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Deep learning: Alchemy or science?

Ali Rahimi, an artificial intelligence (AI) researcher at Google in San
Francisco, California, criticized his field in December and received a
40-second standing ovation for it. Speaking at an AI conference, Rahimi
argued that machine learning algorithms where computers learn through
trial and error have become a form of “alchemy”. He claimed that
researchers do not understand why some algorithms succeed while
others fail, nor do they have rigorous criteria for selecting one AI
architecture over another.
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Outline

Representability of Neural Networks
Approximation Theory of MLP, RNN, Transformer, etc.

Interpretability of Neural Networks
Training Dynamics and Generalization
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Basic idea of Machine learning: Curve fitting

Figure: Surface fitting (”Learning patterns in data”)

Neural networks are regarded as high-dimensional function approximators
designed to fit the data.
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Basic shallow network

Consider the mapping

x 7→
m∑
j=1

ajσ(w
T
j x + bj) (1)

σ: nonlinear activation function.
Eg. ReLU z 7→ max{0, z}, sigmoid z 7→ 1

1+exp(−z) .

m: width of the hidden layer

((aj ,wj , bj))
m
j=1: trainable parameters

Define weight matrix W ∈ Rm×d and bias vector v ∈ Rm as Wj := wT
j

and vj := bj . The first layer computes

h := σ(Wx + b) ∈ Rm (σ applied coordinate-wise),

the second computes h 7→ aTh.
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Approximation theory: univariate version

Theorem (Univariate Approximation)

Suppose g : R → R is ρ-Lipschitz. For any ϵ > 0, there exists a
2-layer network f with

⌈ρ
ϵ

⌉
threshold nodes z 7→ 1[z ≥ 0] so that

sup
x∈[0,1]

|f (x)− g(x)| ≤ ϵ.

Proof:(Use step function to localize the target function)
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Single hidden layer networks

Consider unbounded width networks with one hidden layer:

Fσ,d ,m := Fd ,m :=
{
x 7→ aTσ(Wx + b) : a ∈ Rm, W ∈ Rm×d , b ∈ Rm

}
.

Fσ,d := Fd :=
⋃
m≥0

Fσ,d ,m.

Note that Fσ,m,1 denotes networks with a single node, and Fσ,d is the
linear span (in function space) of single-node networks.
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Stone-Weierstrass theorem

Definition (Universal Approximator)

A class of functions F is a universal approximator over a compact
set S if for every continuous function g and target accuracy ϵ > 0,
there exists f ∈ F with

sup
x∈S

|f (x)− g(x)| ≤ ϵ.
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Stone-Weierstrass theorem

Theorem (Stone–Weierstrass)

Let functions F be given as follows.

1 Each f ∈ F is continuous.

2 For every x , there exists f ∈ F with f (x) ̸= 0.

3 For every x ̸= x ′, there exists f ∈ F with f (x) ̸= f (x ′) (F
separates points).

4 F is closed under multiplication and vector space operations
(F is an algebra).

Then F is a universal approximator: for every continuous g : Rd → R
and ϵ > 0, there exists f ∈ F with

sup
x∈[0,1]d

|f (x)− g(x)| ≤ ϵ.
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Apply it to single hidden layer networks....

We have Fcos,d and Fexp,d are universal approximators. (Check the
conditions for Stone-Weierstrass thm!)
Futhermore, we have general activation universal approximation thm:

Theorem (Hornik et al., 1989)

Suppose σ : R → R is sigmoidal, i.e. it is continuous, and

lim
z→−∞

σ(z) = 0, lim
z→+∞

σ(z) = 1.

Then Fσ,d is universal.

Remark:

ReLU is a “qualified” activation.

m ∼ O( 1
ϵd
) implies the curse of dimensionality.
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Infinite-width shallow networks

An infinite-width shallow network is characterized by a signed measure
ν over weight vectors in Rp:

x 7→
∫

σ(w⊤x) dν(w).

