Homotopy theory for digraphs

Wenhui Yang

January 5, 2024

Outline

(1) Homology theory for digraphs
(2) Homotopy theory for digraphs
(3) Some applications of digraphs

Basic definitions

Digraph

A digraph (which is also called directed graph) $G=(V, E)$ is a couple of a set V, whose elements are called vertices, and a subset $E \subset\{V \times V \backslash \operatorname{diag}\}$ of ordered pairs of vertices that are called edges or arrows. If $v, w \in V,(v, w) \in E$ is also denoted by $v \rightarrow w$.

Digroph

Not a digraph
(Quiver)

Digraph map

A morphism from $G=\left(V_{G}, E_{G}\right)$ to $H=\left(V_{H}, E_{H}\right)$ is a map $f: V_{G} \rightarrow V_{H}$ such that for any edge $v \rightarrow w$ on G we have $f(v) \xrightarrow{=} f(w)$ on H. (That is either $f(v) \rightarrow f(w)$ or $f(v)=f(w)$.) We will refer to such morphisms also as digraph maps and denote them by $f: G \rightarrow H$.

- The set of all digraphs with digraph maps form a category of digraphs that will be denoted by \mathcal{D}.

Elementary p-path

Let V be a finite set, for any $p \geqslant 0$, an elementary p-path is any ordered sequence i_{0}, \cdots, i_{p} of $p+1$ vertices of V denoted by $i_{0} \cdots i_{p}$ or $e_{i_{0} \cdots i_{p}}$.

- Fix a commutative ring \mathbb{K} with unity and denote by $\Lambda_{p}=\Lambda_{p}(v)=\Lambda(V, \mathbb{K})$ the free \mathbb{K}-module which consists of all formal \mathbb{K}-linear combinations of all elementary p-paths.
- Hence, each p-path has a form

$$
v=\sum_{i_{0}, \cdots, i_{p}} v^{i_{0}, \cdots, i_{p}} e_{i_{0} \cdots i_{p}}
$$

where $v^{i_{0}, \cdots, i_{p}} \in \mathbb{K}$.

Boundary operator

For any $p \geqslant 0$, the boundary operator $\partial: \Lambda_{p+1} \rightarrow \Lambda_{p}$ is defined by

$$
\partial v=\sum_{i_{0}, \cdots, i_{p}}\left(\sum_{k} \sum_{q=0}^{p+1}(-1)^{q} v^{i_{0} \cdots i_{q-1} k i_{q} \cdots i_{p}}\right) e_{i_{0} \cdots i_{p}},
$$

where $v=\sum_{i_{0}, \cdots, i_{p+1}} v^{i_{0}, \cdots, i_{p+1}} e_{i_{0} \cdots i_{p+1}}$.

- $\partial e_{j_{0} \cdots j_{p+1}}=\sum_{q=0}^{p+1}(-1)^{q} e_{j_{0} \cdots \hat{j}_{q} \cdots j_{p+1}}, \partial^{2} v=0$ for any $v \in \Lambda_{p}$.
- Set $\Lambda_{-1}=\{0\}$ and $\partial v=0$ for all $v \in \Lambda_{0}$ in case we need the operator $\partial: \Lambda_{0} \rightarrow \Lambda_{-1}$.
Hence, the family of \mathbb{K}-modules $\left\{\Lambda_{p}\right\}_{p \geqslant-1}$ with the boundary operator ∂ determine a chain complex denoted by $\Lambda_{*}(V)=\Lambda_{*}(V, \mathbb{K})$.

Regular path

An elementary p-path $e_{i_{0} \cdots i_{p}}$ on a set V is called regular if $i_{k} \neq i_{k+1}$ for all $k=0, \cdots, p-1$, and irregular otherwise.

- Let I_{P} be the submodule of Λ_{P} that is \mathbb{K}-spanned by irregular $e_{i_{0} \cdots i_{p}}$, and $\partial I_{p} \subset I_{p-1}$.
- Consider the quotient $\mathcal{R}_{p}:=\Lambda_{p} / I_{p}$, then the induced boundary operator $\partial: \mathcal{R}_{p} \rightarrow \mathcal{R}_{p-1}, p \geqslant 0$ is well-defined. Denote by $R_{*}(V)$ the obtained chain complex.

Allowed and ∂-invariant path

Let $G=(V, E)$ be a digraph. An elementary p-path $i_{0} \cdots i_{p}$ on V is called allowed if $i_{k} \rightarrow i_{k+1}$ for any $k=0, \cdots, p-1$, and non-allowed otherwise.

