TCNN on Images

Zhiwang Yu

Department of mathematics
Southern University of Science and Technology
March 7th, 2024

Contents

3 A Basic Theory of TCNNs

1 Preliminary

2 Constructions of TCNNs

4 Some Details on Programs

5 Thanks

Feed Forward Neural Network

- Each circle represents a node.
- All nodes in one column construct a layer, where the layer with yellow color is the input layer, the layer with orange color is the output layer and the other layers are hidden layers.
- The edge in this graph represents the correspondence between the nodes.

Convolutional Kernel

- The left matrix is the data in the last layer.
- The middle matrix is the convolutional kernel.
- The right matirx is the data in the next layer.
- The data in the next layer is computed as the picture shows.

A Formula for Klein Bottle

A Formula for Klein Bottle

$$
F_{\mathcal{K}}\left(\theta_{1}, \theta_{2}\right)(x, y)=\sin \left(\theta_{2}\right)\left(\cos \left(\theta_{1}\right) x+\sin \left(\theta_{1}\right) y\right)+\cos \left(\theta_{2}\right) Q\left(\cos \left(\theta_{1}\right) x+\sin \left(\theta_{1}\right) y\right),
$$

where $Q(t)=2 t^{2}-1$. As given, $F_{\mathcal{K}}$ is a function on the torus, which is parameterized by the two angles θ_{1} and θ_{2}. It actually defines a function on \mathcal{K} since it satisfies

$$
F_{\mathcal{K}}\left(\theta_{1}, \theta_{2}\right)=F_{\mathcal{K}}\left(\theta_{1}+2 k \pi, \theta_{2}+2 l \pi\right) \text { and } F_{\mathcal{K}}\left(\theta_{1}+\pi,-\theta_{2}\right)=F_{\mathcal{K}}\left(\theta_{1}, \theta_{2}\right) .
$$

Two Basic Kernels

-1	0	1
-1	0	1
-1	0	1

Table 1: The First Kernel of Klein Bottles

```
1 -1 1
1
1 -1 1
```

Table 2: The Second Kernel of Klein Bottles

A Distance in Klein Bottle

The metric $d_{\mathcal{K}}$ is defined by

A Distance in Klein Bottle

$$
d_{\mathcal{K}}\left(\kappa, \kappa^{\prime}\right)=\left(\int_{[-1,1]^{2}}\left(F_{\mathcal{K}}(\kappa)(x, y)-F_{\mathcal{K}}\left(\kappa^{\prime}\right)(x, y)\right)^{2} d x d y\right)^{\frac{1}{2}}
$$

for $\kappa, \kappa^{\prime} \in \mathcal{K}$.

KF(CF) Layer

KF (CF) Layer

Let $M=S^{1}$ or \mathcal{K} and let $\chi \subset M$ be a finite subset. Let $V_{i}=\mathbb{Z}^{2}$ and $V_{i+1}=X \times \mathbb{Z}^{2}$ be successive layers in a FFNN. Suppose V_{i+1} is a convolutional layer with threshold $s \geq 0$. Then V_{i+1} is called a Circle Features (CF) layer or a Klein Features (KF) layer, respectively, if the weights $\lambda_{-,(\kappa,-,-)}$ are given for $\kappa \in \chi$ by a convolution over V_{i} of the filter of size $(2 s+1) \times(2 s+1)$ with values

$$
\operatorname{Filter}(\kappa)(n, m)=\int_{-1+\frac{2 m}{2 s+1}}^{-1+\frac{2(m+1)}{2 s+1}} \int_{-1+\frac{2 n}{2 s+1}}^{-1+\frac{2(n+1)}{2 s+1}} F_{M}(\kappa)(x, y) d x d y
$$

for integers $0 \leq n, m \leq 2 s$.

The Construction of Kernels

- Let D be $[-1,1] \times[-1,1]$, consider the following function

$$
f(x, y)=A+B x+C y+D x^{2}+E x y+F y^{2},
$$

then it becomes a 6 -dimensional vector space \mathcal{Q}.

