fun^{\mathbb{K}\boxtimes\mathbb{K}}(C \times D, E)$. Such tensor product always exists because the natural functor $C \times D \to \mathcal{P}_{\mathbb{K}\boxtimes\mathbb{K}}^{\mathbb{K}}(C \times D)$ satisfies that.

Theorem

The above gives a symmetric monoidal structure $\widehat{Cat}_{\infty}(\mathbb{K})^{\otimes} \to N_{*}(Fin_{*})$ and makes the cocompletion funcor a symmetric monoidal adjunction $\widehat{Cat}_{\infty}^{\otimes} \rightleftharpoons \widehat{Cat}_{\infty}(\mathbb{K})^{\otimes}$. So $\mathcal{S} = \mathcal{P}(*)$ is the unit in $\widehat{Cat}_{\infty}(\mathbb{K})^{\otimes}$.

Cocomplete symmetric monoidal structures

Remark

By (un)straightening equivalence, $CAl(\widehat{Cat}_{\infty}(\mathbb{K})) \subset CAl(\widehat{Cat}_{\infty})$ is the subcategory whose objects are symmetric monoidal ∞ -categories such that $-\otimes -$ preserves colimits separately in each variable (called **cocomplete symmetric monoidal** categories), and whose morphisms are **colimit-preserving** symmetric monoidal functors.

Corollary

The symmetric monoidal adjunction induces an adjunction between algebras $F: CAl(\widehat{Cat}_{\infty}) \rightleftharpoons CAl(\widehat{Cat}_{\infty}(\mathbb{K})).$

Corollary

(1) The $S = \mathcal{P}(*)$ is the unit in $\widehat{Cat}_{\infty}(\mathbb{K})^{\otimes}$, which means it is initial object in $CAl(\widehat{Cat}_{\infty}(\mathbb{K}))$ and hence S admits a cocomplete symmetric monoidal structure S. (2) So for any cocomplete symmetric monoidal ∞ -category, there exists essentially unique colimit-preserving symmetric monoidal functor $S^{\otimes} \to C^{\otimes}$.

Remark

By (un)straightening equivalence, $CAl(\widehat{Cat}_{\infty}(\mathbb{K})) \subset CAl(\widehat{Cat}_{\infty})$ is the subcategory whose objects are symmetric monoidal ∞ -categories such that $-\otimes -$ preserves colimits separately in each variable (called **cocomplete symmetric monoidal** categories), and whose morphisms are **colimit-preserving** symmetric monoidal functors.

Corollary

The symmetric monoidal adjunction induces an adjunction between algebras $F: CAl(\widehat{Cat}_{\infty}) \rightleftharpoons CAl(\widehat{Cat}_{\infty}(\mathbb{K})).$

Corollary

(1) The $S = \mathcal{P}(*)$ is the unit in $Cat_{\infty}(\mathbb{K})^{\otimes}$, which means it is initial object in $CAl(Cat_{\infty}(\mathbb{K}))$ and hence S admits a cocomplete symmetric monoidal structure S. (2) So for any cocomplete symmetric monoidal ∞ -category, there exists essentially unique colimit-preserving symmetric monoidal functor $S^{\otimes} \to C^{\otimes}$.

Proposition (Localization)

Let C be an ∞ -category and let $L : C \to C$ be a functor with essential image $LC \subseteq C$. The following conditions are equivalent: (1) There exists a functor $f : C \to D$ with a fully faithful right adjoint $q : D \to C$ and

(1) There exists a functor $f: C \to D$ with a fully faithful right adjoint $g: D \to C$ and an equivalence between $g \circ f$ and L.

(2) When regarded as a functor from C to LC, L is a left adjoint of the inclusion $LC \subseteq C$.

(3) There exists a natural transformation from $id_{\mathcal{C}} \to L$ such that, $L \circ id_{\mathcal{C}} \to L \circ L$ and $id_{\mathcal{C}} \circ L \to L \circ L$ are equivalences in $\operatorname{Fun}(\mathcal{C}, \mathcal{C})$, i.e. an idempotent object in $\operatorname{Fun}(\mathcal{C}, \mathcal{C})$.

Proposition

The full subcat $Pr^{L} \subset \widehat{Cat_{\infty}}(\mathbb{K})$ is closed under tensor product and hence inherits a symmetric monoidal structure Pr_{L}^{\otimes} .

Bousfield localization

Let \mathcal{C}^{\otimes} be a presentable symmetric monoidal category, i.e. an object in $CAl(Pr^L)$.

