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Abstract. The reciprocity conjecture in the Langlands program links motives to auto-
morphic forms. The proof of Fermat’s Last Theorem by Wiles [180, 169] introduced new
tools to study reciprocity. This survey reports on developments using these ideas (and
their generalizations) in the last three decades.

1. Introduction

The reciprocity conjecture in the Langlands program predicts a relationship between
pure motives1 and automorphic representations. The simplest version (as formulated by
Clozel [48, Conj 2.1]) states that there should be a bijection between irreducible motives M
over a number field F with coefficients in Q and cuspidal algebraic representations π
of GLn(AF ) satisfying a number of explicit additional compatibilities, including the equal-
ity of algebraic and analytic L-functions L(M, s) = L(π, s). In light of multiplicity one
theorems [105], this pins down the correspondence uniquely. There is also a version of this
conjecture for more general reductive groups, although its formulation requires some care
(as was done by Buzzard and Gee [32]). Beyond the spectacular application by Wiles to
Fermat’s Last Theorem [180, Theorem 0.5], the Taylor–Wiles method [180, 169] gave a
completely new technique — and to this date the most successful one — for studying the
problem of reciprocity. The ideas in these two papers have sustained progress in the field
for almost2 30 years. In this survey, we explain how the Taylor–Wiles method has evolved
over this period and where it stands today. One warning: the intended audience for this
document is entirely complementary to the audience for my talk — I shall assume more
than a passing familiarity with the arguments of [180, 169]. Moreover, this survey is as
much a personal and historical3 discussion as a mathematical one — giving anything more
than hints on even a fraction of what is discussed here would be close to impossible given

The author was supported in part by NSF Grant DMS-2001097.
1Here (in light of the standard conjectures [124]) one may take pure motives up to numerical or ho-

mological equivalence. Conjecturally, one can also substitute (for irreducible motive) the notion of an
irreducible weakly compatible system of Galois representations [167] or an irreducible geometric Galois
representation in the sense of Fontaine–Mazur [83].

2Wiles in [180] dates the completion of the proof to September 19, 1994.
3A whiggish history, naturally. Even with this caveat, it should be clear that the narrative arc of

progress presented here at best represents my own interpretation of events. I have added a few quotes
from first hand sources when I felt they conveyed a sense of what the experts were thinking in a manner
not easily obtainable from other sources. For other survey articles on similar topics, see [30, 24].
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the space constraints and the competence of the author. Even with the absence of any
real mathematical details in this paper, the sheer amount of activity in this field has led
me to discard any discussion of advances not directly related to R = T theorems, which
necessitates the omission of a lot of closely related beautiful mathematics.

1.1. The Fontaine–Mazur Conjecture. Let F be a number field. The Fontaine–Mazur
conjecture4 [83] predicts that any continuous irreducible p-adic Galois representation

ρ : GF → GLn(Qp)

which is both unramified outside finitely many primes and potentially semi-stable (equiv-
alently, de Rham [56]) at all places v|p should be associated to a motive M/F with co-
efficients in Q. Any such ρ is automatically conjugate to a representation in GLn(E) for
some finite field E/Qp and further stabilizes an OE-lattice. The corresponding residual
representation ρ : GF → GLn(k) where k = OE/πE is the residue field of E is unique up to
semi-simplification. Let us assume here for expositional convenience that ρ is absolutely
irreducible. Following Mazur [129], one may define a universal deformation ring which
parameterizes all deformations of ρ unramified outside a finite set S. One can then further
impose local conditions to define deformation rings R whose Qp-valued points are associ-
ated to Galois representations which are de Rham at v|p with fixed Hodge–Tate weights.
Assuming the Fontaine–Mazur conjecture, these Qp-valued points correspond to all pure
motives M unramified outside S whose p-adic realizations are Galois representations with
the same local conditions at p and the same fixed residual representation ρ. Assuming
the reciprocity conjecture, these motives should then be associated to a finite dimensional
space of automorphic forms. This leads to the extremely non-trivial prediction that R has
finitely many Qp-valued points. The problem of reciprocity is now to link these Qp-valued
points of R to automorphic forms.

1.2. R = T theorems. Associated to the (conjectural) space of automorphic forms cor-
responding to Qp-valued points of R is a ring of endomorphisms generated by Hecke op-
erators. The näıve version of T is defined to be the completion of this ring with respect
to a maximal ideal m defined in terms of ρ. The mere existence of m is itself conjectural,
and amounts — in the special case of odd absolutely irreducible 2-dimensional represen-
tations ρ of GQ — to Serre’s conjecture [156]. Hence, in the Taylor–Wiles method, one
usually assumes the existence of a suitable m as a hypothesis. The usual shorthand way
of describing what comes out of the Taylor–Wiles method is then an “R = T theorem.”
Proving an R = T theorem can more or less be divided into three different problems:

4Fontaine told me (over a salad de gésiers in Roscoff in 2009) that he and Mazur formulated their
conjecture in the mid-80s. (Colmez pointed me towards these notes [81] from a talk given by Fontaine
at the 1988 Mathematische Arbeitstagung in Bonn.) He noted that Serre had originally been skeptical,
particularly of the claim that any everywhere unramified representation inside GLn(Qp) must have finite
image, and set off to find a counterexample (using the construction of Golod–Shavarevich [91]). He (Serre)
did not succeed!
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(1) Understanding T. Why does there exist5 a map R→ T? This is the problem of the
“existence of Galois representations.” Implicit here is the problem of showing that
those Galois representations not only exist but have the “right local properties” at
the ramified primes, particularly those dividing p.

(2) Understanding R. Wiles introduced a mechanism for controlling R via its tangent
space using Galois cohomology (in particular Poitou–Tate duality [131]), and this
idea has proved remarkably versatile. What has changed, however, is our under-
standing of local Galois representations and how this information can be leveraged
to understand the structure of R.

(3) Understanding why the map R→ T is an isomorphism.

We begin by summarizing the original R = T theorem from this viewpoint (or more
precisely, the modification by Faltings which appears as an appendix to [169]). We only
discuss for now the so-called “minimal case6” since this is most relevant for subsequent
generalizations (see §6.2). Our summary is cursory, but see [68, 67] for excellent exposi-
tional sources on early versions of the Taylor–Wiles method. We start with a representa-
tion ρ : GQ → GL2(Fp) for p > 2 which (say) comes from a semistable elliptic curve E
and which we assume to be modular. By a theorem of Ribet [149], we may assume it is
modular of level either N = N(ρ) or N = N(ρ)p where N(ρ) is the Serre weight [156] of ρ.

(1) Understanding T: The construction of Galois representations associated to mod-
ular forms has its own interesting history (omitted here), but (in the form orig-
inally needed by Wiles) was more or less complete for modular forms (and even
Hilbert modular forms) by 1990. The required local properties at primes different
from p followed from work of Carayol [47], and the local properties at p were well
understood either by Fontaine–Laffaille theory [82], or, in the ordinary case, by
Mazur–Wiles [130] (see also work of Hida [101, 102]).

(2) Understanding R: Here R is a deformation ring of ρ subject to precise local defor-
mation conditions at p and the primes dividing N(ρ). For the prime p, the local
conditions amount either to an “ordinary” or “finite-flat” restriction. One then
interprets the dual of the reduced tangent space mR/(m

2
R, p) of R in terms of Galois

cohomology, in particular as a subgroup (Selmer group) of classes in H1(Q, ad0(ρ))
satisfying local conditions. This can be thought of as analogous to a class group,
and one does not have any a priori understanding of how large it can be although it
has some finite dimension d. Using the Greenberg–Wiles formula, the obstructions
in H2(Q, ad0(ρ)) can be related to the reduced tangent space, and allow one to
realize R as a quotient of W (k)Jx1, . . . , xdK by d relations. In particular, if R was
finite and free as a W (k)-module (as would be the case if R = T) then R would be
a complete intersection.

5At the time of Wiles’ result, this was seen as the easier direction (if not easy), although, in light of the
success of the Taylor–Wiles method, it may well be the harder direction in general.

6The case when the Galois representations attached to R and T have minimal level N as determined
by the residual representation.
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(3) Understanding why the map R → T is an isomorphism. Here lies the heart of
the Taylor–Wiles method. The ring T acts on a natural module M of modular
forms. One shows — under a mild hypothesis on ρ — the existence of (infinitely
many) sets Q = QN for any natural number N of cardinality |Q| = d — so-called
Taylor–Wiles primes — with a number of pleasant properties:
(a) The primes q ∈ Q are congruent to 1 mod pN .
(b) Let RQ be the deformation ring capturing the same local properties as R but

modified so that the representations at primes in Q may now be ramified of
degree pN . There is naturally a surjection RQ → R, but for Taylor–Wiles
primes, this modification does not increase the size of the tangent space. In
particular, for a fixed ring R∞ = W (k)Jx1, . . . , xdK there are surjections R∞ →
RQ → R for every Q.

(c) The corresponding rings T and TQ act naturally on spaces of modular forms M
and MQ respectively. Using multiplicity one theorems, Wiles proves (see [180,
Theorem 2.1]) that M and MQ are free of rank one over T and TQ respectively.
The space M can be interpreted as a space of modular forms for a particular
modular curve X. The second key property of Taylor–Wiles primes is that
there are no new modular forms associated to ρ at level X0(Q), and hence M
can also be interpreted as a space of modular forms for X0(Q). There is a
Galois cover X1(Q) → X0(Q) with Galois group (Z/QZ)×, and hence an in-
termediate cover XH(Q) → X0(Q) with Galois group ∆N = (Z/pNZ)d acting
via diamond operators. The space MQ is essentially a localization of a certain
space of modular forms for XH(Q) (with some care taken at the Hecke opera-
tors for primes dividing Q). Since the cohomology of modular curves (localized
at the maximal ideal corresponding to m) is concentrated in degree one, the
module MQ turns out to be free over an auxiliary ring SN = W (k)[∆N ] of
diamond operators, and the quotient MQ/aQ for the augmentation ideal aQ
of SN is isomorphic to M . It follows that TQ/aQ = T.

(d) The diamond operators have an interpretation on the Galois deformation side,
and there is a identification RQ/aQ = R where RQ and TQ can be viewed
compatibly as SN -modules.

