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Formal Groups

Let R be a complete local ring with residue filed characteristic p > 0,
Cg denote the category of local Noetherian R-algebras. We define

Al(A) := Co(RIIH], A)

A commutative one-dimensional formal group over R is a functor
G:Cr — Ab
which is isomorphic to A",
O = Osx6 = O @ Og
Og is just R[X] and O ®@ Og is R[X] @& R[Y] = RIX, Y]

¢ : R[[X]] — R|IX,Y]]
X = fixY)
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Definition
Formal group law : F € R[x1, X2]

- F(x,0) = F(0,x) = x (Identity)
© F(x1,%2) = F(x2, %) (Commutativity)
« F(F(x1,X%2),X3) = F(xq, F(x2,X3)) (Associativity)
There exists a ring L and Fy (X, Y) € L[x, V]
{Formal Group Law over R} «— {L — R}

such that F(x,y) € R[[x,y] over R,

fK(FUmV(X7 y)) - F(X7 y)

L= 7[t,t
= Ty L2570
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Let f(x,y) € R[x, V]

1. If n = 0,we set [n](t) = 0.
2. If n > 0, we set [n](t) = f([n — 1](t), 1).

P-series p[t] is either 0 or equals At”" + O(tP"+") for some n > 0.
Definition
Let v, denote th coefficient of tP" in the p-series, f has height < n if

vi = 0 froi < n, f has height exactly n if it has height < n and v, is
invertible.

Examples

1. Formal multiplicative group f(x,y) = x +y + xy,
) =+t)" =1 1fp=0inR, then [p](t) = (1+t)P —1=1P,
so f has height 1.

2. Formal additive group f(x,y) = x4y, if p=0in R. Then
[p](t) = 0, so f has infinite height.
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Let E be cohomology theory. Then a complex orientation of E is a
choice x € E2(CP>) whcih restricts to 1 under the composite

E2(CP>) — E*(CP") = E*(S*) = E°(%)

E*(CP>) = E*(:)[t] = (mE)I[t]]
(mE)[[t]] & E*(CP™>) — E*(CP> x CP™) = (m.E)[[x, ¥]]
{complex oriented cohomology theoryE} — Gg = SpfE°(CP™).

MU is the universal complex oriented cohomology theory,
L =7, MU.

For E complex oriented, MU — E, induce L = 7,MU — m,E.
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The Landweber Exact Functor Theorem

If we already have a ring map L — R, can we construct a complex
oriented cohomology theory E such that R = 7,E?

E.(X) = MU, (X) ®x.mu R = MU, (X) @ R

Let M be a module over the Lazard ring L. Then M is flat over Mg if
and only if for every prime number p, the elements
Vo = p,Vq, Vo, -- € L form a regular sequence for M.
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Lubin-Tate Theory

Deformation of formal groups: Let G be a formal group over a
perfect field k with characteristic p, then a deformation of Gy to R is a
triple (G, i, V) satisfying

- Gis aformal group over R,

- Thereisamapi:k— R/m,

- There is an isomorphism W : 7*G = *Gg of formal groups over
R/m.

There is a universal formal group G over Ry = W(R)[[v1,- -+, vy —1]]
in the following sense: for every infinitesimal thickening A of k,
there is a bijection

}IOIn/k(RLT7 A) — Def(A)
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Morava E-theories and Morava K-theories

Using Landweber exact functor theorem, there is a even periodic
spectrum E(n)

mE(n) = WR)[va, -+, Vo] [B*]

Theorem (Goerss-Hopkins-Miller, 2004)
The spectrum E(n) admits a unique Eo.-ring structure.

M(k) denote the cofiber of the map szMU(p) — MU, given by the
multiplication by ty.

Let K(n) denote the smash product

MUG) v, " @mu, Q) M(R)-
k#pn—1
This spectrum K(n) is called Morava K-theory. The homotopy groups
of K(n) is
m.K(n) & (maMU())[Vi ']/ (to, tr, -+ tpn 2, tpn, - -+ ) = Fp [V ]
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Bousfield localization

Cr the collection of E-acyclic spectra. A spectrum is E-local if every
map for every Y € Cg, the map Y — X is nullhomotopic.

where Lg(X) is E-local. This functor is called Bousfield localization
with respect to E. The map X — Lg(X) is characterized up to
equivalence by two properties.

