Motivic homotopy theory and calculation methods: On "The special fiber of the motivic deformation of the stable homotopy category is algebraic"

Qingrui Qu

SUSTECH

Nov 28, 2023

Table of Contents

- 1 Introduction to motivic homotopy theory
	- Algebraic cobordism theory
	- Chow t-structure

2 Algebraicity of cofiber module categories

- Main theorems:The equivalences of stable infinity categories
- **•** Sketch of proof

3 Method of computation on more stable homotopy groups

- Miller square and comparison
- Equivalence of spectral sequences
- Motivic enrichment and computation strategy

Table of Contents

- 1 Introduction to motivic homotopy theory
	- Algebraic cobordism theory
	- Chow t-structure

2 Algebraicity of cofiber module categories

- Main theorems:The equivalences of stable infinity categories
- Sketch of proof

3 Method of computation on more stable homotopy groups

- Miller square and comparison
- Equivalence of spectral sequences
- Motivic enrichment and computation strategy

For a fixed prime *p*, Voevodsky constructed the mod-*p* motivic Eilenberg-Mac Lane spectrum that represents the mod- p motivic cohomology. We denote it by $H\mathbb{F}_p^{mot.}$ Its value at a point is $\pi_{*, *} H \mathbb{F}_p^{mot} = \mathbb{F}[\tau]$, and τ has bi-degree $(0, -1)$.

We denote by $S^{0,0}$ the motivic sphere spectrum. For the grading, we denote by $S^{1,0}$ the suspension spectrum of the simplicial sphere S^1 , and by $S^{1,1}$ the suspension spectrum of the multiplicative group $\mathit{G}_{m}=\mathbb{A}^{1}\setminus\{0\}.$

The class τ can be lifted to a map between $H\mathbb{F}_p^{mot}$ -completed motivic sphere spectra *τ* : $\widehat{S}^{0,-1}$ → $\widehat{S}^{0,0}$ that induces a non-zero map on mod-p motivic homology. We denote by $\hat{S}^{0,0}/\tau$ the cofiber of τ .

There is a Betti Realization functor *Re* from the motivic stable homotopy category over $\mathbb C$ to the classical stable homotopy category. $Re(S^{n,w})\simeq S^{n,0}$ and $Re(\overline{H}\mathbb F_p^{mot})\simeq H\mathbb F_p.$

Let *MGL* be the cellular motivic algebraic cobordism spectrum introduced by Voevodsky.

We define

$$
MU^{mot} := MGL \wedge_{S^{0,0}} \widehat{S}^{0,0}.
$$

The motivic homotopy groups are computed by Hu–Kriz-Ormsby and Dugger–Isaksen:

$$
\pi_{*,*}(MU^{mot}) = \mathbb{Z}_p[\tau][x_1, x_2, \cdots], deg(\tau) = (0, -1), def(x_i) = (2i, i)
$$

The spectrum $M_{\text{U}}^{mot}/\tau := \hat{S}^{0,0}/\tau \wedge_{\hat{\epsilon}_{0,0}} M_{\text{U}}^{mot}$ has motivic homotopy groups:

$$
\pi_{*,*}(MU^{mot}/\tau) = \mathbb{Z}_p[x_1, x_2, \cdots] = MU^{mot}_{*,*}/\tau
$$

Definition 2.1. A *t*-structure on a stable ∞ -category C is a pair of two full subcategories $\mathcal{C}_{\geq 0}$ and $\mathcal{C}_{\leq 0}$ that are stable under equivalences, satisfying the following three properties:

- (1) for $X \in \mathcal{C}_{\geq 0}$ and $Y \in \Sigma^{-1} \mathcal{C}_{\leq 0}$, we have $[X, Y]_{\mathcal{C}} = 0$;
- (2) there are inclusions $\Sigma \mathcal{C}_{\geq 0} \subset \mathcal{C}_{\geq 0}$ and $\Sigma^{-1} \mathcal{C}_{\leq 0} \subset \mathcal{C}_{\leq 0}$;
- (3) for any $X \in \mathcal{C}$, there exists a fiber sequence

$$
X_{\geqslant 0} \longrightarrow X \longrightarrow X_{\leqslant -1},
$$

with $X_{\geq 0} \in \mathcal{C}_{\geq 0}$ and $X_{\leq -1} \in \Sigma^{-1} \mathcal{C}_{\leq 0}$.