The mass of ν is the total positive and negative weight mass assigned by

|ν|(Rp) = ν−(Rp) + ν+(Rp).
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Barron’s theorem

The quantity ∫
∥∇df (w)∥ dw = 2π

∫
∥w∥ · |f̂ (w)| dw

is the Barron norm of a function f . The corresponding Barron class with
norm C is

FC :=

{
f : Rd → R : f̂ exists,

∫
∥∇df (w)∥ dw ≤ C

}
.
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Barron’s theorem

Theorem (Barron, 1993)

Any continuous function f in Barron class can be approximated by

a neural network g with a single hidden layer containing O
(
C2

ϵ

)
hidden units such that ∀x in the domain of f :

Ex∼µ

[
∥f (x)− g(x)∥2

]
≤ ϵ,

where C is a constant and µ is the measure (distribution) from which
x is picked.

Sketch of the proof: Step 1: Approximate f by a infinite-width shallow
networks with nonlinearity cosine (use inverse fourier transform)
Step 2: Probabilistic sampling (Maurey’s Lemma, 1981)
Step 3: Turning cosine into other sigmoidal nonlinearity.
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Barron’s theorem

Remark:

The assumption for a function in Barron class is quite strong. it
requires the Fourier transform f (ω) to decay sufficiently fast as ω
increases.

If the upperbound of the barron norm C ∼ O(d), then the curse of
dimensionality can be mitigated.

The sampling in Step 2 suggests that a finite-width neural network
can be viewed as a finite sample (realization) drawn from the
underlying stochastic process defined by the infinite-width limit. This
insight is closely aligned with later theoretical developments such as
the Neural Tangent Kernel (NTK) and Bayesian Neural Networks.
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ReLU Deep neural networks

Take the hat function as an example.
We can write the hat function h : [0, 1] → [0, 1] as a neural network with 2
layers and 2 neurons:

h(x) = 2σ(x)− 4σ

(
x − 1

2

)
=

{
2x , if 0 ≤ x < 1

2 ,

2(1− x), if 1
2 ≤ x ≤ 1,

Observation (Telgarsky, 2016)

For the n-fold composition hn(x) := h ◦ · · · ◦ h:
It generates a sawtooth function with 2n spikes.

It consists of 2n affine linear pieces using only 2n neurons.

Deep ReLU networks achieve exponential efficiency in creating
linear regions compared to shallow networks.
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Width vs depth

Theorem

Let f ∗(x) = x2. For any ϵ > 0, there exists a neural network f̃ ,
whose depth and width are O(log(1/ϵ)) and O(1), respectively, such
that:

sup
x∈[0,1]

|f̃ (x)− f ∗(x)| ≤ ϵ.

A deep architecture could use parameters more efficiently and
requires exponentially fewer parame ters to express certain families
of functions than a shallow architecture.
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Width vs depth

Theorem (Yarotsky, 2017)

Let d , L ∈ N with L ≥ 2, and let g ∈ C 2([0, 1]d) be a function that
is not affine linear. Then there exists a constant c ∈ (0,∞) with
the following property: For every ε ∈ (0, 1) and every ReLU neural
network architecture a = (N, σ) = ((d ,N1, . . . ,NL−1, 1), σ) with L
layers and

∥N∥1 ≤ c · ε−1/(2(L−1)),

then
inf

θ∈RP(N)
∥Φa(·, θ)− g∥L∞([0,1]d ) ≥ ε.

As the depth L increases, the required width decrease
(exponentially) for the same error.
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Model comparison of representability

Sparse averaging task
For sparsity q, problem dimension d ′, and input dimension d = d ′ + q + 1,
consider an input X = (x1, . . . , xN) ∈ RN×d with xi = (zi ; yi ; i) for
zi ∈ Bd ′

and yi ∈
([N]

q

)
. Let the q-sparse average be:

qSA(X ) =

1

q

q∑
j=1

zyi,j


i∈[N]

.

