### Methods of Homotopy Theory in Algebraic Geometry from the Viewpoint of Cohomology Operations

#### Tongtong Liang

#### Southern University of Science and Technology, China (SUSTech)

July 25, 2022

**Tongtong Liang** 

Southern University of Science and Technology, China (SUSTech)

イロト イロト イヨト イヨト

# Outline

#### 1 Background

- 2 Power operations in topology
- 3 Power operations in algebraic geometry
- 4 Questions for further investigation

Tongtong Liang

ৰ □ ► ৰ ঐ ► ৰ ৗ ► ৰ ৗ ► ব ৗ ► ব ৗ ► ব ৗ ► তিও Southern University of Science and Technology, China (SUSTech)

# Motivation: methods of homotopy theory

# the study of objects in geometry and topology methods of homotopy theory

the study of related homotopy classes

**Tongtong Liang** 

Southern University of Science and Technology, China (SUSTech)

イロト イボト イヨト イヨト

# Motivation: methods of homotopy theory

# the study of objects in geometry and topology

methods of homotopy theory capture sufficient geometric features

the study of related homotopy classes

Tongtong Liang

ৰ □ ► ৰ ঐ ► ৰ ৗ ► ৰ ৗ ► ব ৗ ► ব ৗ ► ব ৗ ► তিও Southern University of Science and Technology, China (SUSTech)

# Examples of methods of homotopy theory

#### Theorem (Steenrod 1951)

Let X be a paracompact space and G be a topological group, then

### $\mathcal{B}\mathrm{un}_G(X)\cong [X,BG]$

Tongtong Liang

Southern University of Science and Technology, China (SUSTech)

イロン イ団 と イヨン イヨン

э

# Examples of methods of homotopy theory

#### Theorem (Steenrod 1951)

Let X be a paracompact space and G be a topological group, then

 $\mathcal{B}\mathrm{un}_G(X)\cong [X,BG]$ 

#### Theorem (Thom 1954)

Let G be a subgroup of GL(F, k) for  $F = \mathbb{R}, \mathbb{C}$ , or  $\mathbb{H}$ . Let X be a manifold, then

{cobordism classes of G-submanifolds in X}  $\cong$  [X, MG]

**Tongtong Liang** 

Southern University of Science and Technology, China (SUSTech)

イロト イボト イヨト イヨト

3

# Motivation: computational tools

# the study of objects in geometry and topology

#### methods of homotopy theory capture sufficient geometric features

### the study of related homotopy classes

Tongtong Liang

Southern University of Science and Technology, China (SUSTech)

イロト イヨト イヨト イヨト

# Motivation: computational tools



**Tongtong Liang** 

Southern University of Science and Technology, China (SUSTech)

# Motivation: computational tools



**Tongtong Liang** 

Southern University of Science and Technology, China (SUSTech)

# How to process homotopy classes

(Multiplicative) cohomology theory  $E^*$ :  $X \mapsto E^*(X)$  a  $\mathbb{Z}$ -graded module (algebra). (contravariant functors)

$$[X, Y] \xrightarrow{E^*} \mathbf{Maps}(E^*Y, E^*X)$$
graded modules (algebras)

**Tongtong Liang** 

Southern University of Science and Technology, China (SUSTech)

・ロト ・四ト ・ヨト ・ヨト

# How to process homotopy classes

(Multiplicative) cohomology theory  $E^*$ :  $X \mapsto E^*(X)$  a  $\mathbb{Z}$ -graded module (algebra). (contravariant functors) Cohomology operation  $Q_n \colon E^* \to E^{*+n}$ . (natural transformations)

$$[X, Y] \xrightarrow{E^*} \mathbf{Maps}(E^*Y, E^*X)$$
  
graded modules (algebras)

Tongtong Liang

Southern University of Science and Technology, China (SUSTech)

イロン イ団 と イヨン イヨン

э

# How to process homotopy classes

(Multiplicative) cohomology theory  $E^*$ :  $X \mapsto E^*(X)$  a  $\mathbb{Z}$ -graded module (algebra). (contravariant functors) Cohomology operation  $Q_n \colon E^* \to E^{*+n}$ . (natural transformations) The graded algebra of cohomology operations  $E^*E$ .

$$[X, Y] \xrightarrow{E^*} \mathbf{Maps}(E^*Y, E^*X)$$
graded modules (algebras)

Tongtong Liang

Southern University of Science and Technology, China (SUSTech)

イロン イ団 と イヨン イヨン

# How to process homotopy classes

(Multiplicative) cohomology theory  $E^*$ :  $X \mapsto E^*(X)$  a  $\mathbb{Z}$ -graded module (algebra). (contravariant functors) Cohomology operation  $Q_n : E^* \to E^{*+n}$ . (natural transformations) The graded algebra of cohomology operations  $E^*E$ .

$$[X, Y] \xrightarrow{E^*} \mathsf{Maps}(E^*Y, E^*X) \xrightarrow{\text{finer structure}} \mathsf{Maps}(E^*Y, E^*X)$$
graded modules (algebras) graded  $E^*E$ -modules

compute it by homological methods!

Southern University of Science and Technology, China (SUSTech)

イロト イポト イヨト イヨト

э

**Tongtong Liang** 

Tongtong Liang

# Example: mod-2 ordinary cohomology theory

Let  $H\mathbb{Z}/2$  be the mod-2 ordinary cohomology theory.

