The motivic Adams spectral sequence.

Zhonglin Wu

Southern Univ. of Science and Technology (SUSTech)

November 13, 2023

Zhonglin Wu

The motivic Adams spectral sequence.

Southern Univ. of Science and Technology (SUSTech)

イロト イロト イヨト イ

Convergence of this spectral sequence

Outline

1 Introduction

- 2 The motivic Steenrod algebra
- 3 Calculation of the Ext group.
- 4 Convergence of this spectral sequence

Zhonglin Wu

The motivic Adams spectral sequence.

Southern Univ. of Science and Technology (SUSTech)

イロト イヨト イヨト

Convergence of this spectral sequence

Outline

1 Introduction

- 2 The motivic Steenrod algebra
- 3 Calculation of the Ext group.
- 4 Convergence of this spectral sequence

Zhonglin Wu

The motivic Adams spectral sequence.

Southern Univ. of Science and Technology (SUSTech)

・ロト ・回 ト ・ ヨト ・

The main result

For motivic homotopy theory, we have an Adams-like spectral sequence which E_2 page is:

$$E_2^{s,t,u} = Ext_A^{s,(t+s,u)}(\mathbb{M}_2, \mathbb{M}_2),$$
(1)

and $d_r: E_r^{s,t,u} \to E_r^{s+r,t-1,u}$ which convergents to $\pi_{*,*}(S_H^{\wedge})$.

Southern Univ. of Science and Technology (SUSTech)

Zhonglin Wu

Convergence of this spectral sequence

The main result

• A: the mod 2 motivic Steenrod algebra over field \mathbb{C} .

Southern Univ. of Science and Technology (SUSTech)

イロト イヨト イヨト イヨ

Zhonglin Wu

The main result

- A: the mod 2 motivic Steenrod algebra over field \mathbb{C} .
- \mathbb{M}_2 : the bigraded motivic cohomology ring of $Spec(\mathbb{C})$.

Southern Univ. of Science and Technology (SUSTech)

(日)

Zhonglin Wu

The main result

- A: the mod 2 motivic Steenrod algebra over field \mathbb{C} .
- \mathbb{M}_2 : the bigraded motivic cohomology ring of $Spec(\mathbb{C})$.
- *H* is the mod 2 motivic Eilenberg-MacLane spectrum.

Southern Univ. of Science and Technology (SUSTech)

(日)

Zhonglin Wu

Convergence of this spectral sequence

Outline

1 Introduction

2 The motivic Steenrod algebra

3 Calculation of the Ext group.

4 Convergence of this spectral sequence

Zhonglin Wu

The motivic Adams spectral sequence.

Southern Univ. of Science and Technology (SUSTech)

・ロト ・回 ト ・ ヨト ・

Convergence of this spectral sequence

The motivic Steenrod algebra

Voevodsky showed the structure of \mathbb{M}_2 and the motivic version Adem relation.

Theorem (Voevodsky)

The bigraded ring \mathbb{M}_2 is the polynomial ring $\mathbb{F}_2[\tau]$ on one generator τ of bidegree (0,1).

Southern Univ. of Science and Technology (SUSTech)

Image: A math a math

Zhonglin Wu

The motivic Steenrod algebra

Voevodsky showed the structure of \mathbb{M}_2 and the motivic version Adem relation.

Theorem (Voevodsky)

The motivic Steenrod algebra A is the \mathbb{M}_2 -algebra generated by elements Sq^{2k} and Sq^{2k-1} for all $k \ge 1$, of bidegrees (2k, k) and (2k-1, k-1) respectively, and satisfying the following relations for a < 2b:

$$Sq^{a}Sq^{b} = \sum_{c} {\binom{b-1-c}{a-2c}} \tau^{?}Sq^{a+b-c}Sq^{c}.$$
 (2)

Where the τ has a bidegree of (0, 1).

Southern Univ. of Science and Technology (SUSTech)

Zhonglin Wu

Relation with classical Adams spectral sequence

Idea: Remove τ to degenerate the motivic case into the classical one.

