Formal Group Laws and Formal Groups

Hongxiang Zhao

Contents

Lazard's Theorem

Classification of Formal Group Laws

Formal Groups

Formal Group Law

Definition (Formal Group Law)

Let R be a commutative ring. A (one-dimensional commutative) formal group law over R is a power series $f(x,y) \in R[[x,y]]$ satisfying three conditions:

$$f(x,0) = f(0,x) = x$$
$$f(x,y) = f(y,x)$$
$$f(x,(f(y,z))) = f(f(x,y),z)$$

Let $FGL(R) := \{ formal group laws over R \} \subset R[[x,y]].$

FGL: $Rings \rightarrow Sets$ is a covariant functor.

An Example of Formal Group Law

Let K be a local field with integer ring \mathcal{O}_K . Suppose the residue field of \mathcal{O}_K has $q=p^k$ elements for some prime number p and integer k. Fix an uniformizer π of \mathcal{O}_K .

$$\mathscr{F}_{\pi} := \left\{ f \in t\mathcal{O}_K[[t]] \colon f \equiv pt \pmod{t^2}, f \equiv t^q \pmod{\pi} \right\}$$

Proposition

For any $f \in \mathscr{F}_{\pi}$, there exists a unique $F \in FGL(\mathcal{O}_K)$, such that $f \in End(F)$.

It can be shown that different choices of π , f will give isomorphic F.

Lazard Ring

For any
$$f(x,y) = \sum c_{i,j} x^i y^j \in R[[x,y]]$$
,

 $f \in \mathsf{FGL}(R) \Leftrightarrow c_{i,j}$ satisfy certain polynomial equations given by the previous conditions on formal group laws.

Let $L=\mathbb{Z}[t_{i,j}]/Q$, where $Q\subset\mathbb{Z}[t_{i,j}]$ is the ideal generated by the polynomial equations mentioned above.

Then
$$f_L(x,y) = \sum t_{i,j} x^i y^j \in \mathsf{FGL}(L)$$
.

Lazard Ring

For each commutative ring R and $f(x,y) = \sum c_{i,j}x^iy^j$,

$$L \longrightarrow R \longrightarrow \mathsf{FGL}(L) \longrightarrow \mathsf{FGL}(R)$$

$$c_{i,j} \longmapsto c_{i,j} \qquad f_L \longmapsto f$$

We get a surjective map:

$$\mathsf{Hom}(L,R) \to \mathsf{FGL}(R)$$

Easy to see that this is bijective \Rightarrow FGL \cong Hom(L, -) representable.

L is called the Lazard ring.

Lazard's Theorem

Let
$$\deg t_{i,j} = 2(i+j-1)$$
.

If we let $\deg x = \deg y = -2$, $f(x,y) = \sum t_{i,j} x^i y^j$ has degree -2.

- $\Rightarrow f(f(x,y),z),f(x,f(y,z))$ also have degree -2.
- \Rightarrow coefficients of $x^i y^j z^k$ in f(f(x,y),z), f(x,f(y,z)) have degree 2(i+j+k)-2.
- $\Rightarrow Q$ is a homogeneous ideal, and it gives a grading on L.

Theorem (Lazard)

 $L \cong \mathbb{Z}[t_1, t_2, \cdots]$, where $\deg t_i = 2i$.

Lazard's Theorem: Sketch Proof

Let
$$g(x) = x + t_1 x^2 + t_2 x^3 + \dots \in \mathbb{Z}[t_1, t_2, \dots][[x]]$$

$$g(g^{-1}(x) + g^{-1}(y)) \in \mathsf{FGL}(\mathbb{Z}[t_1, t_2, \dots]) \leadsto \phi \colon L \to \mathbb{Z}[t_1, t_2, \dots]$$

Let $I=L_{>0}$, $J=\mathbb{Z}[t_1,t_2,\cdots]_{>0}$ consisting of elements of positive degree.

Then $(I/I^2)_{2n}$ and $(J/J^2)_{2n}$ inherit grading from $L, \mathbb{Z}[t_1, t_2, \cdots]$.

Lazard's Theorem: Sketch Proof

Lemma

For any $n \in \mathbb{Z}_{>0}$, $\phi \colon L \to \mathbb{Z}[t_1, t_2, \cdots]$ induces an injection

$$(I/I^2)_{2n} \to (J/J^2)_{2n} \cong \mathbb{Z}$$

$$\mathit{im}ig((I/I^2)_{2n} o (J/J^2)_{2n}ig) = egin{cases} p\mathbb{Z} & n+1 = p^f \ \textit{for some} \ f \in \mathbb{Z}_{>0} \ \mathbb{Z} & \textit{otherwise} \end{cases}$$

Then we have $(I/I^2)_{2n} \cong \mathbb{Z}$.

Choose $t_n \in I_{2n} = L_{2n}$ lifting generators for $(I/I^2)_{2n} \cong \mathbb{Z}$.

 $\sim \theta \colon \mathbb{Z}[t_1,t_2,\cdots] \to L$. It can be shown that θ is an isomorphism.

Lazard's Theorem

 ϕ is injective but not surjective, but it is an iso after tensoring with $\mathbb{Q}.$

Proposition

Let R be a \mathbb{Q} -algebra. For any $f \in FGL(R)$, there exists

$$g(x) = x + a_1 x + a_2 x^3 + \cdots$$
, s.t. $f(x, y) = g(g^{-1}(x) + g^{-1}(y))$.