t-exact and bounded

Definition 2.2. Let $\mathcal C$ and $\mathcal C'$ be stable ∞ -categories equipped with t-structures. We say that an exact functor $f: \mathcal{C} \to \mathcal{C}'$ is right t-exact, if it carries $\mathcal{C}_{\geq 0}$ to $\mathcal{C}'_{\geq 0}$. An exact functor $f: \mathcal{C} \to \mathcal{C}'$ is left t-exact, if it carries $\mathcal{C}_{\leq 0}$ to $\mathcal{C}'_{\leq 0}$. A functor is t-exact if it is both left and right t -exact.

Definition 2.4. Denote by C^+ and C^- the stable full subcategories spanned by *leftbounded* and *right-bounded* objects in \mathcal{C} , respectively:

$$
\mathcal{C}^+ = \bigcup_{n \geq 0} \mathcal{C}_{\leq n} \quad \text{and} \quad \mathcal{C}^- = \bigcup_{n \geq 0} \mathcal{C}_{\geq -n},
$$

and by

$$
\mathcal{C}^{\rm b} \! := \! \mathcal{C}^+ \! \cap \! \mathcal{C}^-
$$

the stable subcategory of *bounded objects*. We say that the *t*-structure is *left-bounded*,

right-bounded or *bounded*, if the inclusion of C^+ , C^- or C^b , respectively, in C, is an equivalence.

The intersection

$$
\mathcal{C}^\heartsuit\!=\!\mathcal{C}_{\geqslant0}\!\cap\!\mathcal{C}_{\leqslant0}
$$

is called the *heart* of the *t*-structure.

The ∞ -category \mathcal{C}^{\heartsuit} is always equivalent to (the nerve of) its homotopy category $h\mathcal{C}^{\heartsuit}$, which is an abelian category (see [41, Remark 1.2.1.12]). Following [41], we abuse the notation by identifying \mathcal{C}^{\heartsuit} with the abelian category $h\mathcal{C}^{\heartsuit}$.

Definition

For any motivic spectrum X, consider its bigraded motivic homotopy groups *πs,wX*. Here, *s* is the topological degree under the Betti realization, and *w* is the motivic weight. The **Chow–Novikov degree** of an element in *πs,wX* is defined as *s −* 2*w*. We say that $\pi_{s,w}X$ is concentrated in Chow–Novikov degrees *I*, where *I* is a set of integers, if all non-zero elements in *π∗,∗X* are concentrated in Chow–Novikov degrees belonging to *I*.

For example, the homotopy groups of $M U^{mot}/\tau$ are concentrated in Chow–Novikov degree zero, while the homotopy groups of *MU mot* are concentrated in non-negative even Chow–Novikov degrees.

$$
\pi_{*,*}(MU^{mot}) = \mathbb{Z}_p[\tau][x_1, x_2, \cdots], \ deg(\tau) = (0, -1), \ def(x_i) = (2i, i)
$$

$$
\pi_{*,*}(MU^{mot}/\tau) = \mathbb{Z}_p[x_1, x_2, \cdots] = MU^{mot}_{*,*}/\tau
$$