#### Theorem (Steenrod 1950s)

There exists a unique sequence of cohomology operations  $Sq^i$  called **Steenrod squares** on  $H\mathbb{Z}/2$  such that

ৰ □ ৮ ৰ ঐ ৮ ৰ ছ ৮ ৰ ছ ৮ ৰ ছ ৮ ব Southern University of Science and Technology, China (SUSTech)

# Example: mod-2 ordinary cohomology theory

Let  $H\mathbb{Z}/2$  be the mod-2 ordinary cohomology theory.

#### Theorem (Steenrod 1950s)

There exists a unique sequence of cohomology operations  $Sq^i$  called **Steenrod squares** on  $H\mathbb{Z}/2$  such that

•  $Sq^i: H^n(X; \mathbb{Z}/2) \to H^{n+i}(X; \mathbb{Z}/2);$ 

Tongtong Liang

G → オ 日 → オ 日 → オ 目 → 目 → 目 → つ へ
 Southern University of Science and Technology, China (SUSTech)

# Example: mod-2 ordinary cohomology theory

Let  $H\mathbb{Z}/2$  be the mod-2 ordinary cohomology theory.

#### Theorem (Steenrod 1950s)

There exists a unique sequence of cohomology operations  $Sq^i$  called **Steenrod squares** on  $H\mathbb{Z}/2$  such that

• 
$$Sq^i: H^n(X; \mathbb{Z}/2) \to H^{n+i}(X; \mathbb{Z}/2);$$

•  $Sq^0 = id$  and  $Sq^1$  is the mod-2 Bockstein operation;

**Tongtong Liang** 

ৰ □ ► ৰ ঐ ► ৰ ৗ ► ৰ ৗ ► ব ৗ ► ব ৗ ► ব ৗ ► তিও Southern University of Science and Technology, China (SUSTech)

# Example: mod-2 ordinary cohomology theory

Let  $H\mathbb{Z}/2$  be the mod-2 ordinary cohomology theory.

#### Theorem (Steenrod 1950s)

There exists a unique sequence of cohomology operations  $Sq^i$  called **Steenrod squares** on  $H\mathbb{Z}/2$  such that

• 
$$Sq^i: H^n(X; \mathbb{Z}/2) \to H^{n+i}(X; \mathbb{Z}/2);$$

• 
$$Sq^{i}(u) = u^{2}$$
, if  $i = \dim u$ ;

**Tongtong Liang** 

Southern University of Science and Technology, China (SUSTech)

イロト イヨト イヨト イヨト

Tongtong Liang

Questions for further investigation 000000

# Example: mod-2 ordinary cohomology theory

Let  $H\mathbb{Z}/2$  be the mod-2 ordinary cohomology theory.

#### Theorem (Steenrod 1950s)

There exists a unique sequence of cohomology operations  $Sq^i$  called **Steenrod squares** on  $H\mathbb{Z}/2$  such that

• 
$$Sq^i: H^n(X; \mathbb{Z}/2) \to H^{n+i}(X; \mathbb{Z}/2);$$

• 
$$Sq^{i}(u) = u^{2}$$
, if  $i = \dim u$ ;

• 
$$Sq^{i}(u) = 0$$
, if  $i > \dim u$ ;

Southern University of Science and Technology, China (SUSTech)

イロト イヨト イヨト イヨト

# Example: mod-2 ordinary cohomology theory

Let  $H\mathbb{Z}/2$  be the mod-2 ordinary cohomology theory.

#### Theorem (Steenrod 1950s)

There exists a unique sequence of cohomology operations  $Sq^i$  called **Steenrod squares** on  $H\mathbb{Z}/2$  such that

• 
$$Sq^i: H^n(X; \mathbb{Z}/2) \rightarrow H^{n+i}(X; \mathbb{Z}/2);$$

• 
$$Sq^{i}(u) = u^{2}$$
, if  $i = \dim u$ ;

- $Sq^{i}(u) = 0$ , if  $i > \dim u$ ;
- Cartan's formula:  $Sq^{i}(uv) = \sum_{j=0}^{i} Sq^{j}(u) \cdot Sq^{i-j}(v)$ .

**Tongtong Liang** 

Southern University of Science and Technology, China (SUSTech)

< ロ > < 回 > < 回 > < 回 > < 回 >

# The mod-2 Steenrod algebra

Let  $\mathcal{A}_2^*:=H\mathbb{Z}/2^*H\mathbb{Z}/2$  and it is called the mod-2 Steenrod algebra.

Theorem (Adem 1952)

$$Sq^{a}Sq^{b} = \sum_{j=0}^{[a/2]} {b-1-j \choose a-2j} Sq^{a+b-j}Sq^{j}, \text{ if } 0 < a < 2b.$$

**Tongtong Liang** 

Southern University of Science and Technology, China (SUSTech)

イロン イ団 と イヨン イヨン

э

# The mod-2 Steenrod algebra

Let  $\mathcal{A}_2^*:=H\mathbb{Z}/2^*H\mathbb{Z}/2$  and it is called the mod-2 Steenrod algebra.

Theorem (Adem 1952)

$$Sq^{a}Sq^{b} = \sum_{j=0}^{\lfloor a/2 
floor} {b-1-j \choose a-2j} Sq^{a+b-j}Sq^{j}, \ \ \text{if} \ 0 < a < 2b.$$

#### Theorem (Serre 1953)

 $\{Sq^{I} \mid all \text{ 2-admissible sequences } I\}$  is a  $\mathbb{Z}/2$ -basis of  $\mathcal{A}_{2}^{*}$  and Adem relations determines the all the relations.

