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Evolution of Neural Networks

Historical Breakthroughs
1968: Hubel & Wiesel’s visual cortex studies (biological basis for CNNs)
[8]
1980: Fukushima’s neocognitron (first CNN prototype with
simple/complex cells) [6]
1998: LeCun’s LeNet-5 (first successful application for digit recognition)
[10]
2012: AlexNet revolution (deep learning breakthrough using GPUs) [9]
2015: ResNet innovations (enabled training of 100+ layer networks) [7]

Core CNN Components
Convolutional layers (learn local features through filters) [14]
Pooling layers (reduce spatial dimensions) [17]
Skip connections (enable gradient flow in deep networks) [18]
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The Emergence of Topological Data Analysis (TDA)
From Algebraic Topology to Data Science

Traditional tools: Homology groups & Betti numbers (measure
connectivity)
Early applications: Theoretical studies using simplicial complexes (2000s)

Birth of Persistent Homology
Edelsbrunner et al. introduced multi-scale analysis framework [5]
Zomorodian & Carlsson improved noise stability [19]
Became mainstream after Carlsson’s 2009 review [2]

Algorithmic Breakthroughs
Chazal: Stability guarantees [4]
Oudot: Efficient computation [13]
Software: Gudhi/Ripser libraries
Visualization: Mapper algorithm
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Construction of Topological Neural Networks

Discovery of Image Features
De Silva & Carlsson found image patches form Klein bottle structure [16,
3]

Neural Network Verification
Gabrielsson & Carlsson: CNN kernels preserve Klein bottle topology

Topological CNN Development
Love et al. created:

Circular convolution kernels
Klein bottle convolution kernels

Outperformed traditional CNNs on MNIST [12]
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Phonemes

We are highly motivated to apply the work of Love et al. to
speech signals. Since convolutional neural networks primarily
operate at the word level at most, we chose to focus on
phonemes as the minimal linguistic unit.
For phonemes, we provide only a brief introduction. Broadly,
they can be categorized into two types: voiced (exhibiting
clear periodicity) and voiceless (resembling white noise).
Our core experiments involve phoneme classification, primarily
using datasets such as SpeechBox, LJSpeech, and TIMIT. We
extract all phoneme-level data from these datasets (excluding
stressed segments).
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Topological Audio Processing

Key Methods
Speech Processing:

MFCCs + Persistent Homology (Brown and Knudson[1])
Preserves harmonic structures in noise
Enhances CNN spectral analysis

Music Signals:
Topological persistence + CNNs (Liu et al.[11])
Effective feature extraction for classification

Core Advantages
Reveals structural patterns via persistent homology
(Robinson[15])
Bridges topology with signal dynamics
Robust to noisy environments
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Topological Neural Networks for Speech

Speech Spectrograms
Generated via STFT/MFCC (similar to grayscale images)
Example visualizations will follow

Key Differences from Images
Axes have physical meaning:

Horizontal: Time domain
Vertical: Frequency domain

Diagonal directions lack semantic meaning
Research Motivation

Build speech-adapted topological neural networks
Leverage axis-specific information
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Waveform and Spectrogram

Figure 1 Waveform and
Spectrogram

Shows the word ”left”:
Waveform: Amplitude
vs Time
Spectrogram: Frequency
vs Time (color =
energy)

Each spectrogram column
represents:

Short-time Fourier
Transform (STFT) or
Mel-Frequency Cepstral
Coefficients (MFCC)
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Wave

Figure 2 Wave
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Spectrogram

Figure 3 Spectrogram
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Convolutional Neural Networks and Operations

⎡⎢
⎣

1 2 3
4 5 6
7 8 9

⎤⎥
⎦

⎡⎢
⎣

1 −1
1 −1

⎤⎥
⎦

−−−−−−−→ [−2 −2
−2 −2]

Example shows a 3 × 3 image convolved with 2 × 2 kernel producing
2 × 2 output
Kernel operation:

Slides top-to-bottom, left-to-right
Element-wise multiplication then summation
Output size smaller than input

CNNs excel at local feature extraction using:
Multiple parallel kernels
Shared weight architecture
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The Structure of CF and KF

The convolutional kernels in CF have the following form

⎡⎢
⎣

1 0 −1
1 0 −1
1 0 −1

⎤⎥
⎦

up to a rotation. The convolutional kernels in KF add the following matrix

⎡⎢
⎣

1 1 1
−2 −2 −2
1 1 1

⎤⎥
⎦

with some linear relations.
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Theoretical Framework

Theorem 1: Moduli Space of Convolution Kernels
For normalized 3 × 3 kernels (centered and normalized), the moduli
space 𝑀 is homeomorphic to 𝑆5 (excluding zero matrices after
centering).

