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Motivation of the ∞-category

Motivation 1
The most significant motivation is to change the morphism set HomC(X ,Y ) in a
category C to a topological space MapC(X ,Y ). Then we can have higher morphisms
πnMapC(X ,Y ).

For example when considering the category of spectra, we have
πnMapC(X ,Y ) = [ΣnX ,Y ].

Motivation 2
We want to internalize the category theory. In another way, we want to characterize
a specific ∞-category by a universal property in the ∞-category of all ∞-categories
Cat∞.

For instance, we will see the ∞-category of spaces S is "free generated" by the
single-point space ∗ ∈ S.
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Extracting information from ∞-category
The most intuitive model for ∞-category is the sSet-enriched (or Top-enriched)
category. Actually we have a Quillen equivalence sSetJoyal ⇄ Cat∆.

Mapping spaces
There are at least 4 definitions of the mapping space MapC(X ,Y ) in an ∞-category C.
But when we take their underlying Ho(sSetKan)-enriched categories, all of them are
the same, written as hC. (∗ ∗ ∗ most important invariant)

How to extract useful and discard redundant information in certain circumstances is an
art in ∞-category’s world.

Example
For example when we want to show a functor between ∞-categories F : C → D is an
equivalence, it suffices to show hF : hC → hD is equivalent.
But if we consider colimits in an ∞-category C, we need more homotopy coherent
information than those in hC. In this case, we can’t reduce to hC.

4 / 39



Extracting information from ∞-category
The most intuitive model for ∞-category is the sSet-enriched (or Top-enriched)
category. Actually we have a Quillen equivalence sSetJoyal ⇄ Cat∆.

Mapping spaces
There are at least 4 definitions of the mapping space MapC(X ,Y ) in an ∞-category C.
But when we take their underlying Ho(sSetKan)-enriched categories, all of them are
the same, written as hC. (∗ ∗ ∗ most important invariant)

How to extract useful and discard redundant information in certain circumstances is an
art in ∞-category’s world.

Example
For example when we want to show a functor between ∞-categories F : C → D is an
equivalence, it suffices to show hF : hC → hD is equivalent.
But if we consider colimits in an ∞-category C, we need more homotopy coherent
information than those in hC. In this case, we can’t reduce to hC.

5 / 39



Why use the ∞-category?
Some phenomenons or propositions can’t be stated clearly without ∞-category.

Example
(1) Chromatic convergence and chromatic pullback:

...

L1X

X L0X

LnX LK(n)X

Ln−1X Ln−1LK(n)X

They are homotopy limits of homotopy

coherent diagrams N∗(Zop
≥0) → Sp and Λ2

2 → Sp. However, classical framework only
provides homotopy diagrams, which can’t be used to take homotopy limit.
(2) Postnikov tower in the category of spaces S and its convergence are the same
philosophy as above.
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Why use the ∞-category?

Example
(2) Equivariant stable homotopy theory: there are plenty of model categories
characterizing it, but all of their underlying ∞-category are equivalent with
Fun(BG,Sp), which is both simple and intuitive.
(3) In ∞-framework, the E∞-operad is just commutative operad. And E∞ spaces,
E∞-spectra are ∞-commutative monoid objects.
(4) We have all kinds of well-defined moduli spaces, like Fun⊗(C ,D), Funlax(C ,D)
and CAl(C )×C {X}.
(5) Bousfield localization of an E∞-ring is still an E∞-ring, this is directly by the fact
Sp⊗ ⇄ Sp⊗

E is a symmetric monoidal adjunction, which will induce an adjunction
CAl(Sp) ⇄ CAl(SpE) by symmetric monoidal ∞-categorical machine. However, both
model category and EKMM can not provide such a machine.
(6) If C is a 1-category, then Sp(C ) ≃ {∗} is trivial. The stabilization for 1-category is
meaningless.
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Outlook and methodology

Preventing Russell’s paradox
In order to consider the category of all categories, we need to add a set-theoretic
axiom into ZFC, i.e. Grothendieck’s Assumption:
∀ cardinal κ, there exists an inaccessible cardinal τ > κ. (A good reference: Chap 1，
代数学方法 1，李文威)