Tongtong Liang

Southern University of Science and Technology, China (SUSTech)

イロト イボト イヨト イヨト

Tongtong Liang

Questions for further investigation

# Example: mod-p ordinary cohomology theory for odd prime p

#### Theorem (Steenrod 1962)

There exists a unique sequence of cohomology operations  $P_p^i$  called **mod**-p **power operations** on  $H\mathbb{Z}/p$  such that

Southern University of Science and Technology, China (SUSTech)

Tongtong Liang

# Example: mod-p ordinary cohomology theory for odd prime p

#### Theorem (Steenrod 1962)

There exists a unique sequence of cohomology operations  $P'_{n}$  called **mod**-*p* **power operations** on  $H\mathbb{Z}/p$  such that

 $P_p^i: H^n(-;\mathbb{Z}/p) \to H^{n+2i(p-1)}(-;\mathbb{Z}/p);$ 

Southern University of Science and Technology, China (SUSTech)

イロト イポト イヨト イヨト

# Example: mod-p ordinary cohomology theory for odd prime p

#### Theorem (Steenrod 1962)

There exists a unique sequence of cohomology operations  $P_n^i$  called **mod**-*p* **power operations** on  $H\mathbb{Z}/p$  such that

$$P_p^i: H^n(-; \mathbb{Z}/p) \to H^{n+2i(p-1)}(-; \mathbb{Z}/p);$$
$$P_p^0 = \mathrm{id};$$

Tongtong Liang

イロト イポト イヨト イヨト Southern University of Science and Technology, China (SUSTech)

Tongtong Liang

# Example: mod-p ordinary cohomology theory for odd prime p

#### Theorem (Steenrod <u>1962)</u>

There exists a unique sequence of cohomology operations  $P_n^i$  called **mod**-*p* **power operations** on  $H\mathbb{Z}/p$  such that

$$P_{p}^{i}: H^{n}(-; \mathbb{Z}/p) \to H^{n+2i(p-1)}(-; \mathbb{Z}/p);$$

$$P_p^0 = \mathrm{id};$$

• 
$$P_p^i(u) = u^p \text{ if } 2i = \dim u;$$

Southern University of Science and Technology, China (SUSTech)

イロト イボト イヨト イヨト

# Example: mod-p ordinary cohomology theory for odd prime p

#### Theorem (Steenrod 1962)

There exists a unique sequence of cohomology operations  $P_p^i$  called **mod**-p **power operations** on  $H\mathbb{Z}/p$  such that

$$\bullet P_p^0 = \mathrm{id};$$

Tongtong Liang

$$P_p^i(u) = u^p \text{ if } 2i = \dim u;$$

• 
$$P_p^i(u) = 0$$
, if  $2i > \dim u$ ;

Southern University of Science and Technology, China (SUSTech)

イロト イボト イヨト イヨト

# Example: mod-p ordinary cohomology theory for odd prime p

#### Theorem (Steenrod 1962)

There exists a unique sequence of cohomology operations  $P_p^i$  called **mod**-p **power operations** on  $H\mathbb{Z}/p$  such that

 $P_p^i: H^n(-;\mathbb{Z}/p) \to H^{n+2i(p-1)}(-;\mathbb{Z}/p);$ 

$$\bullet P_p^0 = \mathrm{id};$$

• 
$$P_p^i(u) = u^p$$
 if  $2i = \dim u$ ;

• 
$$P_p^i(u) = 0$$
, if  $2i > \dim u$ ;

• Cartan's formula:  $P_p^i(uv) = \sum_{j+k=i} P_p^j(u) P^k(v)$ .

Tongtong Liang

Southern University of Science and Technology, China (SUSTech)

イロト イボト イヨト イヨト

# Adem relations in mod-p ordinary cohomology theory

Let  $\beta$  be the mod-*p* Bockstein operations. If a < pb, then

$$P_{p}^{a}P_{p}^{b} = \sum_{j=0}^{[a/p]} {\binom{(p-1)(b-j)-1}{a-pj}} P_{p}^{a+b-j}P_{p}^{j}$$

if  $a \leq b$ , then

$$P_{p}^{a}\beta P_{p}^{b} = \sum_{j=0}^{[a/p]} \binom{(p-1)(b-j)-1}{a-pj} \beta P_{p}^{a+b-j} P_{p}^{j} + \sum_{j=0}^{[(a-1)/p]} (-1)^{a+j-1} \binom{(p-1)(b-j)-1}{a-pj-1} \beta P_{p}^{a+b-j} P_{p}^{j}$$

**Tongtong Liang** 

Southern University of Science and Technology, China (SUSTech)

イロト イロト イヨト イヨト

# The mod-*p* Steenrod algebra

**The mod**-*p* **Steenrod operation**  $St_p^i$  is defiend as

$$St^i_p = egin{cases} P^k_p, & i=2k(p-1)\ eta P^k_p, & i=2k(p-1)+1\ eta P^k_p, & i=2k(p-1)+1\ 0, & ext{otherwise.} \end{cases}$$

#### Theorem (Cartan-Serre 1950s)

 $\{St_p^I \mid all \ p-admissible \ sequences \ I\}$  is a  $\mathbb{Z}/p$ -basis of  $\mathcal{A}_p^*$  and Adem relations determines the all the relations.

Tongtong Liang

Southern University of Science and Technology, China (SUSTech)

イロン イ団 と イヨン イヨン

Power operations in algebraic geometry

Questions for further investigation

# Applications of the Steenrod operations

#### Theorem (Borel-Serre 1953)

If n > 3, then  $S^{2n}$  does not admit an almost complex structure.

Tongtong Liang

Southern University of Science and Technology, China (SUSTech)

イロン イヨン イヨン

# Applications of the Steenrod operations

#### Theorem (Borel-Serre 1953)

If n > 3, then  $S^{2n}$  does not admit an almost complex structure.