Theorem (Bousfield localization)

Let $E \in \mathcal{C}$ be an object, then $W_E = \{X \to Y | X \otimes E \xrightarrow{\sim} Y \otimes E\} \subset Fun(\Delta^1, \mathcal{C})$ is a small-generated strongly saturated collection, which means there exists an accessible localization functor $L_E : \mathcal{C} \to \mathcal{C}$.

Furthermore, Bousfield localization is compatible with its symmetric monoidal structure, meaning it forms a symmetric monoidal adjunction $\mathcal{C}^{\otimes} \rightleftharpoons \mathcal{C}_{E}^{\otimes}$.

Corollary

Symmetric monoidal adjunction gives an adjunction $CAl(\mathcal{C}) \rightleftharpoons CAl(\mathcal{C}_E)$. And a morphims $A \to B$ in $CAl(\mathcal{C})$ is a $CAl(\mathcal{C}_E)$ -localization iff underlying $p(A) \to p(B)$ is an *E*-localization in \mathcal{C} .

Definition (idempotent object)

Let C be a monoidal (∞ -)category. A morphism $1_C \to X$ is idempotent iff $1_C \otimes X \to X \otimes X$ and $X \otimes 1_C \to X \otimes X$ are equivalences. (e.g. $\mathbb{Z} \to \mathbb{Z}[1/p]$)

Theorem

Let C be a symmetric monoidal ∞ -category and let $e : \mathbf{1} \to E$ be a morphism in C. The following conditions are equivalent: (1) The map e exhibits E as an idempotent object of C. (2) Let $l_E : C \to C$ be the functor given by left tensor product with E. Then e induces a functor $\alpha : \mathrm{id}_C \to l_E$ which exhibits l_E as a localization functor on C.

Definition (idempotent object)

Let C be a monoidal (∞ -)category. A morphism $1_C \to X$ is idempotent iff $1_C \otimes X \to X \otimes X$ and $X \otimes 1_C \to X \otimes X$ are equivalences. (e.g. $\mathbb{Z} \to \mathbb{Z}[1/p]$)

Theorem

Let C be a symmetric monoidal ∞ -category and let $e : \mathbf{1} \to E$ be a morphism in C. The following conditions are equivalent: (1) The map e exhibits E as an idempotent object of C. (2) Let $l_E : C \to C$ be the functor given by left tensor product with E. Then e induces a functor $\alpha : \mathrm{id}_C \to l_E$ which exhibits l_E as a localization functor on C.

Definition

Let C be a symmetric monoidal ∞ -category. We will say that a commutative algebra object $A \in CAlg(C)$ is idempotent if unit map $e : \mathbf{1} \to A$ is idempotent.

Theorem

Let C be a symmetric monoidal ∞ -category with unit object 1, which we regard as a trivial algebra object of C. Then the functor

$heta:\operatorname{CAlg}^{\operatorname{idem}}(\mathcal{C})\subseteq\operatorname{CAlg}(\mathcal{C})\simeq\operatorname{CAlg}(\mathcal{C})_{1/} ightarrow\mathcal{C}_{1/}$

is fully faithful, and its essential image are idempotent objects in C, which gives an equivalence $\operatorname{CAlg}^{\operatorname{idem}}(\mathcal{C}) \xrightarrow{\sim} (\mathcal{C}_{1/})^{\operatorname{idem}}$. Furthermore, any mapping space in $(\mathcal{C}_{1/})^{\operatorname{idem}}$ is either empty or contractible, i.e. it is a 0-category and equivalent to a partial-order set N(I).

Definition

Let C be a symmetric monoidal ∞ -category. We will say that a commutative algebra object $A \in CAlg(C)$ is idempotent if unit map $e : \mathbf{1} \to A$ is idempotent.

Theorem

Let C be a symmetric monoidal ∞ -category with unit object 1, which we regard as a trivial algebra object of C. Then the functor

 $\theta : \operatorname{CAlg}^{\operatorname{idem}}(\mathcal{C}) \subseteq \operatorname{CAlg}(\mathcal{C}) \simeq \operatorname{CAlg}(\mathcal{C})_{1/} \to \mathcal{C}_{1/}$

is fully faithful, and its essential image are idempotent objects in \mathcal{C} , which gives an equivalence $\operatorname{CAlg}^{idem}(\mathcal{C}) \xrightarrow{\sim} (\mathcal{C}_{1/})^{idem}$. Furthermore, any mapping space in $(\mathcal{C}_{1/})^{idem}$ is either empty or contractible, i.e. it is a 0-category and equivalent to a partial-order set N(I).