Methodology
By Grothendieck’s Assumption,
1. When not involving category of all categories, technically we can treat all things
as small. So all propositions not involving category of all categories will hold in any
Grothendieck universe.
2. When involving category of all categories, for example Cat∞, we consider it as
the ∞-category Catτ∞ of all τ -small categories for an inaccessible cardinal τ . Choose a
bigger inaccessible τ2 > τ , then technically we can treat Catτ∞ as a τ2-small
∞-category in Catτ2∞.
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Universal properties in the category of categories

Definition (Kan extension along a full subcategory)
Let i : C0 ⊂ C be a full subcategory, we say a functor F : C → D is a left Kan
extension along i iff ∀X ∈ C, (C0 ×C C/X )▷ → C F−→ D is a colimit diagram, i.e.
colimA→X ,A∈C0F(A) ≃ F(X).

Theorem
The restriction FunLKan(C,D)

∼−→ Fun∃LKan(C0,D) is a categorical equivalence.

Example
Let C be a small category and D be a category that admits small colimits, then
(1) A functor F : P(C) → D is a left Kan extension along the Yoneda embedding
i : C → P(C) iff F preserves small colimits.
(2) For any f ∈ Fun(C,D), there exists a left Kan extension F : P(C) → D along i.
(3) And hence we have Funcolim(P(C),D) → Fun(C,D) is an equivalence. (e.g.
sSet → Top)
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Cocompletion

Definition
Let K be a collection of simplicial sets. We say that an ∞-category C is K-cocomplete
if it admits K -diagram colimits, for each K ∈ K.
We say that a functor of ∞-categories h : C → Ĉ exhibits Ĉ as a K-cocompletion of C
if the ∞-category Ĉ is K-cocomplete and for every K-cocomplete ∞-category D,
precomposition with h induces an equivalence of ∞-categories
FunK(Ĉ,D)

∼−→ Fun(C,D).

Theorem
Let K be a (small) collection of simplicial sets, then for any (small) ∞-category C ,
there exists a K-completion C → PK(C ). That gives an adjunction
Cat∞ ⇄ Cat(K)∞. e.g. Psmall(C ) = Fun(C ,S) and Psmall(∗) = S.
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More examples of universal properties
Let D be an ∞-category.

Theorem (Pointedlization)
If D admits final object, then there exists a pointedlization D∗/ → D such that for any
pointed ∞-category C the forgetful functor θ : Fun′ (C,D∗) → Fun′(C,D) is an
equivalence. That provides an adjunction CatFinal,pt

∞ ⇄ CatFinal
∞ .

Theorem (Stabilization)
If D admits finite limits, then there exists a stabilization Sp(D) → D such that for any
stable ∞-category C the forgetful functor θ : FunFlim (C,D∗) → FunFlim(C,D) is an
equivalence. That provides an adjunction CatFlim,st

∞ ⇄ CatFlim
∞ .

Example
The category spectra Sp(P(∗)) is the stabilization of the cocompletion of the trivial
∞-category.
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More examples of universal properties

Definition
Let n ≥ −2, an object Z in an ∞-category C is n-truncated if, for every object
Y ∈ C , the space MapC (Y ,Z ) is n-truncated space.

Theorem (Truncation)
If C is a presentable ∞-category, then there exists an n-truncation functor
C → τ≤nC . Suppose that D is a presentable that all objects are n-truncated, i.e. it’s
an (n + 1)-category. Then composition with τ≤n induces an equivalence
s : FunL (τ≤nC,D) → FunL(C,D). That provides an adjunction PrL ⇄ PrL

≤(n+1).

Example
(1) An space X in S is n-truncated iff all πiX vanish when i > n. Particularly
S≤0 ≃ N (Set).
(2) An n-truncated object Cat∞ is exactly an n-category. And all n-categories form an
(n + 1)-category (Cat∞)≤n .
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Higher commutative monoid

Definition (Reformulate commutative monoid)
A commutative monoid in an ordinary category C which admits finite products is a
functor M : (Fin∗)≤3 → C such that the canonical maps M (ρi) : M (⟨n⟩)→M (⟨1⟩)
exhibit M (⟨n⟩) ≃

∏
1≤i≤n M (⟨1⟩) in the C for 0 ≤ n ≤ 3.

Definition
Let C be an ∞-category with finite products, we define a commutative monoid as a a
functor M : N∗(Fin∗) → C such that the canonical maps M (ρi) : M (⟨n⟩)→M (⟨1⟩)
exhibit M (⟨n⟩) ≃

∏
1≤i≤n M (⟨1⟩) in the C for all n ≥ 0.