Definition

For any motivic spectrum X, let

$$\theta_X: H^{*,*}(X) \otimes_{\mathbb{M}_2} \mathbb{M}_2[\tau^{-1}] \to H^p(X(\mathbb{C})) \otimes_{\mathbb{F}_2} \mathbb{M}_2[\tau^{-1}]$$
(3)

be the $\mathbb{M}_2[\tau^{-1}]$ -linear map that takes a class α of weight w in $H^{*,*}(X)$ to $\tau^w \alpha(\mathbb{C})$.

着子种技大学

Southern Univ. of Science and Technology (SUSTech)

・ロト ・回ト ・ヨト

Zhonglin Wu

Convergence of this spectral sequence

Outline

1 Introduction

- 2 The motivic Steenrod algebra
- 3 Calculation of the Ext group.
- 4 Convergence of this spectral sequence

Zhonglin Wu

The motivic Adams spectral sequence.

Southern Univ. of Science and Technology (SUSTech)

< ロ > < 回 > < 回 > < 回 > <</p>

Calculation of the *Ext* group.

Ξ.

< ロ > < 回 > < 回 > < 回 > < 回 > Southern Univ. of Science and Technology (SUSTech)

Zhonglin Wu

We can get an Adams-like spectral sequence by applying $\pi_{\ast,u}$ on this resolution.

$$E_2^{s,t,u} = Ext_A^{s,(t+s,u)}(\mathbb{M}_2, \mathbb{M}_2),$$
(4)

and $d_r:E_r^{s,t,u}\to E_r^{s+r,t-1,u}.$ This spectral sequence convergents to $\pi_{*,*}(S_H^\wedge).$

Southern Univ. of Science and Technology (SUSTech)

メロト メロト メヨト メ

Zhonglin Wu

The free part of $Ext_A^{*,*}(\mathbb{M}_2,\mathbb{M}_2)$ is isomorphic to the free part of $Ext_A^{*,*}(\mathbb{F}_2,\mathbb{F}_2)$.

Theorem

There is an isomorphism of rings

$$Ext_{A}^{*,*}(\mathbb{M}_{2},\mathbb{M}_{2})\otimes_{\tilde{\mathbb{M}}_{2}}\tilde{\mathbb{M}}_{2}[\tau^{-1}]\cong Ext_{\mathcal{A}}^{*,*}(\mathbb{F}_{2},\mathbb{F}_{2})\otimes_{\mathbb{F}_{2}}\mathbb{F}_{2}[\tau,\tau^{-1}].$$
 (5)

Here

$$\tilde{\mathbb{M}}_2 := \mathbb{F}_2[\tilde{\tau}] = Hom_A^*(\mathbb{M}_2, \mathbb{M}_2) = Ext_A^{0,*}(\mathbb{M}_2, \mathbb{M}_2).$$
(6)

· 御う科技大学

Southern Univ. of Science and Technology (SUSTech)

Image: A match a ma

Zhonglin Wu

Convergence of this spectral sequence

Calculation of the Ext group.

Appendix A. The E_2 -term of the motivic Adams spectral sequence

Southern Univ. of Science and Technology (SUSTech)

< 口 > < 同 >

Zhonglin Wu

Calculation of the Ext group. $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Convergence of this spectral sequence

Calculation of the Ext group.

Find out why those red point exist?

$$\blacksquare Sq^2\alpha_2 + \tau Sq^3\alpha_1 = 0$$

Southern Univ. of Science and Technology (SUSTech)

Zhonglin Wu

Convergence of this spectral sequence

Calculation of the Ext group.

Find out why those red point exist?

$$\blacksquare Sq^2\alpha_2 + \tau Sq^3\alpha_1 = 0$$

$$\bullet Sq^2\beta_2 + \tau(Sq^1\beta_3 + Sq^4\beta_1) = 0$$

Southern Univ. of Science and Technology (SUSTech)

イロト イロト イヨト イ

Zhonglin Wu

Convergence of this spectral sequence

Calculation of the Ext group.