Proposition

The full subcat $Pr^{L} \subset Cat_{\infty}(\mathbb{K})$ is closed under tensor product (so S is also the unit in Pr^{L}) and hence inherits a symmetric monoidal structure. In this case, for any $C, D \in Pr^{L}$, we have natural equivalence $C \otimes D \simeq RFun(C^{op}, D)$.

Theorem

The following 3 colimit-preserving functors $S \xrightarrow{\tau \leq n} \tau_{\leq n} S$, $S \xrightarrow{(-)_+} S_*$ and $S \xrightarrow{\Sigma_+} Sp$ are idempotent objects in Pr^L . Let C be a presentable ∞ -category, then (1) The functor $\tau_{\leq n}$ induces a map $\theta : C \simeq C \otimes S \to C \otimes \tau_{\leq n} S \simeq \tau_{\leq n} C$ which exhibits θ as an *n*-truncation functor. (2) The functor $(-)_+$ induces a map $\theta : C \simeq C \otimes S \to C \otimes S_* \simeq C_*$ which exhibits θ as a copointedlization functor. (3) The functor Σ_+^{∞} induces a map $\theta : C \simeq C \otimes S \to C \otimes Sp \simeq Sp(C)$ which exhibits θ as a cospectralization functor.

Proposition

The full subcat $Pr^{L} \subset Cat_{\infty}(\mathbb{K})$ is closed under tensor product (so S is also the unit in Pr^{L}) and hence inherits a symmetric monoidal structure. In this case, for any $C, D \in Pr^{L}$, we have natural equivalence $C \otimes D \simeq RFun(C^{op}, D)$.

Theorem

The following 3 colimit-preserving functors $S \xrightarrow{\tau \leq n} \tau_{\leq n} S$, $S \xrightarrow{(-)_+} S_*$ and $S \xrightarrow{\Sigma_+^{\infty}} Sp$ are idempotent objects in Pr^L . Let C be a presentable ∞ -category, then (1) The functor $\tau_{\leq n}$ induces a map $\theta : C \simeq C \otimes S \to C \otimes \tau_{\leq n} S \simeq \tau_{\leq n} C$ which exhibits θ as an *n*-truncation functor. (2) The functor $(-)_+$ induces a map $\theta : C \simeq C \otimes S \to C \otimes S_* \simeq C_*$ which exhibits θ as a copointedlization functor. (3) The functor Σ_+^{∞} induces a map $\theta : C \simeq C \otimes S \to C \otimes Sp \simeq Sp(C)$ which exhibits θ as a cospectralization functor.

Corollary

By $\operatorname{CAlg}(Pr^L)^{\operatorname{idem}} \xrightarrow{\sim} (Pr^L_{\mathcal{S}/})^{\operatorname{idem}}$ and the fact that $\mathcal{S} \xrightarrow{\tau_{\leq n}} \tau_{\leq n} \mathcal{S}$, $\mathcal{S} \xrightarrow{(-)_+} \mathcal{S}_*$, $\mathcal{S} \xrightarrow{\Sigma_+^{\infty}} Sp \in (Pr^L_{\mathcal{S}/})^{\operatorname{idem}}$,

(1) There is a unique cocomplete symmetric monoidal structure on \mathcal{S} such that * is the unit, which coincides its **Cartesian monoidal** structure.

(2) There is a unique cocomplete symmetric monoidal structure on $\tau_{\leq n} S$ such that * is the unit, which coincides its **Cartesian monoidal** structure.

(3) There is a unique cocomplete symmetric monoidal structure on S_* such that S^0 is the unit.

(4) There is a unique cocomplete symmetric monoidal structure on Sp such that $\Sigma^{\infty}S^{0}$ is the unit.

Bousfield localization with an idempotent object

Theorem

Let \mathcal{C}^{\otimes} be a symmetric monoidal ∞ -category and $\mathbf{1}_{C} \to E$ be an idempotent object in \mathcal{C} , then there exists a symmetric monoidal localization $L_{E}^{\otimes} : \mathcal{C}^{\otimes} \rightleftharpoons \mathcal{C}_{E}^{\otimes}$. Furthermore, The inclusion $\mathcal{C}_{E}^{\otimes} \to \mathcal{C}^{\otimes}$ is closed under tensor product and hence (strong) symmetric monoidal.

Corollary

The following 3 collections of presentable ∞ -categories are closed under tensor product:

- (1) Pointed presentable ∞ -categories;
- (2) Stable presentable ∞ -categories;
- (3) Presentable (n+1)-categories.