- Note that the modules \mathcal{A}_{p} are in general not invariant for ∂. So we consider the submodules $\Omega_{p}:=\left\{v \in \mathcal{A}_{p}, \partial v \in \mathcal{A}_{p-1}\right\}$, which are ∂-invariant.
- Hence, we obtain a chain complex $\Omega_{*}=\Omega_{*}(G, \mathbb{K})$:

$$
\cdots \xrightarrow{\partial} \Omega_{p} \xrightarrow{\partial} \Omega_{p-1} \xrightarrow{\partial} \cdots \xrightarrow{\partial} \Omega_{1} \xrightarrow{\partial} \Omega_{0} \xrightarrow{\partial} 0
$$

Homologies of a digraph

- Define for any $p \geqslant 0$ the homologies of the digraph G with coefficients from \mathbb{K} by

$$
\begin{gathered}
H_{P}(G, \mathbb{K})=H_{p}(G):=H_{p}\left(\Omega_{*}(G)\right)=\left.\operatorname{ker} \partial\right|_{\Omega_{p}} /\left.\operatorname{Im} \partial\right|_{\Omega_{p+1}} . \\
\cdots \xrightarrow{\partial} \Omega_{p} \xrightarrow{\partial} \Omega_{p-1} \xrightarrow{\partial} \cdots \xrightarrow{\partial} \Omega_{1} \xrightarrow{\partial} \Omega_{0} \xrightarrow{\partial} 0
\end{gathered}
$$

Examples

Example 1: Planar digraph with a nontrivial homology group H_{2}.

A direct computation:

$$
H_{1}(G, \mathbb{K})=\{0\}, H_{2}(G, \mathbb{K}) \cong \mathbb{K}
$$

Example 2: Cycle digraph $S_{n}(n \geqslant 3)$.

$H_{1}(G, \mathbb{K}) \cong \mathbb{K}$ if S_{n} contains neither triangle nor square below.

Triangle

Square

Homotopy theory for digraphs

Line digraph

A line digraph is a digraph whose vertices set is $\{0,1, \cdots, n\}$ and the set of edges contains exactly one of the edges $i \rightarrow(i+1),(i+1) \rightarrow i$ for any $i=0,1, \cdots n-1$, and no other edges.
Denote by \mathcal{I}_{n} the set of all line digraphs and \mathcal{I} the union of all \mathcal{I}_{n}.

Cartesian product

For two digraphs $G=\left(V_{G}, E_{G}\right)$ and $H=\left(V_{H}, E_{H}\right)$, define the Cartesian product $G \backsim H$ as a digraph with the set $V_{G} \times V_{H}$ and with the set of edges as follows: for $x, x^{\prime} \in V_{G}$ and $y, y^{\prime} \in V_{H}$, we have $(x, y) \rightarrow\left(x^{\prime}, y^{\prime}\right)$ in $G \boxtimes H$ iff either $x=x^{\prime}$ and $y \rightarrow y^{\prime}$, or $x \rightarrow x^{\prime}$ and $y=y^{\prime}$.

Homotopy theory for digraphs

Homotopy

Let G, H be two digraphs. Two digraph maps $f, g: G \rightarrow H$ are called homotopic if there exists a line digraph $I_{n} \in \mathcal{I}_{n}$ with $n>1$ and a digraph $\operatorname{map} F: G \unrhd I_{n} \rightarrow H$ such that $\left.F\right|_{G \boxminus\{0\}}=f$ and $\left.F\right|_{G \boxminus\{n\}}=g$. The map F is called a homotopy between f and g.

Homotopy equivalent

Two digraphs G and H are called homotopy equivalent if there exists digraph maps $f: G \rightarrow H, g: H \rightarrow G$ such that $f \circ g \simeq i d_{H}, g \circ f \simeq i d_{G}$. The maps f and g are called homotopy inverses of each other.

Homotopy preserves homologies

Theorem

Let G and H be two digraph maps.
(i)Let $f, g: G \rightarrow H$ be two homotopic digraph maps, then these maps induce the identical homomorphisms of homology groups of G and H, that is: $f_{*}: H_{p}(G) \rightarrow H_{p}(H)$ and $g_{*}: H_{p}(G) \rightarrow H_{p}(H)$ are identical.
(ii) If the digraphs G and H are homotopy equivalent, then they have isomorphic homology groups.

Retraction

Let G be a digraph and H be its sub-digraph.
(i) A retraction of G onto H is a digraph map $r: G \rightarrow H$ such that $\left.r\right|_{H}=i d_{H}$.
(ii) A retraction $r: G \rightarrow H$ is called a deformation retraction if $i \circ r \simeq i d_{G}$, where $i: H \rightarrow G$ is the natural inclusion map.

