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Basic definitions

Digraph

A digraph (which is also called directed graph ) G = (V,E) is a couple
of a set V ,whose elements are called vertices, and a subset
E ⊂ {V × V \diag} of ordered pairs of vertices that are called edges or
arrows. If v, w ∈ V, (v, w) ∈ E is also denoted by v → w.
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Digraph map

A morphism from G = (VG, EG) to H = (VH , EH) is a map
f : VG → VH such that for any edge v → w on G we have f(v)

→
= f(w)

on H. (That is either f(v) → f(w) or f(v) = f(w).) We will refer to
such morphisms also as digraph maps and denote them by f : G→ H.

The set of all digraphs with digraph maps form a category of digraphs
that will be denoted by D.
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Elementary p-path

Let V be a finite set, for any p ⩾ 0, an elementary p-path is any ordered
sequence i0, · · · , ip of p+ 1 vertices of V denoted by i0 · · · ip or ei0···ip .

Fix a commutative ring K with unity and denote by
Λp = Λp(v) = Λ(V,K) the free K-module which consists of all formal
K-linear combinations of all elementary p-paths.

Hence,each p-path has a form

v =
∑

i0,··· ,ip

vi0,··· ,ipei0···ip ,

where vi0,··· ,ip ∈ K.

Wenhui Yang Homotopy theory for digraphs January 5, 2024 5 / 32



Boundary operator

For any p ⩾ 0, the boundary operator ∂ : Λp+1 → Λp is defined by

∂v =
∑

i0,··· ,ip

(
∑
k

p+1∑
q=0

(−1)qvi0···iq−1kiq ···ip)ei0···ip ,

where v =
∑

i0,··· ,ip+1

vi0,··· ,ip+1ei0···ip+1 .

∂ej0···jp+1 =
p+1∑
q=0

(−1)qej0···ĵq ···jp+1
, ∂2v = 0 for any v ∈ Λp.

Set Λ−1 = {0} and ∂v = 0 for all v ∈ Λ0 in case we need the
operator ∂ : Λ0 → Λ−1.

Hence, the family of K-modules {Λp}p⩾−1 with the boundary operator ∂
determine a chain complex denoted by Λ∗(V ) = Λ∗(V,K).
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Regular path

An elementary p-path ei0···ip on a set V is called regular if ik ̸= ik+1 for all
k = 0, · · · , p− 1, and irregular otherwise.

Let IP be the submodule of ΛP that is K-spanned by irregular ei0···ip ,
and ∂Ip ⊂ Ip−1.

Consider the quotient Rp := Λp/Ip, then the induced boundary
operator ∂ : Rp → Rp−1, p ⩾ 0 is well-defined. Denote by R∗(V ) the
obtained chain complex.
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Allowed and ∂-invariant path

Let G = (V,E) be a digraph. An elementary p-path i0 · · · ip on V is called
allowed if ik → ik+1 for any k = 0, · · · , p− 1, and non-allowed otherwise.

Note that the modules Ap are in general not invariant for ∂. So we
consider the submodules Ωp := {v ∈ Ap, ∂v ∈ Ap−1}, which are
∂-invariant.

Hence, we obtain a chain complex Ω∗ = Ω∗(G,K) :

· · · ∂−→ Ωp
∂−→ Ωp−1

∂−→ · · · ∂−→ Ω1
∂−→ Ω0

∂−→ 0
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Homologies of a digraph

Define for any p ⩾ 0 the homologies of the digraph G with
coefficients from K by

HP (G,K) = Hp(G) := Hp(Ω∗(G)) = ker ∂|Ωp/Im∂|Ωp+1 .

· · · ∂−→ Ωp
∂−→ Ωp−1

∂−→ · · · ∂−→ Ω1
∂−→ Ω0

∂−→ 0

Wenhui Yang Homotopy theory for digraphs January 5, 2024 9 / 32



Examples

Example 1: Planar digraph with a nontrivial homology group H2.

A direct computation:

H1(G,K) = {0}, H2(G,K) ∼= K.
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Example 2: Cycle digraph Sn(n ⩾ 3).