Chow t-structure

- We define $M U^{mot}/\tau$ - Mod_{cell}^b as the stable full subcategory of $M U^{mot}/\tau$ - Mod_{cell} spanned by objects whose homotopy groups are concentrated in bounded Chow-Novikov degrees.
- Define $M U^{mot}/\tau$ - $Mod_{cell}^{b, \geq 0}$, $M U^{mot}_{\tau} / \tau$ - $Mod_{cell}^{b, \leq 0}$, $M U^{mot}/\tau$ - $Mod_{cell}^{b, \heartsuit}$ as the full ${\sf subcategories}$ of MU^{mot}/τ - Mod_{cell}^b cell spanned by objects whose homotopy groups are concentrated in non-negative, non-positive and zero Chow–Novikov degrees, respectively.
- Define $S^{0,0}/\tau$ - Mod_{harm}^b as the stable full subcategory of $S^{0,0}/\tau$ - Mod_{harm} spanned by objects whose $\ddot{M} \ddot{U}^{mot}$ -homology groups are concentrated in bounded Chow– Novikov degrees.
- Define $\widehat{S^{0,0}}/\tau$ - $Mod_{harm}^{b,\geq}$, $\widehat{S^{0,0}}/\tau$ - $Mod_{harm}^{b,\leq}$, $\widehat{S^{0,0}}/\tau$ - $Mod_{harm}^{b,\heartsuit}$ as the full ${\rm subcategories}$ of $\overline{S^{0,0}/\tau}$ - Mod_{harm}^b spanned by objects whose MU^{mot} -homology groups are concentrated in non-negative, non-positive and zero Chow-Novikov degrees respectively.

Table of Contents

- 1 Introduction to motivic homotopy theory
	- Algebraic cobordism theory
	- Chow t-structure

2 Algebraicity of cofiber module categories

- Main theorems:The equivalences of stable infinity categories
- **•** Sketch of proof

3 Method of computation on more stable homotopy groups

- Miller square and comparison
- Equivalence of spectral sequences
- Motivic enrichment and computation strategy

Theorem

There is an equivalence of stable *∞*-categories equipped with t-structures at each prime *p*:

$$
\mathcal{D}^{b}(BP_*BP\text{-}Comod^{ev}) \simeq \widehat{S^{0,0}}/\tau\text{-}Mod_{harm}^b\tag{1}
$$

between the bounded derived category of *p*-completed *BP∗BP*-comodules that are concentrated in even degrees, and the category of harmonic motivic left module spectra over $S^{0,0}/\tau$, whose MGL -homology has bounded Chow-Novikov degree, with morphisms the $\overline{S^{0,0}}/\tau$ -linear map.

Here,*S* ⁰*,*0/*^τ* is a motivic *^E∞*-ring spectrum, which is also known as the cofiber of *^τ* . The motivic spectrum *MGL* is the algebraic cobordism spectrum. A motivic left-module spectrum over $S^{0,0}/\tau$ is harmonic, if it is $S^{0,0}/\tau$ -cellular and the map to its *MGL*-completion induces an isomorphism on *π∗,∗*.

THEOREM 1.11. (1) The full subcategories

 $\mathrm{MU}^{\mathrm{mot}}/\tau\text{-}\mathbf{Mod}_{\infty}^{b,\geqslant 0}$ and $\mathrm{MU}^{\mathrm{mot}}/\tau\text{-}\mathbf{Mod}_{\infty}^{b,\leqslant 0}$

define a t-structure on $MU^{mot}/\tau\text{-}\mathbf{Mod}_{coll}^b$.

 (2) The functor

$$
\pi_{*,*}{:}\,\mathbf{MU}^{\mathrm{mot}}/\tau\textbf{-}\mathbf{Mod}_{\mathrm{cell}}^{\heartsuit}\textbf{)}\longrightarrow \mathbf{MU}_{*}\textbf{-}\mathbf{Mod}^{\mathrm{ev}}
$$

is an equivalence.

(3) There exists an equivalence of stable ∞ -categories

$$
\mathrm{MU}^{\mathrm{mot}}/\tau\text{-}\mathrm{\textbf{Mod}}_{\mathrm{cell}}^b\!\longrightarrow\!\mathcal{D}^b(\mathrm{MU}_*\text{-}\mathrm{\textbf{Mod}}^{\mathrm{ev}}),
$$

that preserves the given t-structures and extends the functor $\pi_{*,*}$ on the heart.