(4) Finally, one “patches” these constructions together for larger and larger Q. This is
somewhat counterintuitive, since for different Q the Galois representations involved
are not compatible. However, one forgets the Galois representations and only re-
members the structures relative to both the diamond operators SN and R∞, giving
the data of a surjection

R∞ → T∞

with a compatible action of S∞ = proj limSN ' W (k)Jt1, . . . , tdK. Using the fact
that T∞ is free of finite rank over S∞, and that R∞ and S∞ are formally smooth of
the same dimension, one deduces that R∞ = T∞ and then R = T after quotienting
out by the augmentation ideal of S∞.
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2. The early years

2.1. The work of Diamond and Fujiwara. Wiles made essential uses of multiplicity
one theorems in order to deduce that MQ was free over TQ. Diamond [72] and Fujiwara [85]
(independently) had the key insight that one could instead patch the modules MQ directly
— and then argue directly with the resulting object M∞ as a module over R∞ which was
also free over S∞. Using the fact that R∞ is formally smooth, this allowed one to deduce a
posteriori thatM∞ was free over R∞ using the Auslander–Buchsbaum formula [9]. This not
only removed the necessity of proving difficult multiplicity one results but gave new proofs
of these results7 which could then be generalized to situations where the known methods
(often using the q-expansion principle) were unavailable8. Diamond had the following to
say about how he came up with the idea to patch modules rather than use multiplicity one
theorems:

My vague memory is that I was writing down examples of ring homomorphisms and modules, subject
to some constraints imposed by a Taylor–Wiles setup, and I couldn’t break “M free over the group ring
implies M free over R.” (I still have the notebook with the calculations somewhere, mostly done during
a short trip with some friends to Portugal.) I didn’t know what commutative algebra statement I needed,
but I knew I needed to learn more commutative algebra and found my way to Bruns and Herzog’s “Cohen-
Macaulay Rings” [28] (back in the library in Cambridge UK by then). When I saw the statement of
Auslander–Buchsbaum, it just clicked.

Diamond made a second improvement [70, 71] dealing with primes away from p in
situations where the corresponding minimal local deformation problem was not controlled
by the Serre level N(ρ) alone.

2.2. Integral p-adic Hodge Theory, part I: Conrad–Diamond–Taylor. One early
goal after Fermat was the resolution of the full Taniyama–Shimura conjecture, namely,
the modularity of all elliptic curves over Q. After the improvements of Diamond, the
key remaining problem was understanding deformation rings associated to local Galois
representations at p coming from elliptic curves with bad reduction at p. Since Wiles’
method (via Langlands–Tunnell [127, 177]) was ultimately reliant on working with the
prime p = 3, this meant understanding deformations at p of level p2 and level p3, since any
elliptic curve over Q has a twist such that the largest power of 3 dividing the conductor is
at most 27. Ramakrishna in his thesis [145] had studied the local deformation problem for
finite flat representations (the case when (N, p) = 1) and proved that the corresponding
local deformation rings were formally smooth. The case when p exactly divides N was
subsumed into the ordinary case, also treated by Wiles. In level p2, one can show that
the Galois representations associated to the relevant modular forms9 of level p2 become
finite flat after passing to a finite extension L/Qp with ramification degree e ≤ p − 1. In

7There is an intriguing result of Brochard [27] which weakens the hypotheses of Diamond’s freeness
criterion even further, although this idea has not yet been fully exploited.

8The history of the subject involves difficult theorems in the arithmetic geometry of Shimura varieties
being replaced by insights from commutative algebra, paving the way to generalizations where further
insights from the arithmetic geometry of Shimura varieties are required.

9This is not true for all modular forms of level p2 and weight 2, but only for those whose conductor at p
remains divisible by p2 after any quadratic twist.
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this range, Conrad [64, 65] was able to adapt ideas of Fontaine [80] to give an equivalence
between the local Galois deformations (assuming ρ|GQp

was irreducible) and linear algebra
data. In particular, as in the work of Ramakrishna, one can show that the relevant local
deformation rings are formally smooth, and so Conrad, Diamond, and Taylor were able to
adapt the Taylor–Wiles method to this setting [66].

2.3. Integral p-adic Hodge Theory, part II: Breuil–Conrad–Diamond–Taylor. A
central technical ingredient in all of the arguments so far has been some use of integral p-
adic Hodge Theory, and in particular the theory of finite flat group schemes and Barsotti–
Tate groups as developed by Fontaine and others. All integral versions of this theory
required a hypothesis on either the weight or the ramification index e relative to the
bound p − 1. However, around this time, Christophe Breuil made a breakthrough10 by
finding a new way to understand the integral theory of finite flat group schemes over
arbitrarily ramified bases [19]. This was just the technical tool required to push the methods
of [66] to level p3. Using these results, Breuil, Conrad, Diamond and Taylor [25] were able
to show that enough suitably chosen local deformation rings were formally smooth to prove
the modularity of all elliptic curves.

2.4. Higher weights, totally real fields, and base change. Many of the methods
which worked for modular forms were directly adaptable to the case both of general rank 2
motives over Q with distinct Hodge–Tate weights (corresponding to modular forms of
weight k ≥ 2 rather than k = 2) and also to such motives over totally real fields (which are
related to Hilbert modular forms), see in particular the work of Fujiwara [85] (and more
recently Frietas–Le Hung–Siksek [84]). Another very useful innovation was a base change
idea of Skinner–Wiles [161] which circumvented the need to rely on Ribet’s level lowering
theorem. The use of cyclic base change ([127] in this case and [5] in general) subsequently
became a standard tool in the subject. For example, it meant that one could always reduce
to a situation where the ramification at all primes v - p was unipotent. The paper [161] was
related to a more ambitious plan by Wiles to prove modularity for all totally real fields:

After Fermat I started to work with Taylor and then Diamond on the general case but decided very soon
that I would rather try to do the totally real case for GL(2). I think this was while I was getting back into
other kinds of problems but I thought I should still earn my bread and butter. One lunch time at the IAS
in 1996 Florian Pop spoke to me and explained to me about finding points over fields totally split at some
primes (e.g. real places) as he had written a paper [92] about this with some others. Was this any use
for the Tate–Shavarevich group? I immediately saw that whether or not it was any use for TS (I doubted
it) it should certainly give potential modularity. This gave some kinds of lifting so I worked on the other
half (i.e. descent) thinking that just needed a similar insight. At some point I suggested to Chris that
we try to do Ribet’s theorem using cyclic base change as that would be useful in proving modularity and
was buying time while I waited to get the right idea. Unfortunately I completely misjudged the difficulty
of descent and the problem is still there. I think it is both much harder than I thought and also more

10Much of the development of integral p-adic Hodge theory over the last 20 years since [25] has been
inspired by its use in the Taylor–Wiles method. However, the timing of Breuil’s work was more of a happy
coincidence, although Breuil was certainly aware of the fact that a computable theory of finite flat group
schemes over highly ramified bases could well have implications in the Langlands program.
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important. I hope still to prove it! Of course Taylor found potential modularity and then, what I had
assumed was much harder, a way to think about GL(n).

3. Reducible representations: Skinner–Wiles

One of the key hypotheses in the Taylor–Wiles method concerns restrictions on the
representation ρ, in particular the hypothesis that ρ|GQ(ζp)

is absolutely irreducible. In [162,

160, 159], Skinner and Wiles introduced a new argument in which this hypothesis was
relaxed, at least assuming the representations were ordinary at p. In the ordinary setting,
one can replace the rings R and T (which in the original setting are finite over W (k))
by rings which are finite (and typically flat) over Iwasawa algebras Λ = W (k)J(Zp)

dK for
some d which arise as weight spaces, the point being that the ordinary deformations of
varying weight admit a good integral theory. The first innovation (in part) involves making
a base change so that the reducible locus is (relatively) “small,” (measured in terms of the
codimension over Λ). The second idea is then to apply a variant of the Taylor–Wiles
method to representations % : GF → GL2(T/p) for non-maximal prime ideals p of F 11.
Wiles again:

We had worked out a few cases we could do without big Hecke rings in some other papers and I would
say it was more a feat of stamina and technique to work through it. Of course the use of these primes
was much more general and systematic than anything that went before. There is also an amusing point in
this paper where we use a result from commutative algebra. It seemed crucial then though I don’t know
if it still is. This is proposition A.1 of Raynaud [148]. I had thought at some point during the work on
Fermat that this result might be needed and had asked Michel Raynaud about it. He said he would think
about it. A week later he came back to me, somewhat embarrassed that he had not known right away, to
say that it was a result in his wife’s thesis. So the reference to M.Raynaud is actually to his wife, Michèle
Raynaud, though he gave the reference.

Allen [2] was later able to adapt these arguments to the p = 2 dihedral case, which (in
a certain sense) realized the original desire12 of Wiles to work at the prime p = 2.

4. The Artin Conjecture

While the approach of [180, 169] applied (in principle) to all Galois representations as-
sociated to modular forms of weight k ≥ 2, the case of modular forms of weight k = 1
is qualitatively quite different (see also §10.1). It was therefore quite surprising when
Buzzard–Taylor [33] proved weight one modularity lifting theorems for odd continuous
representations ρ : GQ → GL2(Qp) which were unramified at p. Using this, Buzzard–
Dickinson–Shepherd-Barron–Taylor [31] proved the Artin conjecture for a positive propor-
tion of all odd A5 representations, which had previously only been known in a finite number

11Representations % to infinite quotients T/p had also arisen in Wiles’ paper on Galois representa-
tions associated to ordinary modular forms [179] where the concept of pseudo-deformation was also first
introduced.

12As far as primary historical sources go, the introduction of Wiles’ paper [180] is certainly worth
reading.
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of cases13 up to twist. Standard ordinary modularity theorems showed the existence of or-
dinary modular forms associated to such representations ρ — however, the classicality
theorems of Hida [101] do not apply (and are not true!) in weight one. The main idea
of [33] was to exploit the fact that ρ is unramified to construct two ordinary modular
forms each corresponding to a choice of eigenvalue of ρ(Frobp) assuming these eigenvalues
are distinct14. One then has to argue [33] that these two ordinary forms are the oldforms
associated to a classical eigenform of weight one, which one can do by exploiting both the
rigid geometry of modular curves and the q-expansion principle.

Although the original version of this argument required a number of improvements to
the usual Taylor–Wiles method (Dickinson overcame some technical issues when p = 2 [73]
and Shepherd-Barron–Taylor proved some new cases of Serre’s conjecture for SL2(F4)
and SL2(F5)-representations in [157]), it was ripe for generalization to totally real fields15

After a key early improvement by Kassaei [106], the n = 2 Artin conjecture for totally
real fields is now completely resolved under the additional assumption that the repre-
sentation is odd by a number of authors, including Kassaei–Sasaki–Tian and Pilloni–
Stroh [108, 107, 109, 152, 141, 143]. On the other hand, the reliance on q-expansions in this
argument has proved an obstruction to extending this to other groups. (See also §11.2).

