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Grothendieck topology

Definition
A site is given by a category C and a class Cov(C) ⊂ 2Mor(C) of families of morphisms
with fixed target {Ui → U}i∈I where I is a small set, called coverings of C, satisfying
the following axioms
(1) If V → U is an isomorphism then {V → U} ∈ Cov(C).
(2) If {Ui → U}i∈I ∈ Cov(C) and for each i we have {Vij → Ui}j∈Ji

∈ Cov(C), then
{Vij → U}i∈I ,j∈Ji

∈ Cov(C).
(3) If {Ui → U}i∈I ∈ Cov(C) and V → U is a morphism of C then Ui ×U V exists
for all i and {Ui ×U V → V }i∈I ∈ Cov(C).

Remark
In axiom (3) we require the existence of the fibre products Ui ×U V for i ∈ I . Actually
almost all sites appear in algebraic geometry have any pullback.
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Grothendieck topology

Example
(i)[Small Zariski site]
Let X be a topological space. Let XZar be the category whose objects consist of all
the open sets U in X and whose morphisms are just the inclusion maps. That is, there
is at most one morphism between any two objects in XZar . Now define
{Ui → U}i∈I ∈ Cov (XZar) if and only if

⋃
Ui = U .

(ii)[Big τ site]
Let Sch be the category of schemes, and τ ∈ {Zar , et,Smooth, fppf , fpqc}. Let T be
a scheme. An τ covering of T is a family of morphisms {fi : Ti → T}i∈I of schemes
such that each fi is (1)open immersion (2)étale (3)smooth (4)flat, locally of finite
presentation (5)flat, respectively, and such that T =

⋃
fi (Ti). We denote the

corresponding site to be Schτ . Appearently we have

Cov(Zar) ⊂ Cov(et) ⊂ Cov(Smooth) ⊂ Cov(fppf ) ⊂ Cov(fpqc)
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Presheaves and Sheaves
Let C be a site.
Definition (Presheaf)
A presheaf of sets on C is a contravariant functor from C to Sets. Morphisms of
presheaves are transformations of functors. The category of presheaves of sets is
denoted PSh(C) or Fun(C op,Set). (Note C is not necessarily essentially small, so
PSh(C) is not necessarily locally small)

Definition (Sheaf)
Let F be a presheaf of sets on C. We say F is a sheaf if for every covering
{Ui → U}i∈I ∈ Cov(C) the diagram

F(U ) −→
∏
i∈I

F (Ui)
p∗
0,p∗

1

⇒
∏

(i0,i1)∈I×I

F (Ui0 ×U Ui1)

represents the first arrow as the equalizer of p∗
0 and p∗

1.
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Sheafification

Definition (Sheafification)
Let JU be the category of all coverings of U . The objects of JU are the coverings of
U in C, and the morphisms are the refinements. Note that Ob (JU ) is not empty since
{idU} is an object of it. We define

F+(U ) = colimJ op
U

H 0(U ,F)

where H 0(U ,F) =
{
(si)i∈I ∈

∏
i F (Ui) , si |Ui×U Uj = sj |Ui×U Uj

∀i, j ∈ I
}

. We can
verify F+ is separated and sF = (F+)+ is a sheaf. We call sF by the sheafification.

Warning: JU is not necessarily a (essentially) small catgory, so not any presheaf on
any site can be sheafificated. Actually, there exists a presheaf on Schfpqc which
admits no fpqc sheafification!
However if we remove fpqc and consider τ ∈ {Zar , et,Smooth, fppf }, then all JU in
Schτ are essentially small and any presheaf in it can be sheafificated. In the following
context, we only consider the site whose JU is essentially small and has any
pullback. 8 / 27



Sheafification

Proposition (Adjoint)
PSh(C) ⇄ Sh(C) is a pair of adjunction.

Proposition
The sheafification functor s : PSh(C) → Sh(C) preserves any finite limit because the
sheafification can be witten as a filtered colimit of underlying sets.

Proposition (monomorphisms and epimorphisms)
Let φ : F → G be a map of sheaves of sets or abelian groups, then
(1) φ is monomorphism iff for every object U of C the map φ : F(U ) → G(U ) is
injective.
(2) φ is epimorphism iff for every object U of C and every section s ∈ G(U ) there
exists a covering {Ui → U} such that for all i the restriction s|Ui

is in the image of
φ : F (Ui) → G (Ui).
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Abelian sheaves

Proposition (Adjoint)
PAbSh(C) ⇄ AbSh(C) is still a pair of adjunction.