#### Theorem (Thom 1954)

Any mod-2 homology class of a finite complex K can be realized as a manifold. For any integral homology class y of K, there exists N such that Ny can be realized as an oriented manifold.

**Tongtong Liang** 

Southern University of Science and Technology, China (SUSTech)

イロト イロト イヨト イヨト

# The classical Adams spectral sequences

#### Theorem (Adams 1958)

Given spaces or spectra X and Y, there exists a cohomological spectral sequence  $\{E_*^{*,*}\}$  called Adams spectral sequence such that

$$E_2^{s,t} = \operatorname{Ext}_{\mathcal{A}_p^s}^{s,t}(H\mathbb{Z}/p^*Y, H\mathbb{Z}/p^*X) \Rightarrow ([X,Y]_{t-s})_p^{\wedge}$$

where  $([X, Y]_{t-s})_p^{\wedge}$  is the p-completion of the group of stable homotopy classes  $\operatorname{colim}_n[\Sigma^{n+t-s}X, \Sigma^nY]$ .

If we let X, Y be points, then it converges to the *p*-completion of the stable homotopy group of spheres.

Tongtong Liang

Southern University of Science and Technology, China (SUSTech)

イロン イ団 と イヨン イヨン

э

$$\begin{array}{ccc} H^n(X) & \xrightarrow{\mathcal{P}^d} & H^{nd}_{\Sigma_d}(X^d) \xrightarrow{\Delta^*} H^{nd}(B\Sigma_d \times X) \\ [u] & [u^d]_{\Sigma_d} \\ \textit{n-cocycle class} & \Sigma_d\text{-equivariant } \textit{nd-cocycle class} \end{array}$$

where  $\mathcal{P}^d$  is called the *d*-external power operation and  $\Delta^* \mathcal{P}^d$  is called the *d*-total power operation.

**Tongtong Liang** 

Southern University of Science and Technology, China (SUSTech)

イロト イボト イヨト イヨト

$$\begin{array}{ccc} H^n(X) & \xrightarrow{\mathcal{P}^d} & H^{nd}_{\Sigma_d}(X^d) \xrightarrow{\Delta^*} H^{nd}(B\Sigma_d \times X) \\ [u] & [u^d]_{\Sigma_d} \\ \textit{n-cocycle class} & \Sigma_d\text{-equivariant } \textit{nd-cocycle class} \end{array}$$

where  $\mathcal{P}^d$  is called **the** *d*-external power operation and  $\Delta^* \mathcal{P}^d$  is called the *d*-total power operation.

Tongtong Liang

Southern University of Science and Technology, China (SUSTech)

イロト イボト イヨト イヨト

$$\begin{array}{ccc} H^n(X) & \xrightarrow{\mathcal{P}^d} & H^{nd}_{\Sigma_d}(X^d) \xrightarrow{\Delta^*} & H^{nd}(B\Sigma_d \times X) \\ [u] & & [u^d]_{\Sigma_d} \\ n\text{-cocycle class} & & \Sigma_d\text{-equivariant } nd\text{-cocycle class} \end{array}$$

where  $\mathcal{P}^d$  is called **the** *d*-external power operation and  $\Delta^* \mathcal{P}^d$  is called **the** *d*-total power operation. Given  $\alpha \in H_i(B\Sigma_d)$ , then we have the cohomology operation derived from  $\alpha$  is  $[u] \mapsto \Delta^* \mathcal{P}^d([u]) \cap \alpha \in H^{nd-i}(X)$ .

**Tongtong Liang** 

Southern University of Science and Technology, China (SUSTech)

イロト イポト イヨト イヨト

$$\begin{array}{ccc} H^{n}(X) & \xrightarrow{\mathcal{P}^{d}} & H^{nd}_{\Sigma_{d}}(X^{d}) \xrightarrow{\Delta^{*}} & H^{nd}(B\Sigma_{d} \times X) \\ [u] & & [u^{d}]_{\Sigma_{d}} \\ \textit{n-cocycle class} & & \Sigma_{d}\text{-equivariant } \textit{nd-cocycle class} \end{array}$$

where  $\mathcal{P}^d$  is called the *d*-external power operation and  $\Delta^* \mathcal{P}^d$  is called the *d*-total power operation. Given  $\alpha \in H_i(B\Sigma_d)$ , then we have the cohomology operation derived from  $\alpha$  is  $[u] \mapsto \Delta^* \mathcal{P}^d([u]) \cap \alpha \in H^{nd-i}(X)$ . If we replace  $\Sigma_d$  by  $\mathbb{Z}/p$  and let i = p, then we get mod-*p* power operations.

**Tongtong Liang** 

Southern University of Science and Technology, China (SUSTech)

イロト イポト イヨト イヨト
### Outline

**Tongtong Liang** 

### 1 Background

- 2 Power operations in topology
- 3 Power operations in algebraic geometry
- 4 Questions for further investigation

Southern University of Science and Technology, China (SUSTech)

< ロ > < 回 > < 回 > < 回 > < 回 >

# Generalized cohomology theories and spectra

### Definition (Spectra)

A spectrum  $E = \{E_n, \varepsilon_n\}_{n \in \mathbb{Z}}$  is a sequence of pointed topological spaces  $E_n$  with basepoint-preserving maps  $\varepsilon_n \colon \Sigma E_n \to E_{n+1}$ . If  $\varepsilon_n \colon E_n \to \Omega E_{n+1}$  is a weak homotopy equivalence, it is called an  $\Omega$ -spectrum.