THEOREM 1.13. (1) The full subcategories

$$
\widehat{S^{0,0}}/\tau\text{-}\mathbf{Mod}_{\mathrm{harm}}^{b,\geqslant0} \quad \text{and} \quad \widehat{S^{0,0}}/\tau\text{-}\mathbf{Mod}_{\mathrm{harm}}^{b,\leqslant0}
$$

define a t-structure on $\widehat{S^{0,0}}/\tau$ -Mod_{harm}. (2) The functor

$$
\mathrm{MU}^{\mathrm{mot}}_{*,*}\colon\widehat{S^{0,0}}/\tau\text{-}\mathbf{Mod}^{\heartsuit}_{\mathrm{harm}}\longrightarrow\mathrm{MU}_*\mathrm{MU}\text{-}\mathbf{Comod}^{\mathrm{ev}}
$$

 $is an equivalence.$

(3) There exists an equivalence of stable ∞ -categories

$$
\widehat{S^{0,0}}/\tau\textbf{-Mod}_\mathrm{harm}^b \longrightarrow \mathcal{D}^b(\mathrm{MU}_*\mathrm{MU}\textbf{-Comod}^\mathrm{ev})
$$

that preserves the given t-structures and extends the functor MU^{mot}_{**} on the heart.

Lurie's theorem

PROPOSITION 2.12. Let C be a stable ∞ -category with a given bounded t-structure. Suppose that the following conditions hold:

- (1) the abelian category $A = h\mathcal{C}^{\heartsuit}$ has enough injective objects:
- (2) for any pair of objects $X, Y \in \mathcal{A}$, if Y is injective, then the abelian groups

 $[\Sigma^{-i}X, Y]_c$

vanish for $i>0$.

Then, there exists an equivalence of stable ∞ -categories

$$
G{:}\:\mathcal{D}^b(\mathcal{A}){\:\longrightarrow\:}\mathcal{C}
$$

extending the inclusion $N(\mathcal{A})\simeq\mathcal{C}^{\heartsuit}\subseteq\mathcal{C}$, and which preserves t-structures. Here, $N(\mathcal{A})$ is the nerve of the abelian category A and $\mathcal{D}^b(\mathcal{A})$ is the bounded derived category of A.

THEOREM 3.2. (Universal coefficient spectral sequence) For any

 $X, Y \in MU^{\text{mot}}/\tau \cdot \textbf{Mod}_{cell},$

there is a conditionally convergent spectral sequence

$$
E_2^{s,t,w} = \mathrm{Ext}^{s,t,w}_{\mathrm{MU}^{\mathrm{m},\mathrm{st}}_{*,*}/\tau}(\pi_{*,*}X,\pi_{*,*}Y) \Longrightarrow [\Sigma^{t-s,w}X,Y]_{\mathrm{MU}^{\mathrm{mot}}/\tau}.
$$

Moreover, if both $\pi_{*, *} X$ and $\pi_{*, *} Y$ are concentrated in bounded Chow-Novikov degrees, then the spectral sequence converges strongly and collapses at a finite page.

Proof: For degree reasons.

Isomorphism between topological and algebraic Hom set

 $COROLLARY 3.3. Let$

$$
X \in \mathrm{MU}^{\mathrm{mot}}/\tau \cdot \mathbf{Mod}_{\mathrm{cell}}^{b,\geqslant 0} \quad \text{and} \quad Y \in \mathrm{MU}^{\mathrm{mot}}/\tau \cdot \mathbf{Mod}_{\mathrm{cell}}^{b,\leqslant 0}.
$$

The abelian group of homotopy classes of bi-degree $(0,0)$ can be computed algebraically by the isomorphism

$$
[X,Y]_{\mathrm{MU}^{\mathrm{mot}}/\tau} \longrightarrow \mathrm{Hom}_{\mathrm{MU}^{\mathrm{mot}}*,*/\tau}(\pi_{*,*}X,\pi_{*,*}Y)
$$

that is induced by applying $\pi_{**}.$

Proof: For degree reasons.