Corollary

Let $r: G \rightarrow H$ be a retraction of a digraph G onto a sub-digraph H and $x \stackrel{\rightharpoonup}{=} r(x)$ for all $x \in V_{G}$ or $r(x) \xrightarrow{\overrightarrow{=}} x$ for all $x \in V_{G}$. Then r is a deformation retraction, the digraphs G and H are homotopy equivalent, and i, r are their homotopy inverses.

Examples

Consider the following digraph G and its sub-digraph H.

Define a retraction $r: G \rightarrow H$ by $r(0)=1, r(2)=3,\left.r\right|_{H}=\left.i d\right|_{H}$. By corollary, r is a deformation retraction, whence, $G \simeq H$. And thus $H_{1}(G, \mathbb{K}) \cong H_{1}(H, \mathbb{K}) \cong \mathbb{K}$ and $H_{p}(H, \mathbb{K})=\{0\}$ for $p \geqslant 2$.

Lemma

Let a be a vertex in a digraph G and $b_{0}, b_{1}, b_{2}, \cdots, b_{n}$ be all the neighboring vertices of a in G. Assume that the following condition is satisfied:

$$
\begin{aligned}
& \forall i=1, \cdots, n: a \rightarrow b_{i} \Rightarrow b_{0} \rightarrow b_{i} \\
& \forall j=1, \cdots, n: b_{j} \rightarrow a \Rightarrow b_{j} \rightarrow b_{0}
\end{aligned}
$$

The map $r: G \rightarrow H$ given by $r(a)=b_{0}$ and $\left.r\right|_{H}=i d_{H}$ is a deformation retraction, whence $G \simeq H$.

Now consider homologies of a complicated digraph G.

By the Lemma above, we can remove A, B and all their adjacent edges without changing the homologies of G, and thus simplify the computation.

Similarly, we can remove $6,7,8,9$ and all their adjacent edges.

$$
\begin{gather*}
H_{1} \\
H_{p}(G, \mathbb{K})=H_{p}\left(H_{1}, \mathbb{K}\right)\left\{\begin{array}{l}
=\{0\}, p=1, p>2 \\
\cong \mathbb{K}, p=2
\end{array}\right.
\end{gather*}
$$

Homotopy groups of digraphs

Based digraphs and based digraph maps

A based digraph G^{*} is a digraph G with a fixed base vertex $* \in V_{G}$. A based digraph map $f: G^{*} \rightarrow H^{*}$ is a digraph map $f: G \rightarrow H$ such that $f(*)=*$.

- Remark: A homotopy between two based digraph maps $f, g: G^{*} \rightarrow H^{*}$ is defined as digraph maps with additional requirement that $\left.F\right|_{\{*\} \boxminus I_{n}}=*$.

Construction of π_{0}

Let G^{*} be a based digraph, and $V_{2}^{*}=\{0,1\}$ be the based digraph consisting of two vertices, no edges and with the base vertex $0=*$. $\operatorname{Hom}\left(V_{2}^{*}, G^{*}\right)$ is defined to be the set of based digraph maps from V_{2}^{*} to G^{*}.

- Two digraph maps $\phi, \psi \in \operatorname{Hom}\left(V_{2}^{*}, G^{*}\right)$ are equivalent if there exists $I_{n} \in \mathcal{I}$ and a digraph map $f: I_{n} \rightarrow G$ such that $f(0)=\phi(1)$ and $f(n)=\psi(1)$.
- And we denote by $[\phi]$ the equivalence class of the element ϕ, and by $\pi_{0}\left(G^{*}\right)$ the set of classes of equivalence with the base point $*$ given by a class of equivalence of the trivial map $V_{2} \rightarrow * \in G^{*}$.

Proposition

Any based digraph map $f: G^{*} \rightarrow H^{*}$ induces a map $\pi_{0}(f): \pi_{0}\left(G^{*}\right)$ $\rightarrow \pi_{0}\left(H^{*}\right)$ of based sets. In particular, the homotopic maps induce the same map of based sets.

Proof of sketch:

- If $x \sim y$ in $\pi_{0}\left(G^{*}\right)$, then $\pi_{0}(f)(x) \sim \pi_{0}(f)(y)$ in $\pi_{0}\left(H^{*}\right)$.
- If $f \simeq g: G^{*} \rightarrow H^{*}$, then $\pi_{0}(f)=\pi_{0}(g)$.

Construction of π_{1}

Path-map

A path-map in a digraph G is any digraph map $\phi: I_{n} \rightarrow G$, where $I_{n} \in \mathcal{I}_{n}$. If $\phi: I_{n}^{*} \rightarrow G^{*}$ satisfies $\phi(0)=*$, it is then called a based path-map.

Shrinking map

A digraph map $h: I_{n} \rightarrow I_{m}$ is called shrinking map if $h(0)=0$, $h(n)=m$, and $h(i) \leqslant h(j)$ whenever $i \leqslant j$.