Tongtong Liang

Southern University of Science and Technology, China (SUSTech)

イロン イヨン イヨン ・

# Generalized cohomology theories and spectra

### Definition (Spectra)

A spectrum  $E = \{E_n, \varepsilon_n\}_{n \in \mathbb{Z}}$  is a sequence of pointed topological spaces  $E_n$  with basepoint-preserving maps  $\varepsilon_n \colon \Sigma E_n \to E_{n+1}$ . If  $\varepsilon_n \colon E_n \to \Omega E_{n+1}$  is a weak homotopy equivalence, it is called an  $\Omega$ -spectrum.

### Theorem (Brown 1962)

Each generalized cohomology theory  $h^*$  is represented by an  $\Omega$ -spectrum  $E_n$  such that  $h^n(X) \cong [X, E_n]$ .

**Tongtong Liang** 

Southern University of Science and Technology, China (SUSTech)

イロン 人間 とくほとう ほう

# Generalized cohomology theories and spectra

### Definition (Spectra)

A spectrum  $E = \{E_n, \varepsilon_n\}_{n \in \mathbb{Z}}$  is a sequence of pointed topological spaces  $E_n$  with basepoint-preserving maps  $\varepsilon_n \colon \Sigma E_n \to E_{n+1}$ . If  $\varepsilon_n \colon E_n \to \Omega E_{n+1}$  is a weak homotopy equivalence, it is called an  $\Omega$ -spectrum.

### Theorem (Brown 1962)

Each generalized cohomology theory  $h^*$  is represented by an  $\Omega$ -spectrum  $E_n$  such that  $h^n(X) \cong [X, E_n]$ .

#### Example

$$H^n(X; A) = [X, K(A, n)].$$
 In particular,  $(H\mathbb{Z}/p)_n := K(\mathbb{Z}/p, n).$ 

**Tongtong Liang** 

Southern University of Science and Technology, China (SUSTech)

## Generalized cohomology theories and spectra

#### Definition

A morphism  $f: E \to F$  between spectra consists of  $\{f_n: E_n \to F_n\}$ compatible with  $\Sigma$  and  $\varepsilon_n$ . Given a based space X and a spectrum E,  $(E \land X)_n := E_n \land X$ . We say  $f \simeq g: E \to F$  if there exists a map  $h: E \land I_+ \to F$  such that  $f = h_0$  and  $g = h_1$ .

the stable homotopy classes:  $[E, F]^n := [E, \Sigma^n F]$ . the associated generalized cohomology:  $E^*(X) := [\Sigma^{\infty} X, E]^*$ . the associated generalized homology:  $E_*(X) := [\Sigma^{\infty} S^0, E \wedge X]^*$ .

**Tongtong Liang** 

Southern University of Science and Technology, China (SUSTech)

## The stable homotopy categories

The essence is "inverting"  $S^1$  with respect to  $\wedge$  by stablizing it.

#### Theorem

There exists a closed symmetric monoidal category of spectra such that the sphere spectrum  $\mathbb{S}$  is a unit.

Tongtong Liang

G → オ 日 → オ 日 → オ 目 → 目 → 目 → つ へ
 Southern University of Science and Technology, China (SUSTech)

# The stable homotopy categories

### The essence is "inverting" $S^1$ with respect to $\wedge$ by stablizing it.

#### Theorem

There exists a closed symmetric monoidal category of spectra such that the sphere spectrum  $\mathbb{S}$  is a unit.

### The construction of such categories is very complicated!

**Tongtong Liang** 

ব াচ ব টা ৮ ব টা ৮ ব টা ৮ ব টা ৮ টা তি ৭ Southern University of Science and Technology, China (SUSTech)

# The stable homotopy categories

The essence is "inverting"  $S^1$  with respect to  $\wedge$  by stablizing it.

#### Theorem

There exists a closed symmetric monoidal category of spectra such that the sphere spectrum S is a unit.

### The construction of such categories is very complicated!

There are three popular constructions, we choose the category of  $\mathbb{S}$ -modules (EKMM) in this presentation.

**Tongtong Liang** 

Southern University of Science and Technology, China (SUSTech)

イロト イボト イヨト イヨト

# The algebra of cohomology operations

### Proposition

By Yoneda lemma and Brown's representability theorem, the algebra of cohomology operations on E is  $E^*E := [E, E]^*$ , the stable homotopy classes from  $E^*$  to itself.

In particular,  $\mathcal{A}_p^* = H\mathbb{Z}/p^*H\mathbb{Z}/p$ .

Tongtong Liang

Southern University of Science and Technology, China (SUSTech)

イロン 人間 とくほとう ほう

э

# The algebra of cohomology operations

### Proposition

By Yoneda lemma and Brown's representability theorem, the algebra of cohomology operations on E is  $E^*E := [E, E]^*$ , the stable homotopy classes from  $E^*$  to itself.

In particular,  $\mathcal{A}_p^* = H\mathbb{Z}/p^*H\mathbb{Z}/p$ .

#### Question

Given a ring spectrum E, how to determine power operations on E?

**Tongtong Liang** 

Southern University of Science and Technology, China (SUSTech)

イロン 人間 とくほとう ほう

э

# Extended powers and $H_{\infty}$ -structures

Given an S-module *E*, the *j*th **extended power** of *E* is defined to be  $D_j E = (E\Sigma_j)_+ \wedge E^j) / \Sigma_j$ .

#### Definition

An  $H_{\infty}$ -ring spectrum is a S-module M together with  $\xi_j: D_j M \to M$  for  $j \ge 0$  satisfying some homotopy coherence conditions.

Tongtong Liang

Southern University of Science and Technology, China (SUSTech)

イロン 人間 とくほとう ほう

э

# Extended powers and $H_{\infty}$ -structures

Given an S-module *E*, the *j*th **extended power** of *E* is defined to be  $D_j E = (E\Sigma_j)_+ \wedge E^j) / \Sigma_j$ .