The equivalence on the heart

COROLLARY 3.4. The functor

$$
\pi_{*,*}{:}\mathrm{MU}^{\mathrm{mot}}/\tau\text{-}\mathbf{Mod}_{\mathrm{cell}}^{\heartsuit}\longrightarrow\mathrm{MU}^{\mathrm{mot}}_{*,*}/\tau\text{-}\mathbf{Mod}^0
$$

is fully faithful. Here, the right-hand side is understood as a discrete ∞ -category.

As a consequence, Corollary 3.4 shows that MU^{mot}/τ -Mod $_{cell}^{\heartsuit}$ is also a discrete ∞ -category.

Proof. For $n \ge 0$ and two objects $X, Y \in MU^{\text{mot}}/\tau$ -Mod^o_{cell}, by Corollary 3.3, the edge homomorphism

$$
\left[\Sigma^{n,0}X,Y\right]_{\mathbf{M}\mathbf{U}^{\text{mot}}/\tau}\xrightarrow{\pi_{*,*}}\mathbf{Hom}_{\mathbf{M}\mathbf{U}^{\text{mot}}_*/\tau}(\pi_{*,*}\Sigma^{n,0}X,\pi_{*,*}Y)
$$

is an isomorphism. When $n>0$, the bigraded module $\pi_{*,*}\Sigma^{n,0}X$ is concentrated in positive Chow–Novikov degree. So the right-hand side of the above isomorphism is concentrated in the case $n=0$. This shows that $\pi_{*,*}$ is fully faithful on MU^{mot}/τ -Mod $_{coll}^{\heartsuit}$. \Box To show the equivalence on the heart, we only need to show the **essential surjectivity** of *^π∗,∗*. We need to show that any object *^M [∈] MU mot [∗],[∗]* /*^τ* -*mod*⁰ can be realized as the homotopy groups of an object in $M U^{mot} / \tau$ - mod_{cell}^{heart} .

The free $MU^{mot}_{*,*}/\tau$ -module can be realized by wedge of spectra MU^{mot}/τ . For an arbitrary M, we can pick a free resolution $0 \leftarrow M \leftarrow F_0 \leftarrow F_1 \leftarrow \cdots$, and they can be realized as $Z_0 \leftarrow Z_1 \leftarrow \cdots$ and we can construct a tower $X_1 \rightarrow X_2 \rightarrow \cdots$ s.t. $\Sigma^{i,0}Z_{i+1}\to X_i\to X_{i+1}$ is a cofiber sequence and $X:=colim(X_1\to X_2\to\cdots)$, $\pi_{**}(X) = M$.

Proposition

The functor

$$
\pi_{*,*}: MU^{mot}/\tau\text{-}Mod_{cell}^{\heartsuit}\rightarrow MU^{mot}_{*,*}/\tau\text{-}Mod^0
$$

is an equivalence of *∞*-categories.

For the category $\widehat{S^{0,0}}/\tau\text{-Mod}_{\text{barm}}^b$, the *t*-structure is defined in terms of MU^{mot}homology. We therefore need a version of the motivic Adams–Novikov spectral sequence that computes $\widehat{S^{0,0}}/\tau$ -linear maps.

Recall from Dugger-Isaksen [14, §8] or Hu-Kriz-Ormsby [28] the usual MU^{mot}-based motivic Adams-Novikov spectral sequence

$$
\operatorname{Ext}^{*,*,*}_{\mathrm{MU}^{\mathrm{mot}}_{*,*}\mathrm{MU}^{\mathrm{mot}}}(\mathrm{MU}^{\mathrm{mot}}_{*,*}\widehat{S^{0,0}}, \mathrm{MU}^{\mathrm{mot}}_{*,*} Y) \Longrightarrow \pi_{*,*} Y^{\wedge}_{\mathrm{MU}^{\mathrm{mot}}}.
$$