But this is not true for R when char(R) > 0.

Contents

Lazard's Theorem

Classification of Formal Group Laws

Formal Groups

Height

Proposition

Let R be a commutative ring with char(R) = p and $f \in FGL(R)$. Then either $[p]_f(t) = 0$ or $[p]_f(t) = \lambda t^{p^n} + O(t^{p^n+1})$ for some n > 0 and $\lambda \neq 0$.

Definition

Let R be a commutative ring and $f \in FGL(R)$. Fix a prime number p.

Let v_n denote the coefficient of t^{p^n} in $[p]_f$.

Say f has height $\geqslant n$ if $v_i = 0$ for i < n

f has height exactly n if f has height $\geqslant n$ and $v_n \in R$ invertible.

Height

Let $f, f' \in FGL(R)$ and g is an iso between f, f'.

$$[p]_{f'}(x) = (g \circ [p]_f \circ g^{-1})(x) \leadsto \mathsf{ht}(f) = \mathsf{ht}(f')$$

If
$$\operatorname{char}(R)=p$$
, Let $f(x,y)=x+y+xy$. Then $[p]_f(x)=(1+x)^p-1=x^p$, so $\operatorname{ht}(f)=1$. Let $g(x,y)=x+y$. Then $[p]_g(x)=0$, so $\operatorname{ht}(g)=\infty$. $\Rightarrow f\not\sim g$.

Classification of Formal Group Laws

Proposition

Let R be a commutative ring with char(R) = p and $f \in FGL(R)$. TFAE:

- (i) $ht(f) \geqslant n$.
- (ii) There exists an $f' \sim f$ such that $f'(x,y) \equiv x + y \pmod{(x,y)^{p^n}}$.

Corollary

Let $f \in FGL(R)$. If $ht(f) = \infty$, $f \sim x + y$.

Classification of Formal Group Laws

Theorem

Let k be an algebraically closed field with char(k) = p. Then two formal group laws f, f' are isomorphic if and only if ht(f) = ht(f').

Contents

Lazard's Theorem

Classification of Formal Group Laws

Formal Groups

Definition

A linear topology on a ring R is a topology such that 0 has a fundamental system of neighborhoods consisting of ideals.

Let LRings be the category of linearly topologized ring with continuous ring homomorphisms.

Given a linearly topologized ring R, let

$$\mathsf{Spf}(R) : LRings \to Sets$$

$$Spf(R)(S) := LRings(R, S)$$

For an arbitrary ring R, R is linearly topologized with discrete topology, so Rings is a full subcategory of LRings.

For $R \in LRings$, $S \in Rings$,

$$Spf(R)(S) = LRings(R, S) = colimRings(R/J, S)$$

where J runs through all ideals in the fundamental system of neighborhoods of 0.

For complete local ring R, S with maximal ideals $\mathfrak{m}_R, \mathfrak{m}_S$,

linearly topologized by the \mathfrak{m}_R -adic, \mathfrak{m}_S -adic topology respectively.

$$\mathsf{Spf}(R)(S) = LRings(R,S)$$

is the local homomorphisms between R, S.

Example

Fix a commutative ring R and $R[[x_1,\cdots,x_n]]$ with (x_1,\cdots,x_n) -adic topology. Let $\widehat{\mathbb{A}}^n_R:=\operatorname{Spf} R[[x_1,\cdots,x_n]]$

For an R-algebra T with discrete topology,

$$\widehat{\mathbb{A}}^n_R(T) = \mathsf{colimHom}_R(R[[x_1,\cdots,x_n]]/(x_1,\cdots,x_n)^k,T) = \mathsf{Nil}(T)^n$$

If R is a complete local ring and T is a complete local ring with maximal ideal $\mathfrak m$ and $\mathfrak m$ -adic topology

$$\widehat{\mathbb{A}}_{R}^{n}(T) = LRings(R[[x_{1}, \cdots, x_{n}]], T) = \mathfrak{m}^{n}$$

Formal Groups

Definition (Formal Scheme)

A formal scheme is a functor of the form Spf(R).

Definition (Affine Formal Group)

An affine formal group over R of dimension n is a group object in formal schemes isomorphic to $\widehat{\mathbb{A}}_{R}^{n}$.

Definition (Formal Group)

A formal group is formal scheme that is locally an affine formal group.

Formal Groups

Given an affine formal group \widehat{G} of dimension 1,choose a coordinate $\widehat{G} \stackrel{x}{\cong} \widehat{\mathbb{A}}^1$.

The addition laws on $\widehat{G}, \widehat{\mathbb{A}}^1$ give us

$$\begin{array}{ccc} \widehat{G} \times \widehat{G} & \stackrel{\sigma}{\longrightarrow} & \widehat{G} \\ x \times x \downarrow & & \downarrow x \\ \widehat{\mathbb{A}}^1 \times \widehat{\mathbb{A}}^1 & \longrightarrow & \widehat{\mathbb{A}}^1 \end{array}$$

Then $(x \times x)^{-1} \circ \sigma \circ x$ is a morphism between $\operatorname{Spf}(R[[x,y]]) \to \operatorname{Spf}(R[[t]])$, which is an element in LRings(R[[t]],R[[x,y]]) by Yoneda Lemma.

The image of t is an one-dimensional formal group law.