5. Potential Modularity

One new idea which emerged in Taylor’s paper [166] was the concept of potential mod-
ularity. Starting with a representation ρ : GF → GL2(Qp) for a totally real field F , one
could sidestep the (difficult) problem of proving the modularity of ρ by proving it was
modular over some finite totally real extension F ′/F . In the original paper [180], Wiles
employed a 3-5 switch to deduce the modularity of certain mod 5 representations from the
modularity of mod 3 representations. More generally, one can prove the modularity of a
mod p representation ρp from the modularity of a mod q representation ρq if one can find
both of them occurring as the residual representation of a compatible family where the
Taylor–Wiles hypotheses apply to ρq. For example, if ρp and ρq are representations valued
in GL2(Fp) and GL2(Fq) respectively, one can try to find the compatible family by finding
an elliptic curve with a given mod p and mod q representation. The obstruction to doing
such a p-q switch over F is that the corresponding moduli spaces (which in this case are
twists of the modular curve X(pq)) are not in general rational, and hence have no reason
to admit rational points. However, exploiting an idea due to Moret-Bailly [132], Taylor
showed that these moduli spaces at least had many points over totally real fields where one

13In a computational tour de force for the time, Buhler [29] in his thesis had previously established the
modularity of an explicit odd projective A5 representation of conductor 800.

14This argument can be modified to deal with the case when the eigenvalues of ρ(Frobp) coincide by
modifying R and T to include operators corresponding (on the Hecke side) to Up. Geraghty and I discovered
an integral version of this idea ourselves (“doubling,” following Wiese’s paper [178]) during the process of
writing [38], although it turned out that, at least in characteristic zero, Taylor already had the idea in his
back pocket in the early 2000s.

15The proof all that finite odd 2-dimensional representations over Q are modular was completed by
Khare and Wintenberger as a consequence of their proof of Serre’s conjecture, see §8.
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could additionally ensure that the Taylor–Wiles hypothesis applies at the prime q. At the
cost of proving a weaker result, this gives a huge amount of extra flexibility that has proved
remarkably useful. Taylor’s first application of this idea was to prove the Fontaine–Mazur
conjecture for many 2-dimensional representations, since the potential modularity of these
representations was enough to prove (for example) that they come from compatible fami-
lies of Galois representations (even over the original field F !), and that they satisfy purity
(which is known for Hilbert modular forms of regular weight). The concept of potential
modularity, however, has proved crucial for other applications, not least of which is the
proof of the Sato–Tate conjecture (see §9.2).

6. The work of Kisin

A key ingredient in the work of Breuil–Conrad–Diamond–Taylor (§2.2,§2.3) (and subse-
quent work of Savitt [153, 154]) was the fact that a certain local deformation ring Rfl defined
in terms of integral p-adic Hodge theory was formally smooth. The calculations of [25, 154],
however, applied only to some (very) carefully chosen situations sufficient for elliptic curves
but certainly not for all 2-dimensional representations. In the 2000s, Kisin made a number
of significant contributions, both to the understanding of local deformation rings but also
to the structure of the Taylor–Wiles argument itself [117, 118, 121, 122, 123, 119].

6.1. Local deformation rings at v = p. One difficulty with understanding local defor-
mation rings Rfl associated to finite flat group schemes over highly ramified bases is that
the group schemes themselves are not uniquely defined by their generic fibres. Kisin [122]
had the idea that one could also define the moduli space of the group schemes themselves,
giving a projective resolution GR → Spec(Rfl) (this map is an isomorphism after invert-
ing p). Kisin further realized that the geometry of GR was related to local models of
Shimura varieties, for which one had other available techniques to analyze their structure
and singularities. Later, Kisin was also able [119] to construct local deformation rings R
capturing deformations of a fixed local representation ρ which become semi-stable over a
fixed extension L/Qp and had Hodge–Tate weights in any fixed finite range [a, b], absent a
complete integral theory of such representations. (There are also are constructions where
one fixes the inertial type of the corresponding representation.) Kisin further proved that
the generic fibres of these rings were indeed of the expected dimension and often formally
smooth.

6.2. Kisin’s modification of Taylor–Wiles. Beyond analyzing the local deformation
rings themselves, Kisin crucially found a way [122] to modify the Taylor–Wiles method to
avoid the requirement that these rings are formally smooth, thus greatly expanding the
scope of the method. First of all, Kisin reimagined the global deformation ring R as an
algebra over a (completed tensor product)

Rloc =
⊗̂

v∈S
Rv
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of local deformation rings Rv for sets of places v ∈ S, in particular including the prime p16.
Now, after a Taylor–Wiles patching argument, one constructs a big module M∞ over R∞
(and free over the auxiliary ring of diamond operators S∞) but where R∞ is no longer a
power series ring over W (k) but a power series ring over Rloc. If the algebras Rv for v ∈ S
are themselves power series rings, one is reduced precisely to the original Taylor–Wiles
setting as modified by Diamond. On the other hand, if the Rv are (for example) not
power series rings but are integral domains over W (k) of the expected dimension, then
Kisin explained how one could still deduce that M [1/p] was a faithful R[1/p]-module,
which proves that R[1/p] = T[1/p] and suffices for applications to modularity. More
generally, assuming only that the Rv are flat over W (k) and that the generic fibre Rv[1/p]
is equidimensional of the expected dimension, the modularity of any point of R reduces
to showing that there is at least one modular point which lies on the same component
of Rv[1/p]

17.
In the original modularity lifting arguments, one treated the minimal case first and

then deduced the non-minimal cases using a subtle commutative algebra criterion which
detected isomorphisms between complete intersections. From the perspective of Kisin’s
modification, all that is required is to show that there exists a single modular point with
the right non-minimal local properties. In either case, both Wiles and Kisin used Ihara’s
Lemma to establish the existence of congruences between old and new forms, but Kisin’s
argument is much softer and thus more generalizable to other situations18. Kisin had the
following to say about his thought process:

The idea of thinking of R as an Rloc algebra just popped into my head, after I’d been thinking about
the Wiles–Poitou–Tate formula, and how it fit into the Taylor–Wiles patching argument. This was in
Germany, I think in 2002. I had the idea about moduli of finite flat group schemes in the Fall of 2003,
after I arrived in Chicago. It was entirely motivated by modularity. I had been trying to compute these
deformation rings, by looking at deformations of finite flat group schemes. For e < p − 1, the finite flat
model is unique, so I knew this gave the deformation ring in this case; this already gave some new cases.
However I was stuck about the meaning of these calculations in general for quite some time. At some
point I thought I’d better write up what I had, but as soon as I started thinking about that — within
a day — I realized what the correct picture was with the families of finite flat group schemes resolving
the deformation ring. I already knew about Breuil’s unpublished note [18], and quite quickly was able to
prove the picture was correct. It was remarkable that prior to coming to Chicago, I didn’t even know the

16Since the local residual representations are typically reducible, Kisin also introduced the notion of
framed deformation rings which are always well-defined, and which (properly taking into account the extra
variables) are compatible with the Taylor–Wiles argument.

17There are some subtleties to understanding R[1/p] for complete local Noetherian W (k)-algebras that
are not obvious on first consideration. The first and most obvious blunder to avoid is to recognize
that R[1/p] is usually far from being a local ring. Similarly, the ring R[1/p] can be regular and still
have multiple components, as can be seen in an example as simple as R = ZpJXK/X(X − p). Perhaps
more importantly, however, the ring R[1/p] “behaves” in some important ways like a finitely generated
algebra over a field.

18In particular, Wiles’ numerical criterion [68, Thm 5.3] relies on certain rings being complete intersec-
tions, and Kisin’s local deformation rings are not complete intersections (or even Gorenstein) in general
— see [163].
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definition of the affine Grassmannian, but within a few months of arriving, it actually showed up in my
own work.

To me the whole project was incredibly instructive. If I had known more about what was (thought to
be) essential in the Taylor–Wiles method, I never would have started the project. Not having fixed ideas
gave me time to build up intuition. I also should have gotten the idea about moduli of finite flat group
schemes much sooner if I’d been more attentive to what the geometry was trying to tell me.

7. p-adic local Langlands

7.1. The Breuil–Mézard conjecture. Prior to Kisin’s work, Breuil and Mézard [26] un-
dertook a study of certain low weight potentially semi-stable deformation rings, motivated
by [25]. They discovered (in part conjecturally) a crucial link between the geometry of
these Galois deformation rings (in particular, the Hilbert–Samuel multiplicities of their
special fibres) with the mod-p reductions (and corresponding irreducible constituents)
of lattices inside locally algebraic p-adic representations of GL2(Zp). In the subsequent
papers [20, 21], Breuil raised the hope that there could exist a p-adic Langlands corre-
spondence relating certain mod-p (or p-adic Banach space) representations of GL2(Qp) to
geometric 2-dimensional p-adic representations of GQp

19. Breuil recounts the origins of
these conjectures as follows:

The precise moment I became 100% sure that there would be a non-trivial p-adic correspondence
for GL2(Qp) was in the computations of [21]. In these computations, I reduced mod p certain Zp–lattices
in certain locally algebraic representations of GL2(Qp), and at some point, I found out that this reduction
mod p had a really nice behaviour, so nice that clearly, it was predicting (via the mod-p correspondence)
what the reduction mod-p would be on the Gal(Qp/Qp)-side.

These ideas were further developed by Colmez in [58, 59, 60] amongst other papers20:
Colmez studied various Banach space completions defined by Breuil and proved they were
non-zero using the theory of (ϕ,Γ)-modules. Since the theory of (ϕ,Γ)-modules applies
to all Galois representations and not just potentially semi-stable ones, this led Colmez
to propose a p-adic local Langlands correspondence for arbitrary 2-dimensional represen-
tations GQp → GL2(E), and he was ultimately able to construct a functor from suit-
able GL2(Qp)-representations to Galois representations of GQp . Colmez gave a talk on
his construction at a conference in Montreal in September 2005. At the same conference,
Kisin gave a talk presenting a proof of the Breuil–Mézard conjecture by relating it directly

19The starting observation [22] is as follows: if π =
⊗′

πv is the automorphic representation associated to
a modular form f , then πv determines (and is determined by) ρf |GQv

for all v 6= p (at least up to Frobenius
semi-simplification). On the other hand, πp does not determine the p-adic representation ρf |GQp

(except

in the exceptional setting where πp is spherical and ap is not a p-adic unit), raising the question of what
extra GL2(Qp) structure associated to f should determine (and be determined by) ρf |GQp

.
20In [116], Kisin had shown that the p-adic representations V associated to non-classical finite slope over-

convergent modular forms with Up-eigenvalue ap satisfied dimDcris(V ) = 1, and moreover that crystalline
Frobenius acted on this space by ap. (This paper was itself apparently motived by the goal of disproving
the Fontaine–Mazur conjecture!) On the way to the 2004 Durham symposia on L-functions and Galois
representations, Fontaine raised the question to Colmez to what extent this determined the corresponding
Galois representation. Colmez worked out the answer the evening before his talk and incorporated it into
his lecture the following day, ultimately leading to the notion of trianguline representations [58].