This spectral sequence is not what we need. We need a spectral sequence of the form

$$
\operatorname{Ext}_{\mathrm{MU}^{\mathrm{mot}}_{*,*}\mathrm{M}\mathrm{U}^{\mathrm{mot}}/\tau}(\mathrm{MU}^{\mathrm{mot}}_{*,*} X,\mathrm{MU}^{\mathrm{mot}}_{*,*} Y) \Longrightarrow [X,Y^\wedge_{\mathrm{M}\mathrm{U}^{\mathrm{mot}}}]_{\widehat{S^{0,0}}/\tau},
$$

To show the equivalence on the heart, we only need to show the essential surjectivity of MU^{mot}_{**} .

Unlike the case for modules over $MU^{mot}_{*,*}/\tau$, we do not have free resolutions for comodules over MU^{mot}_{**} / τ . We will instead use Landweber's filtration theorem to realize all comodules that are finitely presented, and then extend the result using filtered colimits. In particular, all Smith-Toda complexes exist in $\overline{S^{0,0}}/\tau$ -Mod.

Table of Contents

- 1 Introduction to motivic homotopy theory
	- Algebraic cobordism theory
	- Chow t-structure

2 Algebraicity of cofiber module categories

- Main theorems:The equivalences of stable infinity categories
- Sketch of proof

3 Method of computation on more stable homotopy groups

- Miller square and comparison
- Equivalence of spectral sequences
- Motivic enrichment and computation strategy

Comparison of ASS and ANSS

The Adams spectral sequence and the Adams–Novikov spectral sequence are two of the most effective methods of computing the homotopy groups of the *p*-completed sphere spectrum of the form:

> $Ext_A^{s,t}(\mathbb{F}_p, \mathbb{F}_p) \cong E_2^{s,t} \Rightarrow \pi_{t-s} \mathbb{S}^0$ $Ext^{s,t}_{BP*BP}(BP_*, BP) \cong E_2^{s,t} \Rightarrow \pi_{t-s} \mathbb{S}^0$

It is important to understand connections between them. A first connection is given by the Thom reduction map $\rho : BP \to HF_n$, which is a ring spectra map and its behavior on the coefficient ring is given by $\rho_*(v_n) = 0$ for all $v_n \in BP_*(pt)$ and induces a map of spectral sequences:

$$
Ext^{s,t}_A(\mathbb{F}_p, \mathbb{F}_p) \to Ext^{s,t}_{BP_*BP}(BP_*, BP_*)
$$

that preserves the (s, t) -degrees. However, a general homotopy class in $\pi_*\mathbb{S}^0$ usually have different Adams filtration and Adams-Novikov filtration. So this map is not very useful for comparison of the Adams filtration and the Adams-Novikov filtration of a surviving homotopy class, it only tells us the latter is less or equal to the former.

algebraic Novikov SS and Cartan-Eilenberg SS

A fundamental connection is the Miller square. We have an algebraic Novikov spectral sequence converging to the Adams-Novikov E^2 -page, and a Cartan-Eilenberg spectral sequence converging to the Adams E^2 -page. It turns out the E^2 -pages of these two algebraic spectral sequences are isomorphic.

The algebraic Novikov spectral equence comes the filtration of powers of the augmentation ideal $I = (p, v_1, v_2, \dots) \subset BP_*$,

$$
E_2^{s,k,t} \cong Ext_{BP_*BP/I}^{s,t}(BP_*/I, I^k/I^{k+1}) \Rightarrow Ext_{BP_*BP}^{s,t}(BP_*, BP_*)
$$

The Cartan-Eilenberg spectral sequence is:

$$
Ext^{s,t}_P(\mathbb{F}_p, Ext^k_Q(\mathbb{F}_p, \mathbb{F}_p)) \Rightarrow Ext^{s+k,t}_A(\mathbb{F}_p, \mathbb{F}_p)
$$

where P is a sub-Hopf algebra of A and $Q = A \otimes_P \mathbb{F}_2$, We identify the E2-pages of the Cartan-Eilenberg spectral sequence and the algebraic Novikov spectral sequence by using the isomorphism of Hopf algebroids $(BP_*/I, BP_*BP/I) \cong (\mathbb{F}_n, P)$.