1. The spectrum Lg(X) is E-local.
2. The map X — Lg(X) is an E-equivalence.

* Lgn), behaves like restriction to the open substack
MFSGH C Mg X SpeCZ(p).

* Lk(ny, behaves like completion along the locally closed substack
M?G C Mg X SpeCZ(p)A
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Elliptic Cohomology

An elliptic cohomology consists of

1. An even periodic spectrum E .
2. An elliptic curve C over mgE.
3. ¢:Ge=(C

We denote this data as (E, C, ¢)

There is a sheaf Oy of Eoo-ring spectra over the stack My for the
étale topology. For any étale morphism f: Spec(R) — My, there is
a natural structure of elliptic spectrum (Oums(f), Cr, ¢), satisfying

m0Oms(f) = R, and Cy is a generalized elliptic curve over R classified
by f.

Tmf = Ogme(Mey — Mey), topological modular forms.
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Spectral Stacks

Definition

Let X be an co-topos, an spectrally ringed co-topos is a limit
preserving functor F : X — CAlg(Sp)

Let A be an E-ring, and M be an A-module. We will say that M is
étale if the following conditions holds

1. oM is étale over myA..
2. 7TnA ®7T0A 7TOM = 7TnM

Definition

A spectral Deligne-Mumford stack is a spectral ringed co-topos
X = (X, Ox) which locally likes SpétA, for an E., ring A.
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Spectral Schemes

Definition
A spectral scheme is a spectrally ringed space (X, Ox) which
satisfies the following conditions

1. (X, m0Ox) is an ordinary scheme.

2. m,Ox is quasi-coherent sheaf of mgOx module.

3. When U be an open subset of X, (U, (moOx)|u) is affine.
mn(Ox(U)) = (m,Ox)(U) is an isomorphism.
4. m,Ox vanishes when n < 0.

If the spectrally ringed space only satisfy the first three conditions,
then we call it a nonconnective spectral scheme.
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Spectral Varieties

Definition

A spectral variety X over an E..-ring R is @ nonconnective spectral
DM stack, such that 750X — SpetT>oR is proper, locally almost of
finite presentation, geometrically reduced and geometrically
connected.

- Abelian varieties over R : commutative monoidal objects of the
oo category Var(R).

- Strict abelian varieties over R : abelian group objects of the
oo-category Var(R).
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Formal Spectral Algebraic Geometry

Adic Ex-ring A - mpA is an | adic completion ordinary ring for | C moA.

For any finitely generated ideals | C mpA, I-completion functor
Moda — Mod), : M — M,

Definition
For an adic E..-ring A, define Spf(A) := (Shv", Oghygitc)

Definition

A formal spectral DM stack is a spectrally ringed co-topos

X = (X,0x) which admits a cover {U;}, such that each (Xjy,, Ox/u,)
is equivalent to SpfA; for some E,.-ring A;
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Spectral Formal Groups

A spectral formal hyperplane is a functor
CAlg, — S

is represented Spf(C¥) for some smooth coalgebra C.

Definition
A n-dimensional formal group over a connective E..-ring R is a

functor
G : CAlg, — Mody,

such that the composite
CAlgy — Mody — S

is represented Spf(C")for some n-dimensional smooth coalgebra C.
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Gy be a p-divisible group over Ry. A deformation of Gy along
pa A= Roisa pair (G,«), where G is a spectral p-divisible group
over Aand a: Go ~ p;G .

There exists a connective Ex-ring Rg, with a morphism p : Rg — Ro, and a
deformation G of Gy with the following properties:

6y is Noetherian, mo(p) : mo(Rg;) — Ro is surjective, and Ry is complete
with respect to the ideal ker(mo(p)).

For other pa : A — Ry . The extension of scalars induces an equivalence
of co-categories

Mapeyg,, (Re;,A) = Defeq (A, pa)-

We refer to Rg, as the spectral deformation ring of the p-divisible group Go.
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Definition

Let R be an E,.-ring and let X : CAlg.” ) — S. be a pointed formal
hyperplane over R. A preorientation of X is a map of pointed spaces

e:S* = X(m>0(R))

Definition

A preorientation of an 1-dimensional formal group G over a E,o-ring
Ris a map
e:S% = Q®G(t>0R)

of based spaces, where the based points goes to the identity of the
group structure.
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The dualizing line of an 1-dimensional formal group G is an
R-module defined by

wg 1= R ®OZ3 OG(—U)
For every preorientation e : S* — G(TZQR), there is an associated map
Be :wg — Y °R

called the Bott map.