#### Definition

An  $H_{\infty}$ -ring spectrum is a S-module M together with  $\xi_j: D_j M \to M$  for  $j \ge 0$  satisfying some homotopy coherence conditions.

#### Example

HR, KU and MU are  $H_{\infty}$ -ring spectra.

Tongtong Liang

Southern University of Science and Technology, China (SUSTech)

イロン 人間 とくほとう ほう

э

### $H_{\infty}$ -structures give rise to power operations

Let *E* be an  $H_{\infty}$ -ring spectrum.



Then we can derive power operations from  $E_*(B\Sigma_i)$ .

**Tongtong Liang** 

Southern University of Science and Technology, China (SUSTech)

< □ > < □ > < 三 > < 三 > < 三 > ○ < ○

## The generalized Adams spectral sequences

#### Theorem (Adams spectral sequences)

Given spaces or spectra X and Y and a cohomology theory  $E^*$ , there exists a cohomological spectral sequence  $\{E_*^{*,*}\}$  such that

$$E_2^{s,t} = \operatorname{Ext}_{E^*E}^{s,t}(E^*Y, E^*X) \Rightarrow [X, Y]_{t-s}^E$$

where  $[X, Y]_{t-s}^{E}$  is the set of stable homotopy classes from X to Y in an E-localization shifting t - s.

If E is an  $H_{\infty}$ -ring spectra, then the induced power operations appear in the  $E_2$ -page.

Tongtong Liang

Southern University of Science and Technology, China (SUSTech)

・ロト ・四ト ・ヨト ・ヨト

### Outline

### 1 Background

2 Power operations in topology

### 3 Power operations in algebraic geometry

4 Questions for further investigation

Tongtong Liang

Southern University of Science and Technology, China (SUSTech)

< ロ > < 回 > < 回 > < 回 > < 回 >

# The construction of motivic homotopy theory

### Construction (Morel-Voevodsky 1990s)

Let S be a qcqs Noetherian scheme of finite dimension and let Sm/S be the category of smooth schemes of finite type over S. Let  $\Delta^{op}Shv_{Nis}(Sm/S)$  be the category of Nisnevich sheaves of simplicial sets with projective model structure. The unstable motivic homotopy cateogory is

$$\mathcal{H}(S) := L_{\mathbb{A}^1} \Delta^{op} \mathbf{Shv}_{Nis}(\mathrm{Sm}/S)$$

where  $L_{\mathbb{A}^1}$  is the Bousfield localization with respect to the class generated by natural projections  $X \times_S \mathbb{A}^1 \to X$  for all  $X \in \mathrm{Sm}/S$ .

**Tongtong Liang** 

Southern University of Science and Technology, China (SUSTech)

イロト イボト イヨト イヨト

# Spheres in motivic homotopy category

### Definition (Spheres in motivic homotopy category)

Simplicial circle  $S_s^1$  (or denote it  $S^{1,0}$ ): the constant sheaf valued at the  $\Delta^1/\partial\Delta^1$ . Tate circle  $S_t^1$  (or denote it  $S^{1,1}$ ): the sheaf represented by  $\mathbb{G}_m$ . Given a, b two non-negative integers with  $a \ge b$ , the bigraded motivic sphere  $S^{a,b} := (S_t^1)^{\wedge b} \wedge (S_s^1)^{\wedge a-b}$ .

Tongtong Liang

Southern University of Science and Technology, China (SUSTech)

イロン イロン イヨン イヨン

э

# Spheres in motivic homotopy category

#### Definition (Spheres in motivic homotopy category)

Simplicial circle  $S_s^1$  (or denote it  $S^{1,0}$ ): the constant sheaf valued at the  $\Delta^1/\partial\Delta^1$ . Tate circle  $S_t^1$  (or denote it  $S^{1,1}$ ): the sheaf represented by  $\mathbb{G}_m$ . Given a, b two non-negative integers with  $a \ge b$ , the bigraded motivic sphere  $S^{a,b} := (S_t^1)^{\wedge b} \wedge (S_s^1)^{\wedge a-b}$ .

#### Proposition

$$S^{2n,n}\simeq \mathbb{P}^n/\mathbb{P}^{n-1}\simeq \mathbb{A}^n/(\mathbb{A}^n-0)$$

**Tongtong Liang** 

Southern University of Science and Technology, China (SUSTech)

イロト イヨト イヨト イヨト

3

## The motivic stable homotopy category

#### Construction

Recall that we obtain classical stable homotopy category by "inverting" the circle  $S^1$  from h(Spaces), we obtain motivic stable homotopy category SH(S) over S by "inverting"  $\mathbb{P}^1 \simeq S_t^1 \wedge S_s^1$  from H(S), whose objects are called motivc spectra.