Construction of π_{1}

C-homotopy

Consider two based path-maps $\phi: I_{n}^{*} \rightarrow G^{*}$ and $\psi: I_{m}^{*} \rightarrow G^{*}$. An one-step C-homotopy from ϕ to ψ is given by a shrinking map $h: I_{n} \rightarrow I_{m}$ such that $\phi(i) \xlongequal{\rightrightarrows} \psi(h(i))$ for all $i \in I_{n}$.

Construction of π_{1}

C-homotopic

Two based path-maps ϕ, ψ in a digraph G are called C-homotopic if there exists a finite sequence $\left\{\phi_{k}\right\}_{k=0}^{m}$ of based path-maps such that $\phi_{0}=\phi$, $\phi_{m}=\psi$, and for any $k=0, \cdots, m-1$ there exists an one-step C-homotopy between ϕ_{k} and ϕ_{k+1}.

π_{1} of a digraph

Let $\pi_{1}\left(G^{*}\right)$ be a set of equivalence classes under C-homotopy of based loops of a diagraph G^{*}. The C-homotopy class of a based loop ϕ will be denoted by $[\phi]$.

Group Structure in π_{1}

- For two path-map $\phi: I_{n} \rightarrow G$ and $\psi: I_{m} \rightarrow G$ with $\phi(n)=\psi(0)$ define the concatenation path-map $\phi \vee \psi: I_{m+n} \rightarrow G$ by

$$
(\phi \vee \psi)(i)=\left\{\begin{array}{rr}
\phi(i), & 0 \leqslant i \leqslant n \tag{2}\\
\psi(i-n), & n \leqslant i \leqslant n+m
\end{array}\right.
$$

For any two loops $\phi: I_{n}^{*} \rightarrow G^{*}$ and $\psi: I_{m}^{*} \rightarrow G^{*}$ define the product of $[\phi]$ and $[\psi]$ by $[\phi] \cdot[\psi]=[\phi \vee \psi]$.

- For a path-map $\phi: I_{n} \rightarrow G$ define the inverse path-map $\hat{\phi}: \hat{I}_{n} \rightarrow G$ by $\hat{\phi}(i)=\phi(n-i)$.
- For any loop $\phi: I_{n}^{*} \rightarrow G^{*}$ we have $\phi \vee \hat{\phi} \stackrel{C}{\simeq} e$ where $e: I_{0}^{*} \rightarrow G^{*}$ is the trivial loop.

Theorem

Let G, H be digraphs.
(i) The set $\pi_{1}\left(G^{*}\right)$ with the product and neutral element $[e]$ is a group. (ii) A based digraph map $f: G^{*} \rightarrow H^{*}$ induces a group homomorphism $\pi_{1}(f): \pi_{1}\left(G^{*}\right) \rightarrow \pi_{1}\left(H^{*}\right),\left(\pi_{1}(f)\right)[\phi] \mapsto[f \circ \phi]$, which depends only on homotopy class of f.
(iii) Let $\gamma: I_{k}^{*} \rightarrow G^{*}$ be a based path-map with $\gamma(k)=v$. Then γ induces an isomorphism of fundamental groups $\gamma_{\#}: \pi_{1}\left(G^{*}\right) \rightarrow \pi_{1}\left(G^{v}\right)$, which depends only on C-homotopy class of the path-map γ.

Relation between H_{1} and π_{1}

Theorem

Let G, H be two connected digraphs. If $G \simeq H$ then the fundamental groups $\pi_{1}\left(G^{*}\right)$ and $\pi_{1}\left(H^{*}\right)$ are isomorphic.

Theorem

For any based connected digraph G^{*} we have an isomorphism

$$
\pi_{1}\left(G^{*}\right) /\left[\pi_{1}\left(G^{*}\right), \pi_{1}\left(G^{*}\right)\right] \cong H_{1}(G, \mathbb{Z})
$$

where $\left[\pi_{1}\left(G^{*}\right), \pi_{1}\left(G^{*}\right)\right]$ is a commutator subgroup.

Some applications of digraphs

- Sperner coloring.
- Topological data analysis.

Wu, Shuang, et al. "The Metabolomic Physics of Complex Diseases."
Proceedings of the National Academy of Sciences - PNAS, https://doi.org/10.1073/pnas. 2308496120.

References

1. Grigorian, Alexander Lin, Yong Muranov, Yuri Yau, Shing-Tung. (2014). Homotopy Theory for Digraphs. Pure and Applied Mathematics Quarterly.
2.Jimenez, R Vershinin, V Muranov, Y. (2023). On Cubical Sets of Quivers and Digraphs. arXiv.2310.00634.