Definition

An orientation of a formal group is a preorientation e whose the
Bott map is an equivalence.

Xuecai Ma Doctoral Dissertation Proposal 19 /35



Theorem (Lurie, 18)

let X be a 1-dimensional pointed formal hyperplane over R. Then
there exists an E.-ring Dx and e € Or(Xp,), such that for other
R’ € CAlgg, evaluation on e induces a homotopy equivalence

Mapcag, (Dx; R') — Or(Xgr).

We refer to Dy as the orientation classifer.
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Theorem (Lurie, 18)

let X be a 1-dimensional pointed formal hyperplane over R. Then
there exists an E.-ring Dx and e € Or(Xp,), such that for other
R’ € CAlgg, evaluation on e induces a homotopy equivalence

Mapc/_\lgR ('D)(7 Rl) — OI‘(XR/).
We refer to Dy as the orientation classifer.

Lemma

Let R be an even periodic E,.-ring, G be any formal group over R.
Then there is a canonical homotopy equivalence

PreG ~ Mapygr) (G, G)

Where G is the spectral Quillen formal group, whose 0-th
homotopy is the classical Quillen formal group.

The preorientation is an orientation if and only its image under the
above map is a equivalence of formal groups over R.
Doctoral Dissertation Proposal 20 /35
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Elliptic Cohomology Theory

Spectral elliptic curves : spectral abelian varieties of dimension one.
Strict elliptic curves : strict ableian varieties of dimensional one.

An oriented elliptic curves is a strict elliptic curve whose completion
along the identity section is an oriented formal group.

Theorem(Lurie, 2009-2018)
There exists a nonconnective spectral Deligne-Mumford stack Mg,
such that

Mapg,p (SpEtR, MZ) = EI”'(R)™

The elliptic spectrum has the E., structure, since the spectral stack
of oriented elliptic curve has the same underlying étale site with the
classical stack of elliptic curve.
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Topological Automorphic Forms

Let M7 denote the moduli stack of one dimensional height n
p-divisible group, then there is a sheaf of E..-ring space O on
the étale site, such that for any

E := O'P(SpecR % M3a)

we have
SpfmoECP™ = G°

where G° is the formal part of the p-divisible group G.

Models: A class of PEL Shimura stacks ( moduli stacks of abelian
varieties with the extra structure of Polarization, Endomorphisms,
and Level structure) which associated to a rational form of the
unitary group U(1, n-1)) can give a 1-dimensional p-divisible group
satisfying the conditions of this theorem.
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E.. structures of Morava E-theories

meE(n) = WR)[va, -+, V1] [BF"]

1. Go is a formal group over k, viewed as a identity component of a
connected p-divisible group Go.

2. There exists a universal deformation G, over the spectral
deformation ring R¢’.

3. Let GY, be the identity component of Gyp.
4. Let RY be an orientation classifier for Gg,,.

5. Eg, = L,RZ, is just the spectra of Morava E-theory. We refer to
this as the Lubin-Tate spectrum.



How to Lift a Complex Orientation
MU — E to an E,, Map
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Obstructions —H_.-maps

HooeC ——— = ( formal groups with descent data)

| |

homogeneous spectra ¢ ———— (formal groups)

The rule which associates a level structure
[:A—i*G(R)

to a map ¢f : SpfR — S given by the ring map 7o P4 o BB 5 R
and the isogeny
W/E G = G

is descent data for level structure on the formal group G over Sg.
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L is a line bundle over G. Given a subset | € {1,--- ,R}, 0/ : GE = G
defined by oy(ay, ..., ar) = Zig/q;.
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L is a line bundle over G. Given a subset | € {1,--- ,R}, 0/ : GE = G

defined by oy(ay, ..., ar) = Zig/q;.

We define a line bundle over GE by

@k(ﬂ) _ ® (E/)(_1)I/\

And set ©°(L) = L.
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L is a line bundle over G. Given a subset | € {1,--- ,R}, 0/ : GE = G
defined by oy(ay, ..., ar) = Zig/q;.