12 FRANK CALEGARI

to R = T theorems and the Fontaine–Mazur conjecture for odd 2-dimensional representa-
tions of GQ with distinct Hodge–Tate weights. While Kisin’s argument exploited results
of Berger–Breuil [14] and Colmez, it was realized by the key participants (perhaps in real
time) that Colmez’ p-adic local Langlands correspondence should be viewed as taking
place over the entire local deformation ring. Subsequently Colmez was able to construct
the inverse functor21. Colmez writes:

I received a paper of Breuil (a former version of [23]) during my stay at the Tata Institute in December
2003—January 2004. In December, I was spending Christmas under Goa’s palm trees with my daughter
when Breuil’s paper arrived in my email. That paper contained a conjecture (in the semi-stable case)
that I was sure I could prove using (ϕ,Γ)-modules (if it was true. . . ). I spent January 2004 working on
it and after 15 days of computations in the dark, I finally found a meaning to some part of a painful
formula (you can find some shadow of all of this in (iii) of Remark 0.5 of my unpublished [57]). By the
end of the month, I was confident that the conjecture was proved and I told so to Breuil who adapted
the computations to the crystalline case, and wrote them down with the help of Berger (which developed
into [14]). (One thing that makes computations easier and more conceptual in the crystalline case is that
you end up with the universal completion of the locally algebraic representation you start with; something
that is crucial in Matthew [Emerton]’s proof of the FM conjecture.) Durham was in August of that year
and Berger–Breuil had notes from a course they had given in China [13]. Those notes were instrumental
in my dealing with trianguline representations at Durham (actually, I did some small computation and the
theory just developed by itself during the night before my talk which was supposed to be on something
else. . . I think I came up with the concept of trianguline representations later, to justify the computations,
I don’t remember what language I used in my talk which had some part on Banach–Colmez spaces as far
as I can remember.

7.2. Local–global compatibility for completed cohomology. From a different per-
spective, Emerton had introduced the completed cohomology groups [77] as an alternative
means for constructing the Coleman–Mazur eigencurve [54]. Inspired by Breuil’s work,
Emerton formulated [76] a local–global compatibility conjecture for completed cohomology
in the language of the then nascent p-adic Langlands correspondence. After the construc-
tion of the correspondence for GL2(Qp) by Colmez and Kisin, Emerton was able to prove
most of his conjecture, leading to a new proof of (many cases of) the Fontaine–Mazur
conjecture. The results of Kisin [120] and Emerton fell short of proving the full version
of this conjecture for two reasons. The first was related to some technical issues with
the p-adic local Langlands correspondence, both at the primes p = 2 and 3 but also when
the residual representation locally had the shape 1 ⊕ ε for the cyclotomic character ε.
(The local issues have now more or less all been resolved [63]. The most general global

21To add some further confusion to the historical chain of events, the published version of [120] incorpo-
rates some of these subsequent developments. Note also that the current state of affairs is that the proof of
the full p-adic local Langlands correspondence for GL2(Qp) (for example as proved in [63] but see also [60,
Remarque VI.6.51]) still relies on the global methods of [78], which in turn relies on [60]. These mutual
dependencies, however, are not circular! The difficulty arises in the supercuspidal case. One philosophical
reason that global methods are useful here is that all global representations are yoked together by an object

(the completed cohomology group H̃1(Zp)) with good finiteness properties. One can then exploit the fact
that crystabeline representations (for which the p-adic local Langlands correspondence is known by [60])
are Zariski dense inside unrestricted global deformation rings ([78, Theorem 1.2.3], using arguments going
back to Böckle [15]).
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results for p = 2 are currently due to Tung [176].) A second restriction was the Taylor–
Wiles hypothesis that ρ was irreducible. Over the intervening years, a number of key
improvements to the local story have been found, in particular by Colmez, Dospinescu,
Hu, and Paškūnas [140, 63, 104]. Very recently, Lue Pan [137] found a way to marry
techniques from Skinner–Wiles in the reducible case (§3) to techniques from p-adic local
Langlands to completely prove the modularity (up to twist) of any geometric represen-
tation ρ : GQ → GL2(Qp) for p ≥ 5 only assuming the hypotheses that ρ has distinct

Hodge–Tate weights and that ρ is odd22.

8. Serre’s Conjecture

In Wiles’ original lectures in Cambridge in 1993, he introduced his method with the
statement that it was orthogonal to Serre’s conjecture [150]. In some senses, this viewpoint
turned out to be the opposite of prophetic, in that the ultimate resolution of Serre’s
conjecture used the Taylor–Wiles method as its central core. The proof of Serre’s conjecture
by Khare and Wintenberger [111, 112, 113, 114] introduced a new technique for lifting
residual Galois representations to characteristic zero (see §8.2) which has proved very
useful for subsequent modularity lifting theorems.

8.1. Ramakrishna lifting. Ramakrishna, in a series of papers in the late 90s [147, 146],
studied the question of lifting an odd Galois representation

ρ : GQ → GL2(Fp)

to a global potentially semistable representation in characteristic zero unramified outside
finitely many primes. This is a trivial consequence of Serre’s conjecture23 but is highly
non-obvious without such an assumption. Ramakrishna succeeded in proving the exis-
tence of lifts by an ingenious argument involving adding auxiliary primes and modifying
the local deformation problem to a setting where there all global obstructions vanished.
The resulting lifts had the added property that they were valued in GL2(W (k)) when-
ever ρ was valued in GL2(k). Adaptations of Ramakrishna’s method had a number of
important applications even under the assumption of residual modularity, including in [50]
where it was used to produce characteristic zero lifts with Steinberg conditions at some
auxiliary primes. There is also recent work of Fakhruddin, Khare, and Patrikis [79] which
considerably extends these results in a number of directions.

8.2. The Khare–Wintenberger method. One disadvantage of Ramakrishna’s method
was that it required allowing auxiliary ramification which (assuming Serre’s conjecture)
should not be necessary24. Khare and Wintenberger found a new powerful method for

22The assumption on the Hodge–Tate weights is almost certainly removable using recent progress on the
ideas discussed in §4 (Sasaki has announced such a result). Moreover, Pan has found a different approach
to this case as well, see [138, Theorem 1.0.5] and the subsequent comments. The hypothesis that ρ is odd
is more troublesome — see §9.7.

23Trivial only assuming the results of Tsuji [175] and Saito [151], of course.
24If one insists on finding a lift is valued in GL2(W (k)) rather than GL2(OE) for some ramified exten-

sion E/W (k)[1/p], then some auxiliary ramification is necessary in general, at least in fixed weight.
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avoiding this. The starting point is the idea that, given an odd representation ρ : GF →
GL2(Fp) for a totally real field F satisfying the Taylor–Wiles hypotheses, one could find a
finite extension H/F where ρ is modular (exactly as in §5). Then, using an R = T theorem
over H, one proves that the corresponding deformation ring RH of ρ|GH is finite over W (k).
However, for formal reasons, there is a map RH → RF (where R is the deformation ring
corresponding to the original representation ρ) which is a finite morphism, and hence the
ring RF/p is Artinian. Then, by Galois cohomological arguments, one proves the ring RF

has dimension at least one, from which one deduces that RF has Qp-valued points. Even

more can be extracted from this argument, however — the Qp-valued point of RF certainly

comes from a Qp-valued point of RH , and hence comes from a compatible family of Galois
representations over H. Using the fact that one member of the family extends to GF , it
can be argued that the entire family descends to a compatible family over F . This one can
then hope to prove is modular by working at a different (possibly smaller) prime, where
(hopefully) one can prove the associated residual representation is modular. In this way,
one can inductively reduce Serre’s conjecture [156] to the case p = 2 and N(ρ) = 1, where
Tate had previously proved in a letter to Serre [62, July 2, 1973] (also [164]) that all such
absolutely irreducible representations are modular by showing that no such representations
exist. The entire idea is very clean, although in practice the difficulty reduces to the step of
proving modularity lifting theorems knowing either that ρ is either modular and absolutely
irreducible or is reducible. Khare and Wintenberger’s timing was such that the automorphy
lifting technology was just good enough for the proof to work, although this required some
extra effort at the prime p = 2 (both in their own work and in a key assist by Kisin [121]).
As with Ramakrishna’s method, the Khare–Wintenberger lifting method has also been
systematically exploited for modularity lifting applications (for example in [11] (see §9.6)
building on ideas of Gee [87]).

9. Higher dimensions

Parallel to the developments of p-adic Langlands for n = 2, the first steps were made to
generalize the theory to higher dimensional representations. Unlike in the case of modular
forms, substantially less was known about the existence of Galois representations until the
90s.

9.1. Construction of Galois representations, part I: Clozel–Kottwitz. The first
general construction25 of Galois representations in dimension n > 2 was made by Clozel [48]
(see also the work of Kottwitz [125]). Clozel’s theorem applies to certain automorphic forms
for GLn(AL) for CM fields L/L+. The construction requires three important hypotheses
on π: The first is that π is conjugate self-dual, that is π∨ ' πc. If π is a base change from

25Clozel’s paper is from 1991 and thus not strictly “post–Fermat” as is the remit of this survey. However,
it can be considered a natural starting point for the “modern” arithmetic theory of automorphic forms
for GL(n) and so it seems reasonable to mention it here.
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an algebraic representation of L+ and n = 2 then this condition is automatic26, but it is far
from automatic when n > 2. The second condition is an assumption on the infinitesimal
character which (in the case of modular forms) is equivalent to the condition that the
weight k is ≥ 2. Finally, there is a technical condition that for some finite place x the
representation πx is square integrable. A number of improvements (particularly at the bad
primes) were made by Harris–Taylor in [100, Theorem C], and later by Taylor–Yoshida and
Caraiani [170, 42, 43], bringing the theory roughly in line with that of modular forms at
the time of Wiles, and in particular primed for possible generalizations of the Taylor–Wiles
method to higher dimensions.

9.2. The Sato–Tate conjecture, part I. Harris, and Taylor (as early as 1996) started
the work of generalizing the Taylor–Wiles machinery to the setting of n-dimensional rep-
resentations. They quickly understood that the natural generalization of these ideas in n-
dimensions required the hypothesis that the Galois representations were self-dual up to
a twist. This meant that one should not consider general automorphic forms on the
group GLn(AQ) but rather groups of symplectic or orthogonal type depending on the
parity of n. If one replaced Galois representations over totally real fields by Galois repre-
sentations over imaginary CM fields and then further imposed the condition that the Galois
representations are conjugate self-dual, the relevant automorphic forms should then come
from unitary groups. There were two benefits of working with these hypotheses. First of all,
the relevant automorphic representations for unitary groups were, as with modular forms,
associated to cohomology classes on Shimura varieties. In particular, under the assumption
that there existed an auxiliary prime x such that πx was square integrable, they could be
seen inside the “simple” Shimura varieties of type U(n−1, 1) considered by Kottwitz [125].
On the other hand, the same Hecke eigenclasses (if not Galois representations) also came
from a compact form of the group and thus inside the cohomology of zero-dimensional
varieties27. The advantage of working in this setting is that the freeness of MQ over the
ring of diamond operators is immediate28. In the fundamental paper [50], Clozel, Harris,
and Taylor succeeded in overcoming many of the technical difficulties generalizing the ar-
guments of [180, 169] to these representations. Although the argument in spirit was very
much the same, there are a number of points for GL2 where things are much easier. One
representative example of this phenomenon is understanding Taylor–Wiles primes. While
the Galois side generalizes readily, the automorphic side requires many new ideas and some
quite subtle arguments concerning the mod p structure of certain GLn(Qq)-representations
of conductor 1 and conductor q. In order to prove the Sato–Tate conjecture for a modular
form f , it was already observed by Langlands that it sufficed to prove the modularity of all
the symmetric powers of f . However, it turns out that the weaker assumption that each

26At least after a twist which is always possible to achieve in practice, see [50, Lemma 4.1.4]. More
generally, one can work with unitary similitude groups and consider π with π∨ ' πc ⊗ χ for suitable
characters χ.