Proposition
PAbSh(C) and AbSh(C) are abelian categories.

Remark
By the Yoneda lemma, if a presheaf of abelian groups is representable by an object H ,
then H admits a natural abelian group structure.
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Sheaves on the overcategory

Theorem
Let C be a site. Let U ∈ Ob(C). We turn C/U into a site by declaring a family of
morphisms {Vj → V } of objects over U to be a covering of C/U if and only if it is a
covering in C. Consider the forgetful functor jU : C/U −→ C. Then we have the
following equivalence of categories

Sh(C/U ) ⇄ Sh(C)↓U

Remark
(1) In algebraic geometry, this equivalence tells us Sh(Sch/S)τ is exactly the
overcategory Sh(Sch)τ ↓ hS .

(2) This equivalence still holds even if we replace U by any sheaf F .

Sh(C/F) ⇄ Sh(C)↓F 13 / 27



FPPF sheaves
Now let us focus on the big fppf site Schfppf .

Theorem
Let S be a base scheme, X be an S-scheme, then the representable functor
HomS(−,X) is an fppf sheaf on Sch/S .

Theorem
For any τ ∈ {Zar , et,Smooth, fppf } (remove fpqc), Aff → Sch induces a natural
equivalence of topoi

Sh(Sch)τ
∼−→ Sh(Aff )τ

A τ -sheaf is determined by its values on affine schemes!

Corollary
Note that any object in Affτ is compact, so the sheaf condition in it is a finite limit!
So we get: In Sh(Aff )τ any filtered colimit can be created in presheaf level, which
commutes with any finite limit.
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Infinitesimal neighborhood along a subsheaf

Definition
Let Y ⊂ X is an monomorphism of fppf sheaves on Sch/S . We define Inf k

Y (X) ⊂ X
to be the subsheaf whose value on an S-scheme T are given as follows: for a
t ∈ X(T ), t ∈ Inf k

Y (X)(T ) iff there is an fppf covering {Ti → T} and for each Ti
associates a closed subscheme T ′

i defined by an ideal whose k + 1 power is (0) with
the property that tT ′

i
∈ X(T ′

i ) is contained in Y (T ′
i ).

Example
If X and Y are S-schemes and Y → U ⊂ X is an immersion, then
Inf k

Y (X) = Inf k
Y (U ) ' Spec(OU/Ik+1) where I is the quasi-coherent ideal.

Proposition
Let Z ⊂ X be a closed immersion of S-schemes with corresponding quasi-coherent
ideal I, then the value of X̂Z = lim−→k Inf k

Z (X) on a S-scheme T equals to
{t ∈ X(T )|t∗(I) is locally nilpotent}.
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Completion of an fppf sheaf along a base point
We most consider the case when Y is a given base point, i.e. Y (T ) = {∗} = hS(T )

for any S-scheme T . In this case we get a functor (̂−) : Sh(Sch/S)
∗ → Sh(Sch/S)

∗ by
(X , e) 7→ (lim−→k Inf k

e (X), e). It is easy to check we have a natural inclusion X̂ ⊂ X ,

and that ̂̂X ⊂ X̂ is a natural isomorphism.
We say an X ∈ Sh(Sch/S)

∗ is complete iff X̂ = X .

Theorem

(a) ˆ(−) preserves finite limits, so CSh(Sch/S)
∗ has finite limits, which are created in

Sh(Sch/S)
∗.

(b) Forget : CSh(Sch/S)
∗ ⇄ Sh(Sch/S)

∗ is an adjoint pair.
(c) Forget : CAbSh(Sch/S) ⇄ AbSh(Sch/S) is an adjoint pair.
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Formal geometry
We have known that the equivalence of topoi Sh(Sch)fppf −→ Sh(Aff )fppf , so we will
be free to exchange things from each other.

Definition
The χ̂ is a full subcategory of Fun(Rings,Sets) which consists of functors
X : Rings → Sets that is a small filtered colimit of corepresentable functors. More
precisely, there must be a small filtered category J and a functor
i 7→ Xi = Hom(Ri ,−) such that X = lim−→i Xi .

Actually χ̂ is the category of “formal schemes" in Strickland’s paper, which equals to
(Pro − Ring)op or Ind − Aff .

We donote LRing and FRing to be the category of linearly topological rings and
complete linearly topological rings respectively. Then we have fully faithful embeddings

FRing → χ̂→ Sh(Aff )fppf
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Formal Lie varieties

Definition
Let X ∈ CSh(Sch/S)

∗, we call it a (pointed) formal Lie variety iff zariski locally on S ,
the F is isomorphic to Spf (OS [[x1, ..., xN ]]) as fppf sheaves for some N ≥ 0.