- Let $\int_{D} f=0$ (mean centering) and $\int_{D} f^{2}=1$ (normalization). It is a 4 -dimensional space $\mathcal{P} \subset \mathcal{Q}$.
■ Let $f(x, y)=q(\lambda x+\mu y)$ with $\lambda^{2}+\mu^{2}=1$ (rotation invariance). It implies that the space is 2 -dimensional $\mathcal{P}_{0} \subset \mathcal{P}$.

Kernels on a Klein Bottle

- Let $\int_{-1}^{1} q=0$ and $\int_{-1}^{1} q^{2}=1$ with $q(t)=c_{0}+c_{1} t+c_{2} t^{2}$, then $q \in A$, where A is homeomorphic to S^{1}. Let $\mathbf{v}=(\lambda, \mu)$, then $f(x, y)=q(\mathbf{v} \cdot(x, y))$. (Note that $\mathbf{v} \in S^{1}$.)
- Verify that $\int_{D} f=0$ and $\int_{D} f^{2} \neq 0$. Define a map $\theta: A \times S^{1} \rightarrow \mathcal{P}_{0}$ by

$$
\theta(q, \mathbf{v})=\frac{q(\mathbf{v},-)}{\|f\|_{2}} .
$$

θ is not a homeomorphism. Define a map $\rho: A \rightarrow A$ by

$$
\rho\left(c_{0}+c_{1} t+c_{2} t^{2}\right)=c_{0}-c_{1} t+c_{2} t^{2}
$$

then $\theta(q, \mathbf{v})=\theta(\rho(q),-\mathbf{v})$.

- Verify that \mathcal{P}_{0} is homeomorphic to a Klein bottle.

Main Program

```
img_input = Input(shape=(32, 32, 3))
net = Conv2D(64, (3,3), activation='relu', padding = 'same')(img_input)
#net = CircleFeatures(64)(img_input)
#net = KleinFeatures(64)(img_input)
net = MaxPooling2D(2,2)(net)
net = Conv2D(64, (3,3), activation='relu', padding = 'same')(net)
#net = CircleOneLayer(64)(net)
#net = KleinOneLayer(64)(net)
net = MaxPooling2D(2,2)(net)
net = Flatten()(net)
net = Dense(512, activation='relu')(net)
net = Dense(10)(net)
output = net
model1 = models.Model(img_input, output)
model1.summary()
modell.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=1e-5),
    loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
    metrics=['accuracy'])
history1 = model1.fit(train_images_noise, train_labels, batch_size=100, epochs=5,
                    validation_data=(test_images, test_labels))
```


Program of KOL

```
kernel_shape = (self.kernel_size[0], self.kernel_size[1], input_shape[-1], self.filters)
def Q(t):
    return 2*t**2-1
def F_K(theta_1, theta_2, x, y):
    return math.sin(theta_2)*(math.cos(theta_1)*x+math.sin(theta_1)*y)+math.cos(theta_2)*Q(math.cos(theta_1)*x+math.sin(theta_1)
def D(a_1,a_2,b_1,b_2):
    return np.power(dblquad(lambda y,x:(F_K(a_1, a_2, x, y)-F_K(b_1, b_2, x, y))**2,##絞
            -1,#x下界0
            1,#x+界的
            lambda x:-1,#y下界^2
            lambda x:1), 1/2)[0]#y上界2*x
temp_3 = tf.zeros(shape=kernel_shape, dtype=tf.float32).numpy()
for i in range(input_shape[-1]):
    for j in range(self.filters):
        if D(i%8 * math.pi/int(math.sqpt(input_shape[-1])), i//int(math.sqrt(input_shape[-1])) *2* math.pi/int(math.sqnt(input_
            temp_3[:,:,i,j] = tf.ones(shape=(self.kernel_size[0], self.kernel_size[1]), dtype=tf.float32).numpy()
self.mask = tf.constant(temp_3)
self.kernel = self.add_weight(name='kernel', shape=kernel_shape, initializer='glorot_uniform',trainable=True)
self.bias = self.add_veight(name= 'bias', shape=(self.filters,), initializer='zeros', trainable=True)
```


A Result of TCNN on MNIST

Thanks for your listening！