27Inside H0, of course
28In more general contexts, the freeness of MQ is closely related to the vanishing of cohomology localized

at m in all but one degree.
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of these symmetric powers is potentially modular suffices, and by some subterfuge only the
even powers are required [95]. In order to prove potential modularity theorems, one needs
to be able to carry out some version of the p-q switch (§5). In order to do this, one needs a
source of motives which both generate Galois representations of the right shape (conjugate
self dual and with distinct Hodge–Tate weights) and yet also come in positive dimensional
families. It turned out that there already existed such motives in the literature, namely,
the so-called Dwork family. However, given the strength of the automorphy lifting theo-
rems in [50], considerable effort had to be made in studying the geometry of the Dwork
family to ensure that the p-q switch would produce geometric Galois representations with
the right local properties. These issues were precisely addressed in the companion paper
by Harris, Shepherd-Barron and Taylor [97]. Taken together, these papers contained all
the ingredients to prove the potential modularity of higher symmetric powers of modular
forms (satisfying a technical square integrable condition at some auxiliary prime) with
one exception. As mentioned earlier, the work of Kisin had simplified the passage from
the minimal case to the non-minimal case — “all” that was required was to produce con-
gruences between the original form and forms of higher level rather than to compute a
precise congruence number as in [180]. However, even applying Kisin’s approach seemed
to require Ihara’s Lemma, and despite several years of effort, the authors of [50] were not
able to overcome this obstacle29. Here is Michael Harris’ recollection of the process:

In the spring of 1995, I was at Brandeis, Richard was at MIT, and I wanted to understand the brand
new proof of Fermat’s Last Theorem. So I asked Richard if he would help me learn by collaborating on
modularity for higher-dimensional groups. The collaboration took off a year later, when Richard wrote to
tell me about the Diamond–Fujiwara argument and suggested that we work out the Taylor–Wiles method
for unitary groups. This developed over the next 18 months or so into the early version of what eventually
became the IHES paper with Clozel. But it had no punch line. I was hoping to work out some non-trivial
examples of tensor product functoriality for GL(n) × GL(m), where one of the two representations was
congruent mod l to one induced from a CM Hecke character. This would have required some numerical
verification. In the meantime we got sidetracked into proving the local Langlands conjecture [100].

The manuscript on automorphy lifting went through several drafts and was circulated; you can still
read it on my home page [99]. Genestier and Tilouine [88] quoted it when they proved modularity lifting
for Siegel modular forms. When Clozel saw the draft he told me we should try to prove the Sato–Tate
Conjecture. Although this was in line with my hope for examples of tensor product functoriality, it seemed
completely out of reach, because I saw no way to prove residual modularity of symmetric powers.

When I heard about the Skinner–Wiles paper I came up with a quixotic plan to prove symmetric power
functoriality for Eisenstein representations, using the main conjecture of Iwasawa theory to control the
growth of the deformation rings. This was in the spring of 2000, at the IHP special semester on the
Langlands program, where I first met Chris Skinner.

One day Chris told me that Richard had invented potential modularity. This led me to a slightly less
hopeless plan to prove potential symmetric power functoriality by proving it for 2-dimensional represen-
tations congruent to potentially abelian representations, as in the potential modularity argument. I told
Richard about this idea, probably the day he arrived in Paris. He asked: why apply potential modularity
to the 2-dimensional representation; why not instead apply it to the the symmetric power representations
directly? I then replied: that would require a variation of Hodge structures with a short list of proper-
ties: mainly, the correct hp,q’s and large monodromy groups. We checked that potential modularity was

29The issue remains unresolved to this day.
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sufficient for Sato–Tate. We then resolved to ask our contacts if they knew of VHS with the required
properties. The whole conversation lasted about 20 minutes.

I asked a well-known algebraic geometer, who said he did not know of any such VHS. Richard asked
Shepherd-Barron, who immediately told him about the Calabi-Yau hypersurfaces that had played such
an important role in the mirror symmetry program. (And if my algebraic geometer hadn’t wanted to be
dismissive, for whatever reason, he would have realized this as well.) The hp,q’s were fine but we didn’t
know about the monodromy. However, Richard was staying at the IHES, and by a happy accident so was
Katz, and when Richard asked Katz about the monodromy for this family of hypersurfaces Katz told him
they were called the Dwork family and gave him the page numbers in one of his books.

So within a week or two of our first conversation, we found ourselves needing only one more result to
complete the proof of Sato–Tate. This was Ihara’s lemma, which occupied our attention over the next five
years. In the meantime, Clozel had written a manuscript on symmetric powers, based on the reducibility
mod ell of symmetric powers. The argument was incomplete but he had several ideas that led to his
joining the project, and he also hoped to use ergodic theory to prove Ihara’s lemma. In the summer of
2003 Clozel and I joined Richard in “old” Cambridge to try to work this out. The rest you know. We
finally released a proof conditional on Ihara’s lemma in the fall of 2005. A few months later Richard found
his local deformation argument, and the proof was complete.

9.3. Taylor’s trick: Ihara Avoidance. Shortly after the preprints [50, 157] appeared,
Taylor found a way to overcome the problem of Ihara’s lemma. Inspired by Kisin’s for-
mulation of the Taylor–Wiles method (§6.2), Taylor had the idea of comparing two global
deformation rings R1 and R2. Here (for simplicity) the local deformation problems associ-
ated to R1 and R2 are formally smooth at all but a single prime q. At the prime q, however,
the local deformation problem associated to R1 consists of tamely ramified representations
where a generator σ of tame inertia has characteristic polynomial (X − 1)n, and for R2

the characteristic polynomial has the shape (X − ζ1) . . . (X − ζn) for some fixed distinct
roots of unity ζi ≡ 1 mod p. On the automorphic side, there are two patched modules H1

and H2, and there is an equality H1/p = H2/p. The local deformation ring R1
q associ-

ated to R1 at q is reducible and has multiple components in the generic fibre, although
the components in characteristic zero are in bijection to the components in the special
fibre. On the other hand, the local deformation ring associated to R2 at q consists of a
single component, and so using Kisin’s argument one deduces that H2 has full support.
Now a commutative algebra argument using the identity H1/p = H2/p and the structure
of R1

q implies that H1 has sufficiently large support over R1, enabling one to deduce the

modularity of every Qp-valued point of R1
30.

9.4. The Sato–Tate conjecture, part II. After Taylor’s trick, one was almost in a
position to complete the proof of Sato–Tate for all classical modular forms. A few more
arguments were required. One was the tensor product trick due to Harris which enabled
one to pass from conjugate self-dual motives with weights in an arithmetic progression to
conjugate self-dual motives with consecutive Hodge–Tate weights by a judicious twisting
argument using CM characters. A second ingredient was the analysis of the ordinary

30Taylor’s argument proves theorems of the form R[1/p]red = T[1/p] rather than R = T. This is
still perfectly sufficient for proving modularity lifting results, but not always other interesting corollaries
associated to R = T theorems like finiteness of the corresponding adjoint Selmer groups (though see [3,
133]).
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deformation ring by Geraghty [89]. One of the requirements of the p-q trick was the
condition that certain moduli spaces (the Dwork family in this case) had points over
various local extensions E of Qp, in order to construct a motive M over a number field F
with Fv = E for v|p. For the purposes of modularity lifting, one wants strong control
over the local deformation ring at p, and the choice of local deformation ring is more or
less forced by the geometric properties of the p-adic representations associated to M .
One way to achieve this would be to work in the Fontaine–Laffaille range where the local
deformation rings were smooth. But this requires both that M is smooth at p and that the
ramification degree e of E/Qp is one. It is not so clear, however, that the Dwork family
contains suitable points (for a fixed residual representation ρ) which lie in any unramified
extension of Qp. What Geraghty showed, however, was that certain ordinary deformation
rings31 were connected over arbitrarily ramified bases. The final piece, however, was the
construction of Galois representations for all conjugate self-dual regular algebraic cuspidal π
without the extra condition that πq was square integrable for some q. This story merits it
own separate discussion; suffice to say that it required the combined efforts of many people
and the resolution of many difficult problems, not least of which was the fundamental
lemma by Laumon and Ngô [128, 136] (see also the Paris book project [49, 93], the work of
Shin [158], and many more references which if I attempted to make complete would weigh
down the bibliography and still contain grievous omissions).

9.5. Big image conditions. The original arguments in [180, 169] required a “big image”
hypothesis, namely that ρ was absolutely irreducible after restriction to the Galois group
of Q(ζp). Wiles’ argument also required the vanishing of certain cohomology groups as-
sociated to the adjoint representation of the image of ρ. These assumptions had natural
analogues in [50] (so-called “big image” hypotheses) although they were quite restrictive,
and it wasn’t clear that they would even apply to most residual representations coming from
some irreducible compatible family. In the setting of 2-dimensional representations, the
Taylor–Wiles hypothesis guarantees the existence of many primes q such that q ≡ 1 mod p
and such that ρ(Frobq) has distinct eigenvalues. This ensures, for example, that there
cannot be any Steinberg deformations at q because the ratio of the eigenvalues of any
Steinberg deformation must be q. In dimension n, one natural way to generalize this might
be to say that ρ(Frobq) has distinct eigenvalues, although this is not always possible to
achieve for many irreducible representations ρ. A weaker condition is that ρ(Frobq) has
an eigenvalue α with multiplicity one. For such q, there will be no deformations which are
unipotent on inertia at q for which the generalized α eigenspace is not associated to a 1-
dimensional block. The translation of this into an automorphic condition on Uq-eigenvalues
is precisely what is done in [50] (there are additional technical conditions on Frobq with
respect to the adjoint representation ad(ρ) which we omit here). In [172], however, Thorne
finds a way to allow ρ(Frobq) to have an eigenvalue α with higher multiplicity, and yet still

31In Geraghty’s setting, the residual representations ρ were locally trivial. Hence the definition of
“ordinary” was not something that could be defined on the level of Artinian rings, and the construction
(as with Kisin’s construction of local deformation rings associated to certain types) is therefore indirect.
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cut out (integrally) the space of automorphic forms whose Galois representations decom-
pose at q as an unramified representation plus a one dimensional representation which is
tamely ramified of p-power order. This technical improvement is very important because
(as proved in the appendix by Guralnick, Herzig, Taylor, and Thorne [172]) it imposes no
restrictions on ρ when p ≥ 2n + 1 beyond the condition that ρ is absolutely irreducible
after restriction to GQ(ζp). This improvement is very useful for applications.