For accuracy ϵ > 0, a function f : RN×d → RN×d ′
ϵ-approximates qSA if

for all X ,
max
i∈[N]

∥f (X )i − qSA(X )i∥2 ≤ ϵ.
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Model comparison of representability

Here, we have three different architectures:

FC (fully connected neural network)
f (x) = σ(Wx + b), x ∈ RNd ,W ∈ Rm×Nd , σ : Rm → RNd ′

RNN (recurrent neural network)
(f (X )i , hi ) = gi (xi , hi−1),
X ∈ RN×d , hi ∈ {0, 1}m, gi : Rd × {0, 1}m → Rd ′ × {0, 1}m.
Tansformer
fQ,K ,V (X ) = softmax

(
XQK⊤X⊤)XV ,

X ∈ RN×d ,Q,K ∈ Rd×m,V ∈ Rd×d ′

We consider the qSA implementation by transformer efficient since the
dimension of the model parameters grows with poly(q, d , logN), whereas
the other two are inefficient since their parameter dimension grows as
poly(q, d ,N).
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Model comparison of representability

Theorem

For any ε ∈ (0, 1), any memory-bounded algorithm that ε-
approximates qSA (for q = 1 and d ′ = 1) must have memory

m ≥ N − 1

2
.

Sketch of the proof

1 Transforms the ability of a memory-limited algorithm to approximate
qSA into a communication protocol for solving the DISJ problem.

2 By leveraging the communication complexity lower bound (Ω(n)), it
follows that the required memory must grow at least linearly.

(Interesting proof using communication complexity. See Thm 11 in
Representational Strengths and Limitations of Transformers.)
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Summary

These work aims to

analyze and explain, from the perspective of function approximation,
why neural networks perform well on a wide range of tasks, and
provide a theoretical guarantee for the approximation capability of
neural networks.

quantify the relationship between approximation error, data size, and
model complexity, in order to derive a scaling law, which also provides
guidance for model selection.
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In practice......

Given the architecture of a model and the parameters θ to be trained, we
have

θ∗: true parameter

θ1: the theoretical optimal parameter within the function class
represented by the architecture

θ2: the theoretically optimal parameter that can be obtained using
the training data and loss function

θ3: the parameter obtained in practice using an optimization
algorithm (e.g., iterative methods), which may not be a global
optimum

While our goal is to obtain the optimal parameter θ∗, in practice we
typically end up with a suboptimal solution θ3. The discrepancy between
the two can introduce significant errors that impact model performance.
Approximation theory can provide valuable insight and theoretical
guidance, though real-world scenarios are often much more complex.
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The interpretability problem

Models train millions of parameters to achieve input-output behaviors. But
it’s difficult to know the “meaning” of the parameters and what happens
during the training process.
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Weight space of CNN

Figure: Emergence of cycles during the training process
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Grokking

Grokking is a phenomenon where a neural network, after initially overfitting
the training data, suddenly achieves generalization to unseen data after
extended training. Despite poor validation performance for a long time,
the model eventually “understands” the task and begins to generalize well.

Figure: Grokking as the transition from lazy to rich training dynamics, Kumar et
al.
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Grokking

Figure: On the Geometry of Deep Learning, Balestriero et al.

Local complexity (LC) : the number of tiles in a neighborhood V around a
point x in the input space.
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Information bottleneck theory (Naftali Tishby et al.,1999)

Models are trying to solve the optimization problem:

min
T

I (X ;T )− βI (T ;Y ),

where:

X is the input random variable,

Y is the target variable,

T is the learned representation (a bottleneck variable),

I (A;B) denotes the mutual information between A and B,

β > 0 controls the trade-off between compression and prediction.

In the early training phase, the network memorizes the input (increasing
I (X ;T )), In later phases, stochastic gradient descent (SGD) leads to
compression (decreasing I (X ;T )), while retaining useful predictive
information (maintaining I (T ;Y )).
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Experiments

Weight tracking and feature analysis in consonants classification
experiments.
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Thanks for your listening!
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