Proposition
Let C be an n-category with finite products, then
FunCM (N∗(Fin∗),C )

∼−→ FunCM (N∗(Fin∗)≤(n+2),C ) is categorical equivalent since in
this case any commutative monoid M : N∗(Fin∗) → C is a right Kan extension along
N∗(Fin∗)≤(n+2).
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Symmetric monoidal ∞-category

Definition
A symmetric monoidal ∞-category is a commutative monoid in Cat∞. Particularly,
when a symmetric monoidal ∞-category C is 1-category, it is a commutative monoid
in the (Cat∞)≤1, which is a 2-category. So we have
CMon(Cat≤1)

∼−→ FunCM (N∗(Fin∗)≤4, (Cat∞)≤1).

By (un)straightening equivalence Fun(N∗(Fin∗),Cat∞) ≃ CoCart/N∗(Fin∗) , we get
the following equivalent definition.

Definition
A symmetric monoidal ∞-category is a coCartesian fibration of simplicial sets
p : C⊗ → N∗(Fin∗) with the following property:
For each n ≥ 0, the maps

{
ρi : ⟨n⟩ → ⟨1⟩

}
1≤i≤n induce functors ρi

! : C
⊗
⟨n⟩ → C⊗

⟨1⟩
which determine an equivalence C⊗

⟨n⟩ ≃ (C⊗
⟨1⟩)

n . And define C⊗
⟨1⟩ as its underlying

∞-category.
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Tensor product of ∞-categories
Let K be the collection of all small simplicial sets.

Definition
Given 2 cocomplete ∞-categories C and D, we define the tensor product as a functor
C × D → C ⊗ D such that for any cocomplete E , we have
FunK(C ⊗ D,E)

∼−→ FunK⊠K(C × D,E). Such tensor product always exists because
the natural functor C × D → PK

K⊠K(C × D) satisfies that.

Theorem

The above gives a symmetric monoidal structure Ĉat∞(K)⊗ → N∗(Fin∗) and makes
the cocompletion funcor a symmetric monoidal adjunction Ĉat

⊗
∞ ⇄ Ĉat∞(K)⊗. So

S = P(∗) is the unit in Ĉat∞(K)⊗.
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Cocomplete symmetric monoidal structures

Remark

By (un)straightening equivalence, CAl(Ĉat∞(K)) ⊂ CAl(Ĉat∞) is the subcategory
whose objects are symmetric monoidal ∞-categories such that −⊗− preserves colimits
separately in each variable (called cocomplete symmetric monoidal categories), and
whose morphisms are colimit-preserving symmetric monoidal functors.

Corollary
The symmetric monoidal adjunction induces an adjunction between algebras
F : CAl(Ĉat∞) ⇄ CAl(Ĉat∞(K)).

Corollary

(1) The S = P(∗) is the unit in Ĉat∞(K)⊗, which means it is initial object in
CAl(Ĉat∞(K)) and hence S admits a cocomplete symmetric monoidal structure S.
(2) So for any cocomplete symmetric monoidal ∞-category, there exists essentially
unique colimit-preserving symmetric monoidal functor S⊗ → C⊗.
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Localization

Proposition (Localization)
Let C be an ∞-category and let L : C → C be a functor with essential image LC ⊆ C.
The following conditions are equivalent:
(1) There exists a functor f : C → D with a fully faithful right adjoint g : D → C and
an equivalence between g ◦ f and L.
(2) When regarded as a functor from C to LC,L is a left adjoint of the inclusion
LC ⊆ C.
(3) There exists a natural transformation from idC → L such that, L ◦ idC → L ◦L and
idC ◦L → L ◦ L are equivalences in Fun(C, C), i.e. an idempotent object in Fun(C, C).

Proposition

The full subcat PrL ⊂ Ĉat∞(K) is closed under tensor product and hence inherits a
symmetric monoidal structure Pr⊗L .
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Bousfield localization
Let C⊗ be a presentable symmetric monoidal category, i.e. an object in CAl(PrL).

Theorem (Bousfield localization)

Let E ∈ C be an object, then WE = {X → Y |X ⊗ E ∼−→ Y ⊗ E} ⊂ Fun(∆1, C) is a
small-generated strongly saturated collection, which means there exists an accessible
localization functor LE : C → C.