9.6. Potentially diagonalizable representations. After the proof of Sato–Tate for
modular forms, Barnet-Lamb, Gee, and Geraghty turned their attention to proving the
analogous theorem for Hilbert modular forms of regular weight. The methods developed
so far were well-suited both to representations ρ which were either ordinary or when ρ
was not ordinary but still Fontaine–Laffaille. (The latter implies that ρ|GQp

is absolutely

irreducible of some particular shape.) For a modular form over Q, one easily sees that ρ
takes one of one of these forms for any sufficiently large p. For Hilbert modular forms, one
certainly expects that the ordinary hypothesis should hold for all v|p and infinitely many p,
but this remains open. The difficulty arises when, for some prime p (that splits completely,
say) the p-adic representation is ordinary at some v|p but non-ordinary other v|p. The
reason that this causes issues is that, when applying the Moret-Bailly argument in the p-q
switch, one wants to avoid any ramification at p for the non-ordinary case, and yet have
large ramification at the ordinary case to make ρ locally trivial, and these desires are not
compatible. The resolution in [10] involved a clever refinement of the Harris tensor prod-
uct trick. These ideas were further refined in [11] and led to the concept of a potentially
diagonalizable representation ρ : GE → GLn(Qp) for some finite extension of E/Qp. Re-
call from §6.2 that, in the modified form of the Taylor–Wiles method, proving modularity
of some lift of ρ often comes down to showing the existence of a modular lift lying on
a smooth point of the corresponding component of the generic fibre of Rloc. In light of
Taylor’s Ihara avoidance trick (§9.3), the difficulty in this problem is mostly at the prime p,
and in particular the fact that one knows very little about the components of general Kisin
potentially crystalline deformation rings. A potentially diagonalizable representation is one
for which, after some finite (necessarily solvable!) extension E ′/E, the representation ρ|G′

E

is crystalline and lies on the same generic irreducible component as a diagonal representa-
tion. This notion has a number of felicitous properties. First, it includes Fontaine–Laffaille
representations and ordinary potentially crystalline representations. Second, it is clearly
invariant under base change. Third, it is compatible with the tensor product trick of Harris.
These features make it supremely well-adapted to the current forms of the Taylor–Wiles
method. By combining this notion with methods of [10, 12], as well as extensive use of
Khare–Wintenberger lifting (§8.2), Barnet–Lamb, Gee, Geraghty, and Taylor in [11] proved
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the potential automorphy of all conjugate self-dual irreducible32 odd33 compatible systems
of Galois representations over a totally real field.

9.7. Even Galois Representations. The Fontaine–Mazur conjecture for geometric Ga-
lois representations ρ : GQ → GL2(Qp) predicts that, up to twist, either ρ is modular or ρ
is even with finite image. The methods of [180, 169] required the assumption that ρ was
modular and so a priori the assumption that ρ was odd (at least when p > 2). Nothing
at all was known about the even case before the papers [34, 35] in which a very simple
trick made the problem accessible to modularity lifting machinery under the assumption
that the Hodge–Tate weights are distinct. The punch line is that, for any CM field F/F+,
the restriction Sym2(ρ) : GF → GL3(Qp) is conjugate self-dual and no longer sees the

“evenness” of ρ34. Hence one can hope to prove it is potentially modular for some CM
extension L/L+, and then by cyclic base change [5] potentially modular for the totally real
field L+. But Galois representations coming from regular algebraic automorphic forms for
totally real fields will not be even35, and thus one obtains a contradiction. These ideas
are already enough to deduce the main result of [34] directly from [11], although in con-
trast [35] uses (indirectly) the full strength of the p-adic local Langlands correspondence
via theorems of Kisin [120]. The papers [34, 35] still fall short of completely resolving the
Fontaine–Mazur in this case even for p > 7, since there remain big image hypotheses on ρ.
On the other hand, this trick has nothing to say about the case when the Hodge–Tate
weights are equal (see §12).

9.8. Modularity of higher symmetric powers. Another parallel development in higher
dimensions was the extension of Skinner–Wiles (§3) to higher dimensions. Many of the
arguments of Skinner–Wiles relied heavily on the fact that any proper submodule of a 2-
dimensional representation must have dimension 1, and one-dimensional representations
are very well understood by class field theory. Nonetheless, in [173], Thorne proved a
residually reducible modularity theorem for higher dimensional representations. In order
to overcome the difficulty of controlling reducible deformations, he imposed a Steinberg
condition at some auxiliary prime. Although this is a definite restriction, it does apply (for
example) to the Galois representation coming from the symmetric power of a modular form
which also satisfies this condition. In a sequence of papers [51, 52, 53], Clozel and Thorne
applied this modularity lifting theorem to prove new cases of symmetric power functoriality
(see also the paper of Dieulefait [74]). A key difficulty here is again the absence of Ihara’s

32One variant proved shortly thereafter by Patrikis–Taylor [139] replaced the irreducibility condition by
a purity condition (which is automatically satisfied by representations coming from pure motives).

33Although there is no longer a non-trivial complex conjugation in the Galois group of a CM field, there
is still an oddness condition related to the conjugate self-duality of the representation and the fact that
there are two ways for an irreducible representation to be self-dual (orthogonal and symplectic).

34The representation ρ itself restricted to GF will not be odd in the required sense — one exploits the
fact here that 3 is odd whereas symplectic representations are always even dimensional.

35I managed to twist Taylor’s arm into writing the paper [168] which proved this for odd n, which
sufficed for my purposes where n was either 3 or 9. This is now also known for general n, see Caraiani–Le
Hung [44].
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lemma in order to find automorphic forms with the correct local properties. Very recently
(using a number of new ideas), Newton and Thorne [134, 135] were able to (spectacularly!)
complete this program and prove the full modularity of all symmetric powers of all modular
forms.

10. Beyond self-duality and Shimura varieties

All the results discussed so far — with the exception of those discussed in §4 —- apply
only to Galois representations which are both regular and satisfy some form of self-duality.
Moreover, they all correspond to automorphic forms which can be detected by the (étale)
cohomology of Shimura varieties. Once one goes beyond these representations, many of
the established methods begin to break immediately36.

An instructive case to consider is the case of 2-dimensional geometric Galois repre-
sentations of an imaginary quadratic field F with distinct Hodge–Tate weights. The
corresponding automorphic forms for GL2(AF ) contribute to the cohomology of locally
symmetric spaces X which are arithmetic hyperbolic 3-manifolds37. These spaces are cer-
tainly not algebraic varieties and their cohomology is hard to access via algebraic methods.
One of the first new questions to arise in this context is the relationship between torsion
classes and Galois representations. Some speculations about this matter were made by
Elstrodt, Grunewald, and Mennicke at least as far back as 1981 [75], but the most influ-
ential conjecture was due to Ash [6], who conjectured that eigenclasses in the cohomology
of congruence subgroups of GLn(Z) over Fp (which need not lift to characteristic zero)
should give rise to n-dimensional Galois representations over finite fields. Later, conjec-
tures were made [8, 7] in the converse conjecture in the spirit of Serre [156] linking Galois
representations to classes in cohomology modulo p. Certainly around 2004, however, it
was not at all clear what exactly one should expect the landscape to be38, and so it was
around this time I decided to start thinking about this question39 in earnest. I became
convinced very soon (for aesthetic reasons if not anything else) that if one modified T to
be the ring of endomorphisms acting on integral cohomology (so that it would see not only

36I should warn the reader that this section and the next (even more than the rest of this paper) is
filtered through the lens of my own personal research journey — caveat lector !

37Already by 1970, Serre (following ideas of Langlands) was trying to link Mennicke’s computation
that GL2(Z[

√
−109])ab is infinite to the possible existence of elliptic curves over Q(

√
−109) with good

reduction everywhere [61, Jan 14, 1970].
38I recall conversations with a number of experts at the 2004 Durham conference, where nobody seemed

quite sure even what the dimension of the ordinary deformation ring R of a 3-dimensional representa-
tion ρ : GQ → GL3(Fp) should be. Ash, Pollack, and Stevens had computed numerical examples where
a regular algebraic ordinary cuspidal form for GL3(AQ) not twist-equivalent to a symmetric square did
not appear to admit classical deformations. (I learnt about this example from Stevens at a talk at Banff
in December 2003.) This would be easily explained if R had (relative) dimension 0 over Zp but be more
mysterious otherwise.

39One great benefit to me at the time of thinking about Galois representations over imaginary quadratic
fields was that it didn’t require me to understand the geometry of Shimura varieties which I have always
found too complicated to understand. The irony of course is that the results of [1, 17] ultimately rely on
extremely intricate properties of Shimura varieties.
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the relevant automorphic forms but also the torsion classes) then there should still be an
isomorphism R = T. Moreover, this equality would not only be a form of reciprocity which
moved beyond the conjecture linking motives to automorphic forms, but it suggested that
the integral cohomology of arithmetic groups (including the torsion classes) were them-
selves the fundamental object of interest. Various developments served only to confirm
this point of view. In my paper with Mazur [40], we gave some theoretical evidence for
why ordinary families of Galois representations of imaginary quadratic fields might on the
one hand be positive dimensional and explained completely by torsion classes and yet not
contain any classical automorphic points at all. During the process of writing [36], Dunfield
(numerically) compared the torsion classes in the cohomology of inner forms of GL2 and
the data was in perfect agreement with a conjectural Jacquet–Langlands correspondence
for torsion (later taken up in joint work with Venkatesh [41]). Emerton and I had the idea
of working with completed cohomology groups both to construct Galois representations
and even possibly to approach questions of modularity. The first idea was to exploit the
well-known relationship between the cohomology of these manifolds and the cohomology
of the boundary of certain Shimura varieties. We realized that if we could control the
co-dimension of the completed cohomology groups over the non-commutative Iwasawa al-
gebra, the Hecke eigenclasses would be forced to be seen by eigenclasses coming from the
middle degree of these Shimura varieties where one had access to Galois representations40.
On the automorphy lifting side, we had even vaguer ideas [37, §1.8]41 on how to proceed. A
different (and similarly unsuccessful) approach42 was to work with ordinary deformations
over a partial weight space for a split prime p = vw in an imaginary quadratic field F . That
is, deformations of ρ which had an unramified quotient at v and w but with varying weight
at v and fixed weight at w. Here the yoga of Galois deformations suggested that R should
be finite flat over W (k) in this case (and even a complete intersection). Moreover, one had
access to T using an overlooked43 result of Hida [103], and in particular one could deduce
that T has dimension at least one. If one could show that T was flat over W (k), then
one could plausibly apply (assuming the existence of Galois representations) the original
argument of [180, 169]. The flatness of T, however, remains an open problem44.