We define a line bundle over GE by

@k(ﬂ) _ ® (El)(_1)l/\

IC{1,....k}
And set ©°(L) = L.
°(L)a = La
L) = 2
ALy = ot
O (L)ape = Lo® Larp @ Late @ Lpyc

La®LpRL®R Lgipac
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2. s is symmetric,i.e, for each o € Xy, we have {,m:s = s.
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ay,...)®s(ao,as,...)"'® corresponds to 1.



Definition
A ©F structure on a line bundle £ over a group G is a trivialization s
of the line bundle ©*(£) such that

1. For R > 0, s is a rigid section.
2. s is symmetric,i.e, for each o € Xy, we have {,m:s = s.

3. The section s(aq,ay,...) ®s(ao + a1, 0, ...)~ " ® s(ag, ar +
ay,...)®s(ao,as,...)"'® corresponds to 1.

If g : MU(2R) — E is an orientation, then the composition
((CP=)")Y — MU(2R) — E

represents a rigid section s of ©%(/5(0))
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Definition
A ©F structure on a line bundle £ over a group G is a trivialization s
of the line bundle ©*(£) such that

1. For R > 0, s is a rigid section.
2. s is symmetric,i.e., for each o € X, we have {, ks = s.

3. The section s(aq,ay,...) ®s(ao + a1, 0, ...)~ " ® s(ag, ar +
ay,...)®s(ao,as,...)"'® corresponds to 1.

If g : MU(2R) — E is an orientation, then the composition
((CP=)")Y — MU(2R) — E
represents a rigid section s of ©%(/5(0))

Theorem
For 0 < kR < 3, the maps of ring spectra MU(2R) — E are in one to
one correspondence with ©F-structures on Z(0) over Ge.



Theorem (Ando-Hopkins-Strickland, 2004)

Let g : MU(2R) — E be a homotopy multiplicative map, s = sq4 be the

section of ©F(I5(0)) as before. If the map g is Ho, then for each
level structure

AL G,

the section s satisfy the identity

Nw(G/ES = (le)I*S

Xuecai Ma
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Theorem (Ando-Hopkins-Strickland, 2004)
Let g : MU(2R) — E be a homotopy multiplicative map, s = sq4 be the
section of ©F(I5(0)) as before. If the map g is Ho, then for each
level structure
AL G,
the section s satisfy the identity
N 415 = (¥F)i*s

And if k < 3, the converse is true.
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section of ©F(I5(0)) as before. If the map g is Ho, then for each
level structure

AL G,
the section s satisfy the identity
Nw(G/ES = (le)I*S

And if k < 3, the converse is true.

Using this theorem, they proved the o orientation of an elliptic
spectrum is an Ho, map.

Xuecai Ma

Doctoral Dissertation Proposal 27 /35



Theorem (Ando-Hopkins-Strickland, 2004)

Let g : MU(2R) — E be a homotopy multiplicative map, s = sq4 be the
section of ©F(I5(0)) as before. If the map g is Ho, then for each
level structure

AL G,
the section s satisfy the identity
Nw(G/ES = (le)I*S

And if k < 3, the converse is true.

Using this theorem, they proved the o orientation of an elliptic
spectrum is an Ha, map. Zhu (2020) proved that the map MU(0) — E
coming from a coordinate of SpfE°(C>) is a Hy, Map, since the map
satisfying the condition above, which is called norm coherence.
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Hopkins-Lawson obstruction theory (2018): There exists a diagram of
Eo.-ring spectra

S — MX; = MX; — MX3 — -+
such that the following hold:

1. lim MX, — MU is an equivalence.
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Obstructions to E..-maps

Hopkins-Lawson obstruction theory (2018): There exists a diagram of
Eo.-ring spectra

S — MX; = MX; — MX3 — -+

such that the following hold:

1. lim MX, — MU is an equivalence.
2. Mapg__ (MXy, E) ~ Or(E) for each Eoc-ring E.

3. Given m > 0 and an Ex-ring E, there is a pull back square

Mapy_ (MXm, E) ——> Map;_ (MXn_1, E)

l !

{*x} ———— Map, (Fm, Pic(E))
where Fp, is a certain pointed space.



4. MXy_1 — MXp, is a rational equivalence if m > 1, a p-local
equivalence if m is not a power of p, and a K(n)-local
equivalence if m > p".



4. MXy_1 — MXp, is a rational equivalence if m > 1, a p-local
equivalence if m is not a power of p, and a K(n)-local
equivalence if m > p".