H1(G,K) ∼= K if Sn contains neither triangle nor square below.
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Homotopy theory for digraphs

Line digraph

A line digraph is a digraph whose vertices set is {0, 1, · · · , n} and the set
of edges contains exactly one of the edges i→ (i+ 1), (i+ 1) → i for any
i = 0, 1, · · ·n− 1, and no other edges.
Denote by In the set of all line digraphs and I the union of all In.

Cartesian product

For two digraphs G = (VG, EG) and H = (VH , EH), define the Cartesian
product G⊡H as a digraph with the set VG × VH and with the set of
edges as follows: for x, x′ ∈ VG and y, y′ ∈ VH , we have (x, y) → (x′, y′)
in G⊡H iff either x = x′ and y → y′, or x→ x′ and y = y′.
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Homotopy theory for digraphs

Homotopy

Let G,H be two digraphs. Two digraph maps f, g : G→ H are called
homotopic if there exists a line digraph In ∈ In with n > 1 and a digraph
map F : G⊡ In → H such that F |G⊡{0} = f and F |G⊡{n} = g. The map
F is called a homotopy between f and g.

Homotopy equivalent

Two digraphs G and H are called homotopy equivalent if there exists
digraph maps f : G→ H, g : H → G such that f ◦ g ≃ idH , g ◦ f ≃ idG.
The maps f and g are called homotopy inverses of each other.
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Homotopy preserves homologies

Theorem

Let G and H be two digraph maps.
(i)Let f, g : G→ H be two homotopic digraph maps, then these maps

induce the identical homomorphisms of homology groups of G and H,
that is: f∗ : Hp(G) → Hp(H) and g∗ : Hp(G) → Hp(H) are identical.

(ii) If the digraphs G and H are homotopy equivalent, then they have
isomorphic homology groups.
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Retraction

Let G be a digraph and H be its sub-digraph.
(i) A retraction of G onto H is a digraph map r : G→ H such that
r|H = idH .
(ii) A retraction r : G→ H is called a deformation retraction if
i ◦ r ≃ idG, where i : H → G is the natural inclusion map.

Corollary

Let r : G→ H be a retraction of a digraph G onto a sub-digraph H and
x

→
= r(x) for all x ∈ VG or r(x)

→
= x for all x ∈ VG. Then r is a

deformation retraction, the digraphs G and H are homotopy equivalent,
and i, r are their homotopy inverses.
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Examples

Consider the following digraph G and its sub-digraph H.

Define a retraction r : G→ H by r(0) = 1, r(2) = 3, r|H = id|H .
By corollary, r is a deformation retraction, whence, G ≃ H. And thus
H1(G,K) ∼= H1(H,K) ∼= K and Hp(H,K) = {0} for p ⩾ 2.
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Lemma

Let a be a vertex in a digraph G and b0, b1, b2, · · · , bn be all the
neighboring vertices of a in G. Assume that the following condition is
satisfied:

∀i = 1, · · · , n : a→ bi ⇒ b0 → bi,

∀j = 1, · · · , n : bj → a⇒ bj → b0.

The map r : G→ H given by r(a) = b0 and r|H = idH is a deformation
retraction, whence G ≃ H.
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Now consider homologies of a complicated digraph G.
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By the Lemma above, we can remove A,B and all their adjacent edges
without changing the homologies of G, and thus simplify the computation.
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Similarly, we can remove 6, 7, 8, 9 and all their adjacent edges.
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H1 H2

Hp(G,K) = Hp(H1,K)

{
= {0}, p = 1, p > 2.
∼= K, p = 2.

(1)
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Homotopy groups of digraphs

Based digraphs and based digraph maps

A based digraph G∗ is a digraph G with a fixed base vertex ∗ ∈ VG. A
based digraph map f : G∗ → H∗ is a digraph map f : G→ H such that
f(∗) = ∗.

Remark: A homotopy between two based digraph maps
f, g : G∗ → H∗ is defined as digraph maps with additional
requirement that F |{∗}⊡In = ∗.
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Construction of π0

Let G∗ be a based digraph, and V ∗
2 = {0, 1} be the based digraph

consisting of two vertices, no edges and with the base vertex 0 = ∗.
Hom(V ∗

2 , G
∗) is defined to be the set of based digraph maps from V ∗

2 to
G∗.

Two digraph maps ϕ, ψ ∈ Hom(V ∗
2 , G

∗) are equivalent if there exists
In ∈ I and a digraph map f : In → G such that f(0) = ϕ(1) and
f(n) = ψ(1).