10.1. The Taylor–Wiles method when l0 > 0, part I: Calegari–Geraghty. Shortly
before (and then during) the special year on Galois representations at the IAS in 2010-2011,
I started to work with Geraghty in earnest on the problem of proving R = T in the case of

40Unfortunately, these conjectures [37, Conj 1.5] remain all open in more or less all cases except for
Scholze’s results in the case of certain Shimura varieties [155, Cor 4.2.3].

41Pan’s remarkable paper [137] turned some of these pipe dreams into reality.
42This is taken from my 2006 NSF proposal, and I believe influenced by my conversations with Taylor

at Harvard around that time.
43One should never overlook results of Hida. I only learnt about this paper when Hida pointed it out

to me (with a characteristic smile on his face) after my talk in Montreal in 2005. I was pleased at least
that the idea that these families were genuinely non-classical was not anticipated either in [103] or in §4
of Taylor’s thesis [171].

44One might even argue that there is no compelling argument to believe it is true — the problem is
analogous to the vanishing of the µ-invariant in Iwasawa theoretic settings.
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imaginary quadratic fields, assuming the existence of a surjection R→ T. A computation
in Galois cohomology shows that the expected “virtual” dimension of R over W (k) should
be −1, and hence the patched module M∞ should have codimension 1 over the ring of
diamond operators S∞. We realized this was a consequence of the fact that, after localizing
the cohomology at a non-Eisenstein maximal ideal, the cohomology should be non-zero in
exactly two degrees. More precisely, patching the presentations of these SN -modules would
result in a balanced presentation of M∞ as an S∞-module with the same (finite) number of
generators as relations. We then realized that the same principle held more generally for n-
dimensional representations over any number field. In characteristic zero, the localized
cohomology groups were non-zero exactly in a range [q0, q0 + l0] (with q0 and l0 as defined
in [26]) where −l0 coincided with the expected virtual dimension of R over W (k) coming
from Galois cohomology. We could thus show — assuming the localized torsion cohomology
also vanished in this range — that by patching complexes PQ (rather than modules MQ),
one arrives at a complex P∞ of free S∞ modules in degrees [q0, q0 + l0]. Because the
ring R∞ of dimension dimR∞ = (dimS∞) − l0 acts by patching on H∗(P∞), a simple
commutative algebra lemma then shows that M∞ = H∗(P∞) has codimension l0 over S∞
and must be concentrated in the final degree. In particular, the Taylor–Wiles method
(as modified by Diamond) could be happily adapted to this general setting45. Moreover,
the arguments were compatible with all the other improvements, including Taylor’s Ihara
avoidance argument amongst other things46. We also realized that the same idea applied
to Galois representations coming from the coherent cohomology of Shimura varieties even
when the corresponding automorphic forms were not discrete series. While our general
formulation involved a number of conjectures we considered hopeless, the coherent case
had at least one setting in which many more results were available, namely the case of
modular forms of weight one, where the required vanishing conjecture was obvious, and
where we were able to establish the existence of the required map R → T with all the
required local properties by direct arguments. Although the state of knowledge concerning
Galois representations increased tremendously between the original conception of [38] and
its final publication, by early 2016 it still seemed out of reach to make any of the results
in [38] unconditional.

10.2. Construction of Galois representations, part II. Before one can hope to proveR =
T theorems, one needs to be able to associate Galois representations to the corresponding
automorphic forms. There are two contexts in which one might hope to make progress.
The first is in situations where the automorphic forms contribute to the Betti cohomology
of some locally symmetric space — for example, tempered algebraic cuspidal automorphic

45David Hansen came up with a number of these ideas independently [94].
46These methods only prove R[1/p]red = T[1/p]red, of course. In situations where T ⊗ Q = 0, the

methods of [38] in the minimal case prove not only that R = T but also that (both) rings are com-
plete intersections. Moreover, one also has access to level raising (on the level of complexes) and Ihara’s
lemma [41, §4], and I tried for some time (unsuccessfully) to adapt the original minimal ⇒ non-minimal
arguments of [180] to this setting. There certainly seems to be some rich ideas in commutative algebra in
these situations to explore, see for example recent work of Tilouine–Urban [174].
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representations for GLn(AF ) and any F . The second is in situations where the automor-
phic forms contribute to the coherent cohomology of some Shimura variety. Here the first
and easiest case corresponds to weight one modular forms, where the Galois representations
were first constructed by Deligne and Serre [69].

In work of Harris–Soudry–Taylor [98, 165], Galois representations were constructed for
regular algebraic forms for GL2(AF ) for an imaginary quadratic field F and satisfying a
further restriction on the central character. Harris, Soudry, and Taylor exploited (more
or less) the fact that the automorphic induction of such forms are self-dual (although not
regular) and still contribute to coherent cohomology, so one can construct Galois repre-
sentations using a congruence argument as in the paper of Deligne and Serre [69]. On the
other hand, this does not prove the expected local properties of the Galois representation
at v|p.

It was well-known for many years that the Hecke eigenclasses associated to regular
algebraic cuspidal automorphic forms for GLn(AF ) for a CM field F could be realized as
eigenclasses coming from the boundary of certain unitary Shimura varieties of type U(n, n).
It was, however, also well-known that the corresponding étale cohomology classes did not
realize the desired Galois representations47. Remarkably, this problem was completely
and unexpectedly resolved in 2011 in [96] by Harris–Lan–Taylor–Thorne. Richard Taylor
writes:

For [96] I knew that the Hecke eigenvalues we were interested in contributed to Betti cohomology
of U(n, n). The problem was to show that they contributed to overconvergent p-adic cusp forms. I was
convinced on the basis of Coleman’s paper “classical and overconvergent modular forms” [55] that this
must be so. I can’t now reconstruct exactly why Coleman’s paper convinced me of this, and it is possible,
even probable, that my reasoning didn’t really make any sense. However it was definitely this that kept
me working at the problem, when we weren’t really getting anywhere.

Amazingly, this breakthrough immediately inspired the next development:

10.3. Construction of Galois representations, part III: Scholze. In [155], Scholze
succeeded in constructing Galois representations associated to torsion classes in the setting
of GLn(AF ) for a CM field F . Scholze had the idea after seeing some lectures on [96]:

During a HIM trimester at Bonn, Harris and Lan gave some talks about their construction of Galois
representations. At the time, I had some ideas in my head that I didn’t have any use for: That Shimura
varieties became perfectoid at infinite level, and that there is a Hodge–Tate period map defined on them.
The only consequence I could draw from this were certain vanishing results for completed cohomology as
conjectured in your work with Emerton; so at least I knew that the methods were able to say something
nontrivial about torsion classes in the cohomology. After hearing Harris’ and Lan’s talks, I was trying to
see whether these ideas could help in extending their results to torsion classes. After a little bit of trying,
I found the fake-Hasse invariants, and then it was clear how the argument would go.

Even after this breakthrough, Scholze’s construction still fell short of the conjectures
in [38] in two ways. The first was that the Galois representation (ignoring here issues of
pseudo-representations) was valued not in T but in T/I for some ideal I of fixed nilpotence.
This is not a crucial obstruction to the methods of [38]. The second issue, however, was that

47For a more basic example of what can go wrong, note that the Hecke eigenvalues of Tl on H0(X,Qp)
of a modular curve are 1 + l, which corresponds to the Galois representation Qp ⊕Qp(1). However, only
the piece Qp occurs inside H0.
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the Galois representations were constructed (in the end) via p-adic congruences, and thus
one did not have control over their local properties at p which are crucial for modularity
applications.

10.4. The Taylor–Wiles method when l0 > 0, part II: DAG. Although not directly
related to new R = T theorems, one new recent idea in the subject has been the work
of Galatius–Venkatesh [86] on derived deformation rings in the context of Venkatesh’s
conjectures over Z. This work (in part) reinterprets the arguments of [38] in terms of a
derived Hecke action. The authors define a derived version R of R with π0(R) = R. Under
similar hypotheses to [38], the higher homotopy groups of R are shown to exist precisely in
degrees 0 to l0. One viewpoint of the minimal case of [38] is that one constructs a (highly
non-canonical) formally smooth ring R∞ of dimension n− l0 with an action of a formally
smooth ring S∞ of dimension n such that the minimal deformation ring R is R∞⊗S∞ S∞/a
for the augmentation ideal a. Moreover, the ring R is identified both with the action
of T on the entire cohomology and simultaneously on the cohomology in degree q0 + l0.
On the other hand, when l0 > 1, the intersection of R∞ and S∞/a over S∞ is never
transverse48, and homotopy groups of the derived intersection recover the cohomology in
all degrees (under the running assumptio2n one also knows that the patched cohomology
is free). On the other hand, there is a more canonical way to define R, namely to take the
unrestricted global deformation ring Rglob (which has no derived structure) and intersect
it with a suitable local crystalline deformation ring as algebras over the unrestricted local
deformation ring. The expected dimension of this intersection is also −l0 over W (k),
although this is not so clear from this construction. Hence [86] can be viewed as giving an
intrinsic definition of R independent of any choices of Taylor–Wiles primes and showing
that its homotopy groups are related (as with R∞⊗L

S∞ S∞/a) to the cohomology49. These
ideas have hinted at a closer connection between the Langlands program in the arithmetic
case and the function field case than was previously anticipated50, see for example work of
Zhu [181].

11. Recent Progress

11.1. Avoiding conjectures involving torsion I: the 10-author paper. As men-
tioned in §10.3, even after the results of [155] there remained a significant gap to make
the results of [38] unconditional, namely, the conjecture that these Galois representations
had the right local properties at p and a second conjecture predicting the vanishing of

48When l0 = 1, the intersection can be transverse when R is a finite ring. In this setting, the relevant
cohomology is also non-zero and finite in exactly one degree. On the other hand, as soon as Hom(R,Qp)
is non-zero (for example, when there exists an associated motive) and l0 > 0, the intersection will always
be non-transverse.

49There are some subtleties as to what the precise statement should be in the presence of global con-
gruences, but already this author gets confused at the best of times between homology and cohomology,
so I will not try to unentangle these issues here.

50Not anticipated by many people, at least; Michael Harris has been proselytizing the existence of a
connection for quite some time.
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(integral) cohomology localized at a non-maximal ideal m outside a certain precise range
(corresponding to known results in characteristic zero). It should be noted that the second
conjecture was still open (in all but the easiest cases) in the simpler setting of Shimura va-
rieties. The first hints that one could possibly make progress on this second conjecture (at
least for Shimura varieties) was given in an informal talk by Scholze in Bellairs51 in 2014.
This very quickly led to a long term collaboration between Scholze and Caraiani [45, 46],
which Caraiani describes as follows:

At the Barbados conference in May 2014, Peter gave a lecture on how one might compute the coho-
mology of compact unitary Shimura varieties with torsion coefficients. The key was to have some control
for RπHT∗F` restricted to any given Newton stratum. He was expressing this in terms of a conjecture that
had grown out of his work on local Langlands using the Langlands–Kottwitz method. After his talk, I
went to ask him some questions about this conjecture and it sounded like there were some things that still
needed to be made precise. He asked if I wanted to help him make his strategy work. After some hesitation
(because I didn’t think I knew enough or was strong enough to work with him), I accepted. Later that
evening, I suggested switching from the Langlands–Kottwitz approach to understanding RπHT∗F` to an
approach more in the style of Harris–Taylor. This relies on the beautiful Mantovan product formula that
describes Newton strata in terms of Rapoport–Zink spaces and Igusa varieties. Maybe something like this
could help illuminate the geometry of the Hodge–Tate period morphism? Peter immediately saw that this
should work and we made plans for me to visit Bonn that summer to continue the collaboration.