5. Let E denote an E4, such that w.E is p-local and p-torsion free.
Then an E,.-map MX; — E extends to an E,, map MXp — E if and
only if the corresponding complex orientation of E satisfies the
Ando criterion.
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4. MXy_1 — MXp, is a rational equivalence if m > 1, a p-local
equivalence if m is not a power of p, and a K(n)-local
equivalence if m > p".

5. Let E denote an E4, such that w.E is p-local and p-torsion free.
Then an E,.-map MX; — E extends to an E,, map MXp — E if and
only if the corresponding complex orientation of E satisfies the
Ando criterion.

Theorem (Senger, 2022)

Let E denote a height < 2 Landweber exact E..-ring whose
homotopy groups is concentrated in even degrees. Then any
complex orientation MU — E which satisfies the Ando criterion lifts
uniquely up to homotopy to an E..-ring map MU — E.
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The proof of Senger’s theorem was based on E-cohomology of some
certain spaces.

We have the following pullback square.

E———IL&

|

Eq — (I, Ep)o
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The proof of Senger’s theorem was based on E-cohomology of some
certain spaces.

We have the following pullback square.
E——IL&
Eo — (I, E5)eo

Mapg_ (MU, R) =~ Or(R) for a rational E,.-ring R, and
mMapg_ (MU, R) = m0r(R) = 0, if R is concentrated in even degrees.
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The proof of Senger’s theorem was based on E-cohomology of some
certain spaces.

We have the following pullback square.

E———IL&

|

Eq — (I, Ep)o

Mapg_ (MU, R) =~ Or(R) for a rational E,.-ring R, and
mMapg_ (MU, R) = m0r(R) = 0, if R is concentrated in even degrees.

moMapE o (MU, R) —— moMapg__ (MU, Hp Ep) moOr(f) —— TK'OOY(HD EPA)

| I |

moOr(fg) ——— > TFQOI‘((HD Eﬁ)@) moOr(Eg) —> WOOT((Hﬂ E;\)Q)
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It suffices to lift the induced complex orientation of EQ.

Assume that E is p-complete. So we only need to prove

moMapg_ (MXy2, E) — moMapg_ (MXp, E)

is surjective.
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It suffices to lift the induced complex orientation of EQ.

Assume that E is p-complete. So we only need to prove
moMapg_ (MXy2, E) — moMapg_ (MXp, E)

is surjective.

There is a cofiber sequence.
Mapg_ (MX2, E) — Mapg_ (MXp, E) — Map,(Fp, Pic(E))
and a equivalence

Mapg_ (Fm, Pic(E)) ~ Hom(X*Fp,, pic(E)) ~ Hom(X*°Fp, XE).
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It suffices to lift the induced complex orientation of EQ.

Assume that E is p-complete. So we only need to prove
moMapg_ (MXy2, E) — moMapg_ (MXp, E)

is surjective.

There is a cofiber sequence.
Mapg_ (MX2, E) — Mapg_ (MXp, E) — Map,(Fp, Pic(E))
and a equivalence

Mapg_ (Fm, Pic(E)) ~ Hom(X*Fp,, pic(E)) ~ Hom(X*°Fp, XE).

It suffices to show that

EN(Z®Fr) ~0
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Lemma (Senger, 2022)
E2"(Fp) = E2"H1(Fp2) 22 0.
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Lemma (Senger, 2022)
E2"(Fp) = E2"H1(Fp2) 22 0.

Let L, denote the nerve of the poset of proper direct sum
decomposition of C", and (Lp,)¢ is its unreduced suspension.

[P & ((Lm)<> N Szm)hu(m).
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Our question is how to lift a complex orientation MU — E to an
E.-map ? Especially when E is a Morava E-theory.
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- What is the conceptional description of the complex orientation
in the context of spectral algebraic geometry? What is the

relation between the spectral Quillen formal group and level
structures?
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Our question is how to lift a complex orientation MU — E to an
E.-map ? Especially when E is a Morava E-theory.

- What is the conceptional description of the complex orientation
in the context of spectral algebraic geometry? What is the
relation between the spectral Quillen formal group and level
structures?

- The descent data of Hy,-spectrum only consider the level one
structures, what about the infinity level structures?

- Norm coherence condition in the context of spectral algebraic
geometry.



Thanks for Your Listening !




Questions and Answers !
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