Theorem
Let X ∈ CSh(Sch/S)

∗, TFAE
(1) X is a formal Lie variety.
(2) Zariski locally on S , the X is isomorphic to Spf (OS [[x1, ..., xN ]]) as pointed
sheaves for some N ≥ 0.
(3) (a) The Infk(X) is representable for all k ≥ 0.
(b) The ωX = e∗(ΩInf1(X)/S) = e∗(ΩInfk(X)/S) is a finite locally free sheaf on S .
(c) Denoting by gr inf

∗ (X) the graded OS -algebra
⊕

k≥0 Ik
k , such that

gr inf
i (X) = gri(Infi(X)) holds for all i ≥ 0. We have an isomorphism

SymS (ωX )∗
∼−→ gr inf

∗ (X) induced by the canonical mapping ωX
∼−→ gr inf

1 (X).
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Formal Lie varieties

Theorem
Let X be a smooth S-scheme with a base point e ∈ X(S), then X̂ is a formal Lie
variety.

Theorem
Let X ∈ CSh(Sch/S)

∗ be a formal Lie variety. If S = Spec(R) is affine, then we have a
(non-canonical) isomorphism X → Spf (ŜymS(ωX )) as pointed sheaves.

The second theorem is based on the fact that a finite locally free sheaf is a projective
object in Qcoh(S) if S is affine, whic tells us any formal Lie variety on an affine base S
is from the completion of a pointed smooth S-scheme.
Corollary
Let X ∈ CSh(Sch/S)

∗ be a formal Lie variety (S here is not assumed to be affine),
then X is a formally smooth fppf sheaf, which means X(Spec(A)) → X(Spec(A/I )) is
surjective for any A → A/I over S with a square-zero ideal I .

23 / 27



Formal Lie varieties

Theorem
Let X be a smooth S-scheme with a base point e ∈ X(S), then X̂ is a formal Lie
variety.

Theorem
Let X ∈ CSh(Sch/S)

∗ be a formal Lie variety. If S = Spec(R) is affine, then we have a
(non-canonical) isomorphism X → Spf (ŜymS(ωX )) as pointed sheaves.
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Formal Lie groups

Definition
A formal Lie group is an Abelian sheaf X ∈ AbSh(Sch/S) whose underlying pointed
sheaf is a formal Lie variety.

We more care about 1-dim formal Lie groups, in most references they are directly
called by the “formal group". Now we will show that formal groups are equivalent to
graded formal group laws on even weakly periodic graded rings.

Definition (EWP)
A graded ring R∗ is even weakly periodic iff it satisfies following conditions
(a) R2 ⊗R0 R−2 → R0 is isomorphic;
(b) R1 = 0.

Proposition
From the definition, for an EWP R∗ we immediately get
(1) R2 ⊗R0 Rn → Rn+2 is isomorphic for any n ∈ Z. (2)Rodd = 0.
(3) R2 ∈ Pic(R0) with (R2)

−1 = R−2. 25 / 27



Formal groups
Now let us calculate the data of a formal group.

Proposition

HomSh(S)∗(Spf (ŜymS(M )),Spf (ŜymS(N ))) =
∏+∞

i=1 HomOS−Mod(N ,Symi(M ))
where M ,N ∈ Qcoh(S).

Corollary
Let X ∈ CSh(Sch/S)

∗ be a formal Lie variety over an affine base S = Spec(R), then
HomSh(S)∗(X × X ,X) '

∏
(i,j)|i+j≥1 HomOS−Mod(ωX , ω

i+j
X ) =

∏
(i,j)|i+j≥1 ω

i+j−1
X .

If it satisfies the associated law then it coincides with a graded formal group law on
Sym(ωX )∗ or the EWP Sym±(ωX )∗ =

⊕
i∈Z ω

i
X .

Theorem
The construction above actually gives an equivalence of moduli stacks
MFG

∼−→ MFGLs(EWP) over Aff .
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Fibered category(Cartesian fibration)

Definition
Let F : E → C be a functor. An arrow ϕ : ξ → η of F is cartesian if for any arrow
ψ : ζ → η in F and any arrow h : pFζ → pFξ in C with pFϕ ◦ h = pFψ, there exists a
unique arrow θ : ζ → ξ with pFθ = h and ϕ ◦ θ = ψ, as in the commutative diagram
If ξ → η is a cartesian arrow of F mapping to an arrow U → V of C, we also say that
ξ is a pullback of η to U .
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