Tongtong Liang

Southern University of Science and Technology, China (SUSTech)

イロン 人間 とくほとう ほう

# The motivic stable homotopy category

#### Construction

Recall that we obtain classical stable homotopy category by "inverting" the circle  $S^1$  from h(Spaces), we obtain motivic stable homotopy category SH(S) over S by "inverting"  $\mathbb{P}^1 \simeq S^1_t \wedge S^1_s$  from  $\mathcal{H}(S)$ , whose objects are called motivc spectra.

| cohomology theory   | classical spectrum | motivic spectrum    |
|---------------------|--------------------|---------------------|
| singular cohomology | $H\mathbb{Z}$      | $H\mathbb{Z}_{mot}$ |
| K-theory            | KU                 | KGL                 |
| cobordism theory    | MU                 | MGL                 |

Table: Cohomology theories and spectra in classical setting and motivic setting

Tongtong Liang

Southern University of Science and Technology, China (SUSTech)

イロン 人間 とくほとう ほう

# How motivic homotopy theory captures arithmetic data

### Theorem (Morel 2004)

If k is a perfect field (with  $chark \neq 2$ ), then we have an isomorphism between graded rings

 $K^{MW}_*(k)\cong [S^0,S^1_t]_{\mathbb{P}^1}$ 

Tongtong Liang

Southern University of Science and Technology, China (SUSTech)

イロン イヨン イヨン イヨン

# How motivic homotopy theory captures arithmetic data

### Theorem (Morel 2004)

If k is a perfect field (with  $chark \neq 2$ ), then we have an isomorphism between graded rings

 $K^{MW}_*(k)\cong [S^0,S^1_t]_{\mathbb{P}^1}$ 

#### Theorem (Morel 2004)

If k is a perfect field (with  $chark \neq 2$ ), then we have an isomorphism between rings

$$GW(k)\cong [S^0,S^0]_{\mathbb{P}^1}$$

**Tongtong Liang** 

Southern University of Science and Technology, China (SUSTech)

## The motivic Steenrod operations

#### Theorem (Voevodsky 2003)

There exists  $P_{\ell}^{i} \colon H^{*,*}(X; \mathbb{Z}/\ell) \to H^{*+2i(\ell-1),*+i(\ell-1)}(X; \mathbb{Z}/\ell)$  and  $B_{\ell}^{i} \colon H^{*,*}(X; \mathbb{Z}/\ell) \to H^{*+2i(\ell-1)+1,*+i(\ell-1)}(X; \mathbb{Z}/\ell)$  such that

**Tongtong Liang** 

Southern University of Science and Technology, China (SUSTech)

## The motivic Steenrod operations

### Theorem (Voevodsky 2003)

There exists 
$$P_{\ell}^{i}$$
:  $H^{*,*}(X; \mathbb{Z}/\ell) \rightarrow H^{*+2i(\ell-1),*+i(\ell-1)}(X; \mathbb{Z}/\ell)$  and  
 $B_{\ell}^{i}$ :  $H^{*,*}(X; \mathbb{Z}/\ell) \rightarrow H^{*+2i(\ell-1)+1,*+i(\ell-1)}(X; \mathbb{Z}/\ell)$  such that  
 $\mathbb{I} P_{\ell}^{0} = \text{id}$  and  $P_{\ell}^{n}(u) = u^{n}$  if  $u \in H^{2n,n}$ ;

**Tongtong Liang** 

Southern University of Science and Technology, China (SUSTech)

## The motivic Steenrod operations

### Theorem (Voevodsky 2003)

There exists 
$$P_{\ell}^{i}: H^{*,*}(X; \mathbb{Z}/\ell) \to H^{*+2i(\ell-1),*+i(\ell-1)}(X; \mathbb{Z}/\ell)$$
 and  
 $B_{\ell}^{i}: H^{*,*}(X; \mathbb{Z}/\ell) \to H^{*+2i(\ell-1)+1,*+i(\ell-1)}(X; \mathbb{Z}/\ell)$  such that  
1  $P_{\ell}^{0} = \text{id}$  and  $P_{\ell}^{n}(u) = u^{n}$  if  $u \in H^{2n,n}$ ;  
2 Cartan formula: if  $\ell \neq 2$ ,

$$P_{\ell}^{i}(uv) = \sum_{j=0}^{i} P_{p}^{j}(u)P^{i-j}(v)$$
$$B_{\ell}^{i}(uv) = \sum_{j=0}^{i} B_{\ell}^{j}(u)P_{\ell}^{i-j}(v) + (-1)^{\deg(u)}P^{j}(u)B^{i-j}(v)$$

**Tongtong Liang** 

Southern University of Science and Technology, China (SUSTech)

## The motivic Steenrod operations

#### Theorem (Voevodsky 2003)

If  $\ell = 2$ , let  $Sq^{2i} = P_2^i$ ,  $Sq^{2i+1} = B_2^i$ ,  $\tau$  be the generator of  $H^{0,1}(K;\mathbb{Z}/2)$ , and  $\rho \in H^{1,1}(k;\mathbb{Z}/2)$  be the class of -1, then

$$Sq^{2i}(uv) = \sum_{j=0}^{i} Sq^{2j}(u)Sq^{2i-2j}(v) + \tau \sum_{s=0}^{i-1} Sq^{2s+1}(u)Sq^{2i-2s-1}(v)$$
  

$$Sq^{2i+1}(uv) = \sum_{j=0}^{i} (Sq^{2j+1}(u)Sq^{2i-2j}(v) + Sq^{2j}(u)Sq^{2i-2j-1}(v))$$
  

$$+ \rho \sum_{s=0}^{i-1} Sq^{2s+1}(u)Sq^{2i-2s-1}(v)$$

**Tongtong Liang** 

Southern University of Science and Technology, China (SUSTech)

# The Milnor conjecture and the Bloch-Kato conjecture

Voevodsky used motivic Steenrod operations to prove the following two theorems:

Theorem (Milnor conjecture, Voevodsky 2003)

Let k be a field of characteristic not equal to 2, then the norm residue homomorphisms  $K_n^M(k)/2 \rightarrow H_{\acute{e}t}^n(k;\mathbb{Z}/2)$  are isomorphisms for all  $n \ge 0$ .