Find out why those red point exist?

$$\blacksquare Sq^2\alpha_2 + \tau Sq^3\alpha_1 = 0$$

$$Sq^2\beta_2 + \tau (Sq^1\beta_3 + Sq^4\beta_1) = 0$$

$$\bullet \ \tau (Sq^3Sq^1\beta_2 + Sq^2Sq^1\beta_3 + (Sq^6 + \tau Sq^5Sq^1)\beta_1)$$

Southern Univ. of Science and Technology (SUSTech)

イロト イロト イヨト イ

Zhonglin Wu

Convergence of this spectral sequence

Some other topic about computation

Product

Southern Univ. of Science and Technology (SUSTech)

< ロ > < 回 > < 回 > < 回 > <</p>

Zhonglin Wu

Convergence of this spectral sequence

Some other topic about computation

Product

Massey product

Southern Univ. of Science and Technology (SUSTech)

Image: A image: A

Zhonglin Wu

Convergence of this spectral sequence

Some other topic about computation

- Product
- Massey product
- Differential

Southern Univ. of Science and Technology (SUSTech)

Image: A math a math

Zhonglin Wu

Convergence of this spectral sequence \bullet 00000

Outline

1 Introduction

- 2 The motivic Steenrod algebra
- 3 Calculation of the Ext group.
- 4 Convergence of this spectral sequence

Zhonglin Wu

The motivic Adams spectral sequence.

Southern Univ. of Science and Technology (SUSTech)

< ロ > < 回 > < 回 > < 回 > <</p>

Convergence of this spectral sequence 000000

homological motivic Adams spectral sequence.

Why homological version?

Southern Univ. of Science and Technology (SUSTech)

(日)

Zhonglin Wu

Convergence of this spectral sequence 00000

homological motivic Adams spectral sequence.

Why homological version?

• To avoid the discussion of the non-finite type.

Southern Univ. of Science and Technology (SUSTech)

< D > < A > < B > < B >

Zhonglin Wu

Convergence of this spectral sequence 00000

homological motivic Adams spectral sequence.

Why homological version?

- To avoid the discussion of the non-finite type.
- Ingredient: The universal coefficient theorem.

Southern Univ. of Science and Technology (SUSTech)

< D > < A > < B > < B >

Zhonglin Wu

Convergence of this spectral sequence 00000

homological motivic Adams spectral sequence.

Why homological version?

- To avoid the discussion of the non-finite type.
- Ingredient: The universal coefficient theorem.
- Ingredient: The Kunneth formula.

Southern Univ. of Science and Technology (SUSTech)

• • • • • • • • • • • • •

Zhonglin Wu

Convergence of this spectral sequence 000000

The universal coefficient theorem

 θ_H is the canonical map of $H_{*,*}(H) \to Hom_{\mathbb{M}_2}(H^{*,*}(H),\mathbb{M}_2).$

Theorem

 $\theta_H: H_{*,*}(H) \to Hom_{\mathbb{M}_2}(H^{*,*}(H), \mathbb{M}_2)$ is an isomorphism.

Southern Univ. of Science and Technology (SUSTech)

< □ > < □ > < □ > < □ >

Zhonglin Wu

The Kunneth formula

For the Kunneth formula, we need to "cellularize" H, the technical details can be found in the "Motivic cell structures". The Kunneth formula can be written as follows:

Theorem

 $H^{*,*}(X) \otimes_{\mathbb{M}_2} H^{*,*}(H) \to H^{*,*}(X \wedge H)$ is an isomorphism if X admits a right H-module structure.

Southern Univ. of Science and Technology (SUSTech)

Image: A math a math

Zhonglin Wu

Convergence of this spectral sequence 000000

Proof of the convergence property

The convergence of the cohomological motivic Adams spectral sequence can be proved by considering its duality tower in the homological range. The details of this proof can be found in the section 6 of "The localization of spectra with respect to homology".

Southern Univ. of Science and Technology (SUSTech)

Image: A math a math

Zhonglin Wu

The motivic S

The End

Ξ.

< ロ > < 回 > < 回 > < 回 > < 回 > Southern Univ. of Science and Technology (SUSTech)