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A group is a set G with c : G × G → G and i : G → G .

Slogan: An algebraic structure is equivalent to some commutative
diagrams.
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Algebraic Theories

Definition 1.1

An algebraic theory T is a category with objects {T 0,T 1, . . . }.
And there are maps πi : T

n → T 1 for all n ≥ 0, 1 ≤ i ≤ n, such
that T (T k ,T n)

πi−→
∏n

i=1 T (T k ,T 1) is a bijection.

This means T n is isomorphic to n-fold product of T 1.

Definition 1.2

A model for an algebraic theory T is a functor F : T → Sets.
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Question: What theory T would stand for the theory of groups?

T 1 = Z/2Z, Z, or something else? T n =?

T n = ⟨x1, . . . , xn⟩ the free object of n generators in Grps.
T (T n,T 1) = Grps(⟨x1⟩, ⟨x1, . . . , xn⟩).

x1 7→ x1x2 ∈ T (T 2,T 1)

x1 7→ x−1
1 ∈ T (T 1,T 1)

represent the structure maps required for a group.
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Example: F = full subcategory of AlgR , with obejects
{F0,F1, . . . }, Fi = R[x1, . . . , xi ]. Let T = F op. Let πi be the
following:

T n πi−→ T 1

R[x1, . . . , xn]← R[x1]

xi ← x1.

Then T is an algebraic theory of commutative R algebras, denoted
by CR and any model A : T → Sets gives A(T 1) a structure of R
algebras.

Multiplication: x1 7→ x1x2.
Addition: x1 7→ x1 + x2.
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Free Models

Given an algebraic theory T , and a model A, we usually abbreviate
the notation A(T 1) by A.

FT (n) = T (T n,−): the free model of n generators.

For example, in the algebraic theory of commutative R-algebras:

FT (n)(T
1) = T (T n,T 1) = AlgR(R[x ],R[x1, . . . , xn]) ∼= R[x1, . . . , xn].
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Morphisms of Theories

Let ϕ : T → H be a functor between two theories, such that
ϕ(T k) = Hk with projection maps sent to projection maps.

ϕ∗ : ModelH → ModelT

Example: the theory of abelian groups → the theory of Rings.

T is a COT , if ∃ ϕ : CR → T for some commutative ring R.
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Graded Algebraic Theories

Let C be a fixed set, and N[C ] be the set generated by C .

Definition 1.3

A C-graded theory T is a category with objects {T d}d∈N[C ],
together with, for each d = Σc∈Cdc [c] ∈ N[C ], a specified
identification of T d with the product

∏
(T [c])×dc .
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Example: Let C be N, we can define the theory of graded R
algebras as before. Let F[c] = R[xc ], where xc has degree c , and

T [c] = F op
[c] .

Addition: T 2[c] → T [c], xc 7→ αc + βc .
Multiplication: T [c]+[c ′] → T [c+c ′], xc+c ′ 7→ xc · xc ′ .
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Dyer-Lashof Theory

We want an algebraic theory which describes the algebraic
structure for π∗(A), where A is an R-algebra.
R = commutative S-algebra.
M = an R-module. Note: [R,M]R ∼= [S ,M]S ∼= π0M.
Free commutative R−algebra on M:

PR(M) =
∨
m≥0

Pm
R (M) ∼=

∨
m≥0

M ∧R · · · ∧R M/Σm.
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Given a commutative S-algebra R, let DLR denote the Z graded
theory T defined by

Definition 1.4

T (T [c1]+···+[cm],T [d1]+···+[dn]) ∼=
hAlgR(PR(R ∧ (Sd1 ∨ · · · ∨ Sdn)),PR(R ∧ (Sc1 ∨ · · · ∨ Scm))).

Remark: The R−mod spectrum R ∧ (Sc1 ∨ · · · ∨ Scm) can be
viewed as R-module R{xc1 , . . . , xcm} in commutative algebra. And
PR turns the R-module into R-algebra R[xc1 , . . . , xcm ].
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We see that taking homotopy groups defines a functor

π∗ : hAlgR → ModelDLR .

For we have

πq(A) ∼= hModS(S
q,A) ∼= hModR(R∧Sq,A) ∼= hAlgR(PR(R∧Sq),A).

Thus, DLR describes all homotopy operations on commutative
R-algebras.[Rezk]
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If A is a commutative S-algebra, then R ∧S A is a commutative
R-algebra. Hence we have the composite:

R∗ : A 7→ R ∧S A
π∗−→ R∗A

Thus DLR describes homology operations CAlgS .
If T is a space, then there is a commutative R-algebra

RT def
= Hom(Σ∞

+ T ,R).

Thus we have the functor R∗ : T op → ModelDLR , the R
cohomology of a space is a DLR model.
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Operations

Let f ∈ FT (n)(T
1), and a1, . . . , an ∈ A(T 1), where A is any model

of T .

Let f ∝ (a1, . . . , an) denote the image of f under the map
FT (n)→ A sending xi to ai . We call the function:

f ∝: An → A

the operation associated to f .
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Example: Let T = CR , then we know that

FT (n)(T
1) = AlgR(R[x ],R[x1, . . . , xn]) ∼= R[x1, . . . , xn].

We abbreviate FT (n)(T
1) by R{x1, . . . , xn}.

Hence f ∝ (a1, . . . , an) is just f (a1, . . . , an).