As Peter and I were finishing writing up the compact case, it became clear to us that the vanishing
theorem would give a way to construct Galois representations associated to generic mod p classes that
preserves the desired information at p. Peter started thinking about the non-compact case and how that
might apply to the local-global compatibility needed for Calegari–Geraghty. I remember discussing this
with him at the Clay Research conference in Oxford in September 2015. By spring 2016, Richard started
floating the idea of a working group on Calegari–Geraghty and found out that Peter and I had an approach
to local-global compatibility. Around June 2016, Richard suggested to me to organize the working group
with him. Peter was very excited about the idea, but wasn’t sure he would be able to attend for family
reasons. In the end, we found a date in late October 2016 that worked for everyone.

The working group met under the auspices of the first “emerging topics” workshop52

at the IAS to determine the extent to which the expected consequences could be applied
to modularity lifting: A clear stumbling point was the vanishing of integral cohomology
after localization outside the range of degrees [q0, q0 + l0]. On the other hand, Khare and
Thorne had already observed in [115] by a localization argument that this could sometimes
be avoided in certain minimal cases. It was this argument we were able to modify for the
general case, thus avoiding the need to prove the (still open) vanishing conjectures for
torsion classes53. The result of the workshop was a success beyond what we could have

51I was invited to give the lecture series in Bellairs after Matthew Emerton didn’t respond to his emails.
Through some combination of the appeal of my own work and the fact that the lectures were given on a
beach in Barbados, I managed to persuade Patrick Allen, George Boxer, Ana Caraiani, Toby Gee, Vincent
Pilloni, Peter Scholze, and Jack Thorne to come, all of whom are now my co-authors, and all of whom (if
they weren’t already at the time) are now more of an expert in this subject than I am. The thought that
I managed to teach any of them something about the subject is pleasing indeed.

52Although later described as a “secret” workshop, it was an “invitation-only working group.”
53I regard my main contribution to [1] as explaining how the arguments in [38] using Taylor’s Ihara

avoidance (§9.3) were incompatible with any characteristic zero localization argument in the absence of
(unknown) integral vanishing results in cohomology. The objection (even in the case l0 = 0) was that it was
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reasonably anticipated — we ended up with more or less54 the outline of a plan to prove all
the main modularity lifting theorems which finally appeared in [1], namely the Ramanujan
conjecture for regular algebraic automorphic forms for GL2(AF ) of weight zero for any CM
field F , and potential modularity (and the Sato–Tate conjecture) for elliptic curves over
CM fields.

There have already been a number of advancements beyond [1] including in particular
by Allen, Khare, and Thorne [4] proving the modularity of many elliptic curves over CM
fields and a potential automorphy theorem for ordinary representations by Qian [144]. It
does not seem completely implausible that results of the strength of [11] for n-dimensional
regular Galois representations of GQ are within reach.

11.2. Avoiding conjectures involving torsion II: abelian surfaces. A second exam-
ple that Geraghty and I had considered during the 2010–2011 IAS special year was the
case of abelian surfaces, corresponding to low (irregular) weight Siegel modular forms of
genus g = 2. It was clear that a key difficulty was proving the vanishing of H2(X,ω2)m
where X was a (compactified) Siegel 3-fold with good reduction at p, where m is maximal
ideal of the Hecke algebra corresponding to an absolutely irreducible representation, and
where ω|Y = det π∗Ω

1
A/Y on the open moduli space Y ⊂ X admitting a corresponding

universal abelian surface A/Y . In other irregular weights (corresponding to motives with
Hodge–Tate weights [0, 0, k − 1, k − 1] for k ≥ 4) the vanishing of the corresponding co-
homology groups was known by Lan and Suh [126]. The vanishing of H2(X,ω2)m was
more subtle, however, because the corresponding group does not vanish in general before
localization in contrast to the previous cases. In [39], we proved a minimal modularity
theorem for these higher weight representations and a minimal modularity theorem in the
abelian case contingent on the vanishing conjecture above which we did not manage to
resolve (and which remains unresolved). I finished and then submitted the paper after I
had moved to Chicago and Geraghty had moved to Facebook in 2015. I then started work-
ing with Boxer and Gee55 on this vanishing question under certain supplementary local
hypotheses. (By this point, Galois representations associated to torsion classes in coherent
cohomology had been constructed by Boxer [16] and Goldring–Koskivirta [90].) But then

easy to construct complexes P 1 and P 2 of free S∞ modules so that the support of H∗(P 1/p) and H∗(P 2/p)
coincided (as they must) but that (for example) H∗(P 1)[1/p] was zero even though H∗(P 2)[1/p] was not.
The objection to this objection, however, which was resolved during the workshop (and which to be clear
I played no part in resolving!) is to not merely to compare the support of the complexes P i/p but to
consider the entire complex in the derived category. In particular, even (say) for a finite Zp-module M ,
the module M [1/p] is non-zero exactly when M ⊗L Fp has non-zero Euler characteristic.

54It is worth emphasizing that an incredible amount of work was required to turn these ideas into reality,
and that this intellectual effort was by and large carried out by the younger members of the collaboration.

55George Boxer had also arrived at Chicago in 2015, and was collaborating with Gee on companion form
results for Siegel modular forms, with the hope (in part) of deducing the modularity of abelian surfaces
from Serre’s conjecture for GSp4 in a manner analogous to the deduction by of the Artin conjecture from
Serre’s conjecture for GL2 in [110, 113]. They usually worked together at Plein Air cafe. Since I had
thought about similar questions with Geraghty and frequently went to Plein Air for 6oz cappuccinos, it
was not entirely surprising for us to start working together.
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in November of 2016 (one week after the IAS workshop!), Pilloni’s paper on higher Hida
theory [142] was first posted. It was apparent to us that Pilloni’s ideas would be extremely
useful, and the four of us began a collaboration almost immediately. Just as in [1], we
were ultimately able to avoid proving any vanishing conjectures. However, unlike [1], the
way around this problem was not purely by commutative algebra, but instead by working
with ideas from [142]. Namely, instead of working with the cohomology of the full Siegel
modular variety X, one could work with the coherent cohomology of a certain open variety
of X with cohomological dimension one whose (infinite dimensional) cohomology could still
be tamed using the methods of higher Hida theory [142] in a way analogous to how Hida
theory controls the (infinite dimensional) cohomology of the affine variety (with cohomo-
logical dimension zero) corresponding to the ordinary locus. Generalizing this to a totally
real field, one could then combine these ideas with the Taylor–Wiles method as modified
in [38] to prove the potential modularity of abelian surfaces over totally real fields [17].
This coincidentally gives a second proof of the potential modularity of elliptic curves over
CM fields proven in [1]. (The papers [1] and [17] both were conceived of and completed
within a week or so of each other.)

12. The depths of our ignorance

Despite what can reasonably be considered significant progress in proving many cases
of modularity since 1993, it remains the case that many problems appear just as hopeless
as they did then56. Perhaps most embarrassing is the case of even Galois representa-
tions GQ → GL2(C) with non-solvable image (equivalently, projective image A5). For
example, we cannot establish the Artin conjecture for a single Galois representation whose
image is the binary icosahedral group SL2(F5) of order 120. The key problem is that the
automorphic forms (Maass forms with eigenvalue λ = 1/4 in this case) are very hard to
access — given an even (projective) A5 Galois representation, we don’t even know how to
prove that there exists a corresponding Maass form with the right Laplacian eigenvalue,
let alone one whose Hecke eigenvalues correspond to the Galois representation57. In many
ways, we have made no real progress on this question. The case of curves of genus g > 2
whose Jacobians have no extra endomorphisms seems equally hopeless. One can only take
solace in the fact that the Shimura–Taniyama conjecture seemed equally out of reach before
Wiles’ announcement in Cambridge in 1993.

56Or perhaps harder, since there has been almost 30 years without any progress whatsoever.
57Motives can be divided according to a tetrachotomy. The first form are the Tate (and potentially

Tate) motives, whose automorphy was known to Riemann and Hecke. The second form are the motives
(conjecturally) associated to automorphic representations which are discrete series at infinity and thus
amenable to the Taylor–Wiles method. The third form are the motives (conjecturally) associated to
automorphic representations which are at least seen by some flavour of cohomology, either by the Betti
cohomology of locally symmetric spaces or the coherent cohomology of Shimura varieties (possibly in
degrees greater than zero) which are amenable in principle to the modified Taylor–Wiles method. The
fourth form consist of the rest, which (besides a few that can be accessed by cyclic base change) are a
complete mystery.
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[18] C. Breuil, Schémas en groupe et corps des normes, 1998, URL https://www.imo.

universite-paris-saclay.fr/~breuil/PUBLICATIONS/groupesnormes.pdf, unpublished.
[19] C. Breuil, Groupes p-divisibles, groupes finis et modules filtrés. Ann. of Math. (2) 152 (2000), no. 2,

489–549.
[20] C. Breuil, Sur quelques représentations modulaires et p-adiques de GL2(Qp). I. Compositio Math.

138 (2003), no. 2, 165–188.
[21] C. Breuil, Sur quelques représentations modulaires et p-adiques de GL2(Qp). II. J. Inst. Math.

Jussieu 2 (2003), no. 1, 23–58.
[22] C. Breuil, Introduction générale. Astérisque (2008), no. 319, 1–12.
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École Norm. Sup. (4) 19 (1986), no. 3, 409–468.
[48] L. Clozel, Représentations galoisiennes associées aux représentations automorphes autoduales de

GL(n). Inst. Hautes Études Sci. Publ. Math. (1991), no. 73, 97–145.

arXiv:1909.01898


RECIPROCITY IN THE LANGLANDS PROGRAM SINCE FERMAT’S LAST THEOREM 31

[49] L. Clozel, M. Harris, J.-P. Labesse, and B.-C. Ngô (eds.), On the stabilization of the trace for-
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177–290.
[89] D. Geraghty, Modularity lifting theorems for ordinary Galois representations. Math. Ann. 373 (2019),

no. 3-4, 1341–1427.
[90] W. Goldring and J.-S. Koskivirta, Strata Hasse invariants, Hecke algebras and Galois representations.

Invent. Math. 217 (2019), no. 3, 887–984.
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