Definition 1: Contrast
The contrast of a convolution kernel 𝑨 = [𝒗1, 𝒗2, 𝒗3] ∈ 𝑀 is
defined by

con(𝑨) = √||𝒗1 − 𝒗2||2 + ||𝒗2 − 𝒗3||2.
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Group Action SO(3)

For the moduli space 𝑀 , there exists a natural left
multiplication action by SO(3) which preserves contrast and
maintains the norm of every vector.

Theorem 2: Orbit Space 𝑀/SO(3)
Considering the left multiplication action of SO(3), the quotient
space 𝑀/SO(3) is homeomorphic to the disk 𝐷2.

The left multiplication action of SO(3) is considered here
because each column of the speech signal represents a
coherent unit (short-time information). Thus, we use the left
group action to traverse the entire space.
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Kernel Construction

Decompose kernel space into:
𝐷2 (elliptical disk component)
SO(3) (rotation group component)

Sampling strategy:
Random selection from each component
Uniform and well-distributed initialization

Special cases:
Boundary cases
𝑥 = 𝑦 cases (degenerate SO(3) action)

Current implementation does not handle these special cases

title

Date below

16 / 28



Background Preliminaries Main Results Future Works References

Confusion matrix

Figure 4 Confusion Matrix
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Experimental Results

Figure 5 Comparisions of Loss and
Accuracy on LJSpeech

Dataset: LJSpeech
Methodology:

Segmented raw audio
into phonemes
Selected 500 samples
per category for
training

Results comparison:
Baseline: Normal NN
Prior work: CF+NOL,
KF+NOL (Love et al.)
Our method: OF+NOL
(optimal performance)

Metrics: Loss and Accuracy vs
Epochs
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Experimental Results

Figure 6 Comparisions of Loss and
Accuracy on LJSpeech(New)

Dataset: LJSpeech
Methodology:

Segmented raw audio
into phonemes
Training directly

Results comparison:
Baseline: Normal NN
Prior work: CF+NOL,
KF+NOL (Love et al.)
Our method: OF+NOL
(optimal performance)

Metrics: Loss and Accuracy vs
Epochs

title

Date below

19 / 28



Background Preliminaries Main Results Future Works References

SNR=0

Figure 7 Comparisions of Loss and
Accuracy on LJSpeech (SNR=0)

Figure 8 Comparisions of Loss and
Accuracy on LJSpeech (New,
SNR=0)

title

Date below

20 / 28



Background Preliminaries Main Results Future Works References

Results on Words and Images

Figure 9 Comparisions of Loss and
Accuracy on SpeechCommands

Figure 10 Comparisions of Loss
and Accuracy on CIFAR10
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Sketch of Proof
Proof of Theorem 1:

Centralization: Column vectors sum to 0
Normalization: Quotient by Frobenius norm ⇒ 𝑀 ≅ 𝑆5

Proof of Theorem 2:
Define map 𝜙 ∶ 𝑀 → ℝ3 by (𝒗1, 𝒗2, 𝒗3) ↦ (𝑥, 𝑦, 𝑧), where

𝑥 = ‖𝒗1‖2, 𝑦 = ‖𝒗3‖2,
𝑧 = ⟨𝒗1, 𝒗3⟩

with the following key relations:

𝑥 + 𝑦 + 𝑧 = 1
2 (matrix norm)

𝑧2 ≤ 𝑥𝑦 (inner product)
SO(3) invariance: Coordinates well-defined on 𝑀/SO(3)

(To be continued...)
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Sketch of Proof (Continued)
(2) We define ̃𝜙 ∶ 𝑀/SO(3) → ℝ3 with commutative diagram:

𝑀 ℝ3

𝑀/SO(3)

𝜋

𝜙

̃𝜙

Eliminating 𝑧 yields elliptical disk in (𝑥, 𝑦): (3𝑥 + 3𝑦 − 2)2 + 3(𝑥 − 𝑦)2 ≤ 1
This represents 𝜙(𝑀) = ̃𝜙(𝑀/SO(3)). To prove ̃𝜙 is injective:

𝑀/SO(3) is compact
ℝ3 is Hausdorff
Equivalent to transitivity of kernel configurations under group action
Any two vectors with given norms and angle can be rotated to match

Thus ̃𝜙 is injective.
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Short-term Goals

Further clarify the necessity and advantages of the SO(3) action.
Explore convolution kernels with more diverse shapes.
Conduct in-depth research on model adaptation to enhance its robustness.
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Long-term Goals

At the phoneme level, capture local features as
comprehensively as possible, and subsequently establish a
topological structure (though Transformers may be more
suitable for this task).
When addressing different practical problems, emphasize
multimodality and the integration of topological and
geometric methods.
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