Tongtong Liang

ব াচ ব টা ৮ ব টা ৮ ব টা ৮ ব টা ৮ টা তি ৭ Southern University of Science and Technology, China (SUSTech)

# The Milnor conjecture and the Bloch-Kato conjecture

Voevodsky used motivic Steenrod operations to prove the following two theorems:

Theorem (Milnor conjecture, Voevodsky 2003)

Let k be a field of characteristic not equal to 2, then the norm residue homomorphisms  $K_n^M(k)/2 \rightarrow H_{\acute{e}t}^n(k;\mathbb{Z}/2)$  are isomorphisms for all  $n \ge 0$ .

### Theorem (Bloch-Kato conjecture, Voevodsky 2010)

Let k be a field of characteristic not equal to a prime  $\ell$ , then the norm residue homomorphisms  $K_n^M(k)/\ell \to H^n_{\acute{e}t}(k; \mathbb{Z}/\ell)$  are isomorphisms for all  $n \ge 0$ .

**Tongtong Liang** 

Southern University of Science and Technology, China (SUSTech)

イロト イボト イヨト イヨト

# The motivic Steenrod algebras

### Theorem (Voevodsky 2003, Voevodsky 2011)

Let k be field and  $\ell$  be a prime coprime to char(k), and k contains a primitive  $\ell$ th root of unity. Then the motivic cohomology

$$\mathbb{M}_\ell := H^{*,*}(k;\mathbb{Z}/\ell) \cong rac{K^M_*(k)}{\ell}[ au]$$

where  $K_*^M(k)/\ell$  has degree (n, n) and  $\tau$  is of degree (0, 1).

**Tongtong Liang** 

Southern University of Science and Technology, China (SUSTech)

イロン イヨン イヨン イヨン

# The motivic Steenrod algebras

### Theorem (Voevodsky 2003, Voevodsky 2011)

Let k be field and  $\ell$  be a prime coprime to char(k), and k contains a primitive  $\ell$ th root of unity. Then the motivic cohomology

$$\mathbb{M}_\ell := H^{*,*}(k;\mathbb{Z}/\ell) \cong rac{K^M_*(k)}{\ell}[ au]$$

where  $K_*^M(k)/\ell$  has degree (n, n) and  $\tau$  is of degree (0, 1).

#### Theorem (Voevodsky 2003)

The bigraded motivic Steenrod algebra  $\mathcal{A}_{\ell}^{*,*}$  on mod- $\ell$  motivic cohomology is generated by  $P_{\ell}^{i}$  and  $B_{\ell}^{i}$  over  $\mathbb{M}_{\ell}$  and is characterized by motivic Adem relations.

**Tongtong Liang** 

Southern University of Science and Technology, China (SUSTech)

### The motivic Adams spectral sequences

### Theorem (Dugger-Isaksen 2010, Hu-Kriz-Ormsby 2011, Kylling-Wilson 2019)

Let k be a field of characteristic not equal to a prime  $\ell$ , let  $\mathbb{M}_{\ell} := H^{*,*}(k; \mathbb{Z}/\ell)$ , there is spectral sequence called **motivic** Adams spectral sequence such that

$$\mathcal{E}_2 = \mathrm{Ext}_{\mathcal{A}_\ell^{*,*}}(\mathbb{M}_\ell,\mathbb{M}_\ell) \Rightarrow [\Sigma^\infty_{s,t}\mathrm{Spec}(k),\Sigma^\infty_{s,t}\mathrm{Spec}(k)]^{\mathbb{A}_k^1}_{*,*}$$

**Tongtong Liang** 

Southern University of Science and Technology, China (SUSTech)

イロト イロト イヨト イヨト

## Outline

### 1 Background

- 2 Power operations in topology
- 3 Power operations in algebraic geometry
- 4 Questions for further investigation

Tongtong Liang

ৰ □ ► ৰ ঐ ► ৰ ৗ ► ৰ ৗ ► ব ৗ ► ব ৗ ► ব ৗ ► তিও Southern University of Science and Technology, China (SUSTech)

Tongtong Liang

### How the Adams spectral sequences detect information

### We summerize Bruner's mechanism in the following diagram.



Southern University of Science and Technology, China (SUSTech)

イロト イボト イヨト イヨ

## How the Adams spectral sequences detect information

### We summerize Bruner's mechanism in the following diagram.



**Tongtong Liang** 

< □ ► < ⊡ ► < ট ► < ট ► ট < ♡ </p>
Southern University of Science and Technology, China (SUSTech)

ver operations in topology Po 000000 00

Power operations in algebraic geometry

Questions for further investigation  $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ 

### What hides behind the power operations



**Tongtong Liang** 

< □ ► < ⊡ ► < ট ► < ট ► ট < ♡ </p>
Southern University of Science and Technology, China (SUSTech)

Power operations in algebraic geometry 000000000 Questions for further investigation  $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ 

### What hides behind the power operations



Tongtong Liang

< □ ► < ⊡ ► < ট ► < ট ► ট < ♡ </p>
Southern University of Science and Technology, China (SUSTech)
Power operations in algebraic geometry 000000000

Questions for further investigation  $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ 

## What hides behind the power operations



Tongtong Liang

Southern University of Science and Technology, China (SUSTech)

イロト イボト イヨト イヨト

## How motivic extended powers emerge in the motivic Adams spectral sequences



**Tongtong Liang** 

Southern University of Science and Technology, China (SUSTech)

## Question & Answer

**Tongtong Liang** 

くロトイラトイラトイラト ラーラへ( Southern University of Science and Technology, China (SUSTech)

Questions for further investigation  ${\scriptstyle \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc }$ 

## Thank you!

**Tongtong Liang** 

くロトイラトイラトイラト ラーラへ( Southern University of Science and Technology, China (SUSTech)