Miller square

So there is an isomorphism of *E*² page:

$$
Ext^{s,t}_P(\mathbb{F}_p, Ext^k_Q(\mathbb{F}_p, \mathbb{F}_p)) \xrightarrow{\cong} Ext^{s,t'}_{BP_*BP/I}(BP_*/I, I^k/I^{k+1})
$$

Equivalence of spectral sequences

THEOREM 8.3. At each prime p, there is an isomorphism of tri-graded spectral sequences between the motivic Adams spectral sequence for $\widehat{S^{0,0}}/\tau$, which converges to the motivic homotopy groups of $\widehat{S^{0,0}}/\tau$, and the regraded algebraic Novikov spectral sequence, which converges to the Adams-Novikov E_2 -page for the sphere spectrum.

The indexes are indicated in the following diagram:

Here, A_{**}^{mot} is the motivic mod-p dual Steenrod algebra.

Miller square and motivic SS 1

Which spectral sequence can we put in between these two spectral sequences and have a zig-zag diagram? Namely,

The answer is in the motivic world! It has been given by the equivalence of spectral sequences between Algebraic Novikov and motivic Adams of $\frac{S^{0,0}}{T}$.

Combine the motivic deformation and the naturality of the motivic Adams spectral sequences and the equivalence of spectral sequences give us a zig-zag diagram.

Computation strategy I

Isaksen, Wang and Xu extend the computation of classical and motivic stable stems into a large range using the following steps:

- **1** Use a computer to carry out the entirely algebraic computation of the cohomology of the C-motivic Steenrod algebra. These groups serve as the input to the C-motivic Adams spectral sequence.
- 2 Use a computer to carry out the entirely algebraic computation of the algebraic Novikov spectral sequence that converges to the cohomology of the Hopf algebroid (*BP∗, BP∗BP*). This includes all differentials, and the multiplicative structure of the cohomology of (*BP∗, BP∗BP*).
- ³ Identify the algebraic Novikov spectral sequence with the motivic Adams spectral sequence that computes the homotopy groups of $\overline{S^{0,0}}/\tau$. This includes an $\int \mathrm{d}t$ dentification of $\mathit{Ext}^{s,t}_{BP_*BP}(BP_*,BP_*)$ and $\pi_{*,*}\widehat{S}^{0,0}/\tau.$
- ⁴ Use the inclusion of the bottom cell and the projection to the top cell to pull back and push forward Adams differentials for $\hat{S}^{0,0}/\tau$ to Adams differentials for the motivic sphere $\hat{S}^{0,0}$.

Computation strategy II

- ⁵ Apply a variety of ad-hoc arguments to deduce additional Adams differentials for the motivic sphere. The most important method involves shuffling Toda brackets.
- ⁶ Use a long exact sequence in homotopy groups to deduce hidden *τ* -extensions in the motivic Adams spectral sequence for the sphere.
- ⁷ Invert *τ* to obtain the classical Adams spectral sequence and the classical stable homotopy groups.
- Gheorghe, Bogdan, Guozhen Wang, and Zhouli Xu. "The special fiber of the 畐 motivic deformation of the stable homotopy category is algebraic." Acta Mathematica 226.2 (2021): 319-407.
- Burklund, Robert, and Zhouli Xu. "The Adams differentials on the classes h^3_j ." F. arXiv preprint arXiv:2302.11869 (2023).
- Dugger, Daniel, and Daniel C. Isaksen. "The motivic Adams spectral sequence." S. Geometry & Topology 14.2 (2010): 967-1014.
- Hu, Po, Igor Kriz, and Kyle Ormsby. "Remarks on motivic homotopy theory over S. algebraically closed fields." Journal of K-Theory 7.1 (2011): 55-89.

Thanks!