If T is a COT, then we have

FT (n) ∼= FT (1)⊗R · · · ⊗R FT (1).

Hence we may focus on operations in FT (1).
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They satisfies:

x ∝ a = a

(f ∝ g) ∝ a = f ∝ (g ∝ a)

(f + g) ∝ a = f ∝ a+ g ∝ a

(fg) ∝ a = (f ∝ a)(g ∝ a)

r ∝ a = r
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Additive Operations

Furthermore, if f ∈ R{x} satisfies

f ∝ (a1 + a2) = f ∝ a1 + f ∝ a2

We say it is an additive operation, denoted the set of all additive
operations by A.

A is an associative ring with product ∝, but not commutative in
general.
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FT (2)(T
1)

(a,b) // A(T 1)

FT (1)(T
1)

x ·1+1·y ))

//

x+y

OO

FT (2)(T
1)

(a,b)

OO

FT (1)(T
1)⊗ FT (1)(T

1)

R{x} has a additive coproduct ∆ : R{x} → R{x1, x2} given by
x 7→ x1 + x2, corresponds to the structure map under addition.

Additive operations are those elements with primitive image.
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Examples

CR : A = R · x ∼= R when R torsion free. If R is a field of char=p,
then A ∼= R⟨ϕ⟩, where ϕ is Frobenius and

ϕr = rpϕ.

Let T be the theory of R-algebras with G -action.
T is a COT. R{x} = R[xg : g ∈ G ], A ∼= R[G ]
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Pm(S0) = EΣm ×Σm (S0)∧m/EΣm ×Σm ∗ = BΣ+
m.

Pm(Sd) = EΣm ×Σm (Sd)∧m/EΣm ×Σm ∗
= BΣm × dVm/boundary = BΣdVm

m .
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HF2

FT ([c1] + · · · [cm]) = PH(H ∧ (Sc1 ∨ · · · Scm))op and

FT ([c1] + · · · [cm])[d ] = hAlgH(PH(H ∧ Sd),PH(H ∧ (Sc1 ∨ · · · Scm)))

= πd(H ∧ PSc1 ∧ · · ·PScm)

= Hd(PSc1 ∧ · · ·PScm)

Hence by Künneth formula, we have

FT ([c1] + · · · [cm])∗ = FT ([c1])∗ ⊗F2 · · · ⊗F2 FT ([cm])∗

Hence DLHF2 is a COT.
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Now consider operations πcA→ πc+sA.

hAlgH(PH(H ∧ Sc+s),PH(H ∧ Sc)) = πc+sPH(H ∧ Sc)

Restrict our attention to πc+sP2
H(H ∧ Sc). Now

πc+sP2
H(H∧Sc) ∼= πs+c(H∧P2Sc) ∼= Hs+c(BΣ

cV2
2 ) ∼= Hs−c(RP∞).

Hence we have

πc+sP2
H(H ∧ Sc) =

{
0 if s < c
F2 if s ≥ c
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So we have obtained Qs : πcA→ πc+sA for any c ≤ s.
Extended Qs over those s < c by setting Qs = 0.

There for a model for DLHF2 is at least a graded F2 algebra
equipped with such Qs : Ac → Ac+s .

These Qs satisfies some relations.
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Dyer-Lashof Algebras for HF2

For HF2 algebra A, π∗A is a graded algebra equipped with Qs

1 Qs are additive,

2 Qs(a) = 0 for s < |a|,
3 Qs(a) = a2 for s = |a|,
4 Cartan formula

As(ab) = Σi+j=sQ
i (a)Q j(b),

5 Adem relations

QrQs = Σi+j=r+s

(
j − s − 1

2j − r

)
Q iQ j

for r > 2s.
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K Theory

We focus on π0A for a K -algebra A.

hAlgk(PK (K ),PK (K )) = π0(K ∧ PS0) = K0(
∨
m

BΣm).

The crucial thing is to compute K0BΣm.

K i (BΣm) =

{
R(Σm)

∧
I i even

0 i odd
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Mod p K-Theory

In mod p cases, things are getting easier.

K i (BΣm;Z/p) =
{

R(Σm)
∧
I ⊗ Z/p i even
0 i odd

and universal coefficient theorem:

K i (BΣm;Z/p) = Hom(Ki (BΣm;Z/p),Z/p)).
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Total Power Operation and Individual Operations

Suppose A is an R-algebra, for f : R → A, define Pm(f ) to be:

R ∧ BΣ+
m
∼= Pm

R (R)
Pm
R (f )−−−→ Pm

R (A) ↪→ A.

That is Pm : π0A→ π0(A
BΣ+

m).

Precomposing α ∈ π0(R ∧ BΣ+
m)
∼= R0(BΣm) gives individual

operation Qα :

R
α−→ R ∧ BΣ+

m
∼= Pm

R (R)
Pm
R (f )−−−→ Pm

R (A) ↪→ A.
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Let A = KX , then

π0(A
BΣ+

m) = π0(K
X )BΣ+

m

= ModS(X ∧ BΣ+
m,K )

= KΣm(X )

Pm : K (X )→ KΣm(X
×m)

δ∗−→ KΣm(X ) ∼= K (X )⊗Z R(Σm).

Then any u ∈ Hom(R(Σm),Z) will give an operation on K (X ), for
example the Adams operations ψm.
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Thank You!
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