And we denote by [ϕ] the equivalence class of the element ϕ, and by
π0(G

∗) the set of classes of equivalence with the base point ∗ given
by a class of equivalence of the trivial map V2 → ∗ ∈ G∗.
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Proposition

Any based digraph map f : G∗ → H∗ induces a map π0(f) : π0(G
∗)

→ π0(H
∗) of based sets. In particular, the homotopic maps induce the

same map of based sets.

Proof of sketch:

If x ∼ y in π0(G
∗), then π0(f)(x) ∼ π0(f)(y) in π0(H

∗).

If f ≃ g : G∗ → H∗, then π0(f) = π0(g).
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Construction of π1

Path-map

A path-map in a digraph G is any digraph map ϕ : In → G, where
In ∈ In. If ϕ : I∗n → G∗ satisfies ϕ(0) = ∗, it is then called a based
path-map.

Shrinking map

A digraph map h : In → Im is called shrinking map if h(0) = 0,
h(n) = m, and h(i) ⩽ h(j) whenever i ⩽ j.

Figure 1: Caption
Wenhui Yang Homotopy theory for digraphs January 5, 2024 25 / 32



Construction of π1

C-homotopy

Consider two based path-maps ϕ : I∗n → G∗ and ψ : I∗m → G∗. An
one-step C-homotopy from ϕ to ψ is given by a shrinking map
h : In → Im such that ϕ(i)

→
= ψ(h(i)) for all i ∈ In.
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Construction of π1

C-homotopic

Two based path-maps ϕ, ψ in a digraph G are called C-homotopic if there
exists a finite sequence {ϕk}mk=0 of based path-maps such that ϕ0 = ϕ,
ϕm = ψ, and for any k = 0, · · · ,m− 1 there exists an one-step
C-homotopy between ϕk and ϕk+1.

π1 of a digraph

Let π1(G
∗) be a set of equivalence classes under C-homotopy of based

loops of a diagraph G∗. The C-homotopy class of a based loop ϕ will be
denoted by [ϕ].
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Group Structure in π1

For two path-map ϕ : In → G and ψ : Im → G with ϕ(n) = ψ(0)
define the concatenation path-map ϕ ∨ ψ : Im+n → G by

(ϕ ∨ ψ)(i) =

{
ϕ(i), 0 ⩽ i ⩽ n.

ψ(i− n), n ⩽ i ⩽ n+m.
(2)

For any two loops ϕ : I∗n → G∗ and ψ : I∗m → G∗ define the product
of [ϕ] and [ψ] by [ϕ] · [ψ] = [ϕ ∨ ψ].

For a path-map ϕ : In → G define the inverse path-map ϕ̂ : În → G
by ϕ̂(i) = ϕ(n− i).

For any loop ϕ : I∗n → G∗ we have ϕ ∨ ϕ̂ C≃ e where e : I∗0 → G∗ is
the trivial loop.
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Theorem

Let G,H be digraphs.
(i) The set π1(G

∗) with the product and neutral element [e] is a group.
(ii) A based digraph map f : G∗ → H∗ induces a group homomorphism
π1(f) : π1(G

∗) → π1(H
∗), (π1(f))[ϕ] 7→ [f ◦ ϕ], which depends only on

homotopy class of f .
(iii) Let γ : I∗k → G∗ be a based path-map with γ(k) = v. Then γ induces
an isomorphism of fundamental groups γ# : π1(G

∗) → π1(G
v), which

depends only on C-homotopy class of the path-map γ.
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Relation between H1 and π1

Theorem

Let G,H be two connected digraphs. If G ≃ H then the fundamental
groups π1(G

∗) and π1(H
∗) are isomorphic.

Theorem

For any based connected digraph G∗ we have an isomorphism

π1(G
∗)/[π1(G

∗), π1(G
∗)] ∼= H1(G,Z),

where [π1(G
∗), π1(G

∗)] is a commutator subgroup.
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Some applications of digraphs

Sperner coloring.

Topological data analysis.

Wu, Shuang, et al. “The Metabolomic Physics of Complex Diseases.”
Proceedings of the National Academy of Sciences - PNAS,
https://doi.org/10.1073/pnas.2308496120.
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