Furthermore, Bousfield localization is compatible with its symmetric monoidal
structure, meaning it forms a symmetric monoidal adjunction C⊗ ⇄ C⊗

E .

Corollary
Symmetric monoidal adjunction gives an adjunction CAl(C) ⇄ CAl(CE). And a
morphims A → B in CAl(C) is a CAl(CE)-localization iff underlying p(A) → p(B) is
an E-localization in C.
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Localization and idempotent object

Definition (idempotent object)
Let C be a monoidal (∞-)category. A morphism 1C → X is idempotent iff
1C ⊗ X → X ⊗ X and X ⊗ 1C → X ⊗ X are equivalences. (e.g. Z → Z[1/p])

Theorem
Let C be a symmetric monoidal ∞-category and let e : 1 → E be a morphism in C.
The following conditions are equivalent:
(1) The map e exhibits E as an idempotent object of C.
(2) Let lE : C → C be the functor given by left tensor product with E . Then e induces
a functor α : idC → lE which exhibits lE as a localization functor on C.
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Symmetric localization and idempotent algebra

Definition
Let C be a symmetric monoidal ∞-category. We will say that a commutative algebra
object A ∈ CAlg(C) is idempotent if unit map e : 1 → A is idempotent.

Theorem
Let C be a symmetric monoidal ∞-category with unit object 1, which we regard as a
trivial algebra object of C. Then the functor

θ : CAlgidem (C) ⊆ CAlg(C) ≃ CAlg(C)1/ → C1/

is fully faithful, and its essential image are idempotent objects in C, which gives an
equivalence CAlgidem (C) ∼−→ (C1/)

idem . Furthermore, any mapping space in (C1/)
idem

is either empty or contractible, i.e. it is a 0-category and equivalent to a partial-order
set N (I ).
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Interesting applications

Proposition

The full subcat PrL ⊂ Ĉat∞(K) is closed under tensor product (so S is also the unit
in PrL) and hence inherits a symmetric monoidal structure. In this case, for any
C ,D ∈ PrL, we have natural equivalence C ⊗ D ≃ RFun(C op,D).

Theorem

The following 3 colimit-preserving functors S
τ≤n−−→ τ≤nS, S (−)+−−−→ S∗ and S

Σ∞
+−−→ Sp

are idempotent objects in PrL. Let C be a presentable ∞-category, then
(1) The functor τ≤n induces a map θ : C ≃ C ⊗ S → C ⊗ τ≤nS ≃ τ≤nC which exhibits
θ as an n-truncation functor.
(2) The functor (−)+ induces a map θ : C ≃ C ⊗ S → C ⊗ S∗ ≃ C∗ which exhibits θ as
a copointedlization functor.
(3) The functor Σ∞

+ induces a map θ : C ≃ C ⊗ S → C ⊗ Sp ≃ Sp(C) which exhibits θ
as a cospectralization functor.
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Reinterpretation

Corollary

By CAlg(PrL)idem ∼−→ (PrL
S/)

idem and the fact that S
τ≤n−−→ τ≤nS, S (−)+−−−→ S∗ ,

S
Σ∞

+−−→ Sp ∈ (PrL
S/)

idem ,
(1) There is a unique cocomplete symmetric monoidal structure on S such that ∗ is
the unit, which coincides its Cartesian monoidal structure.
(2) There is a unique cocomplete symmetric monoidal structure on τ≤nS such that ∗
is the unit, which coincides its Cartesian monoidal structure.
(3) There is a unique cocomplete symmetric monoidal structure on S∗ such that S0 is
the unit.
(4) There is a unique cocomplete symmetric monoidal structure on Sp such that
Σ∞S0 is the unit.
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Bousfield localization with an idempotent object

Theorem
Let C⊗ be a symmetric monoidal ∞-category and 1C → E be an idempotent object in
C, then there exists a symmetric monoidal localization L⊗

E : C⊗ ⇄ C⊗
E .

Furthermore, The inclusion C⊗
E → C⊗ is closed under tensor product and hence

(strong) symmetric monoidal.

Corollary
The following 3 collections of presentable ∞-categories are closed under tensor
product:
(1) Pointed presentable ∞-categories;
(2) Stable presentable ∞-categories;
(3) Presentable (n + 1)-categories.
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