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Introduction

Categories for Al, an online program about category the-
ory in machine learning, unfolded over several months be-
ginning in the fall of 2022. As described on their website
https://cats.for.ai, the “Cats for Al” organizing com-
mittee, which included several researchers from industry
including two from DeepMind, felt that the machine learn-
ing community ought to be using more rigorous composi-
tional tools and that category theory has “great potential
1o be a cohesive force” in science in general and in artificial
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intelligence in particular. While this article is by no means
a comprehensive report on that event, the popularity of
“Cats for A1” — the five introductory lectures have been
viewed thousands of times — signals the growing preva-
lence of category theoretic tools in Al

One way that category theory is gaining traction in ma-
chine learning is by providing a formal way to discuss how
learning systems can be put together. This article has a dif-
ferent and somewhat narrow focus. It's about how a fun-
damental piece of Al technology used in language mod-
eling can be understood, with the aid of categorical think-
ing, as a process that extracts structural features of language
from purely syntactical input. The idea that structure arises
from form may not be a surprise for many readers — cat-
egory theoretic ideas have been a major influence in pure
mathematics for three generations — but there are conse-
quences for linguistics that are relevant for some of the on-
going debates about artificial intelligence. We include a
section that argues that the mathematics in these pages re-
but some widely accepted ideas in contemporary linguistic
thought and support a return to a structuralist approach to
language.

The article begins with a fairly pedantic review of lin-
ear algebra which sets up a striking parallel with the rel-
evant category theory. The linear algebra is then used to
review how to understand word embeddings, which are at
the root of current large language models (LLMs). When
the linear algebra is replaced, Mad Libs style, with the rel-
evant category theory, the output becomes not word em-
beddings but a lattice of formal concepts. The category
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The structuralist image of language behind word embeddings

Juan Luis Gastaldi

Abstract

The present paper intends to draw the conception of language implied
in the technique of word embeddings that supported the recent develop-
ment of deep neural network models in computational lingnistics. After
a preliminary presentation of the basic functioning of elementary artifi-
cial neural networks, we introduce the motivations and capabilities of word
embeddings through one of its pioneering models, word2vec. To assess the
remarkable results of the latter, we inspect the nature of its underlying
mechanisms, which have been characterized as the implicit factorization
of a word-context matrix. We then discuss the ordinary association of the
“distributional hypothesis” with a “use theory of meaning”, often justi-
fying the theoretical basis of word embeddings, and contrast them to the
theory of meaning stemming from those mechanisms through the lens of
matrix models (such as VSMs and DSMs). Finally, we trace back the
principles of their possible consistency through Harris's original distribu-
tionalism up to the structuralist conception of language of Saussure and
Hjelmslev. Other than giving access to the technical literature and state
of the art in the field of Natural Language Processing to non-specialist
readers, the paper seeks to reveal the conceptual and philosophical stakes
involved in the recent application of new neural network techniques to the
computational treatment of langnage.
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Neural Networks
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The Family of DNNs
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Deep Neural Nets (DNNs)
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DNNs and Natural Language |
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Word Embeddings: word2vec
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Dense Vector Representations

30, 000-dimensional real vector space
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meaning of words

* Not only did the performance of models across different tasks
increase substantially,

* but also unexpected linguistic significance was found in the
vector space operations of the embedded word vectors. In
particular, the inner product between two vectors shows a
high correlation with semantic similarity



Word Embeddings: Example
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Word Embeddings: Similarity

house cosine distance

houses 0.292761
bungalow 0.312144 o
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Word Embeddings: Analogy

Uking — Yqueen ~ Uhero — Vheroine

word2vec PCA projection: Gender
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Word Embeddings: Analogy

Ugood — Vbetter =~ Usoft — Usofter

word2vec PCA projection: Comparatives
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Singular Value Decomposition (SVD)

M=UxXV"
Where:
M = m x n (real or complex) matrix
U = m x m unitary matrix
>, = m X n non-negative real rectangular diagonal matrix
V* = conjugate transpose of V', an x n unitary matrix
In particular:

o The columns of U (left singular vectors) are eigenvectors of M x M*

o The rows of V* (right singular values) are eigenvectors of M* x M

o The non-zero elements of ¥ (non-zero singular values) are the square roots
of the non-zero eigenvalues of M x M* or M* x M
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Truncated SVD
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word2vec as Implicit Matrix Factorization
(Levy and Goldberg, 2014)

Embeddings as Truncated SVD
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SVD of Wikipedia Character PMI Matrix
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Every singular vectors represent some meaning

I W o <1 h b W R =D~ |
[EEENEDE td
o



Truncate and Embed
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Distance (ward)
B

Clustering

| TP SBrem T [ S T e

3456?12u1ea0ykzxsdgn1rhctqvfmpwbj
Characters

O := {:a_a_a/}
D:=1{0,9,8,3,4,5,6,7,1,2)
V :={u,i,e,a,o}

C — {y,k,Z,X,S,d,g,n,l,r,haCataqavafamapawabaj}



]

)

- expected water england
difficult hard 2as necessary close

scotland england

wish tried seemed began

4 5

-
anCiu ..Tlﬁ l i I I




M x M* as A Covariance Matrix
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Eigenvectors and Eigenvalues
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“Elgenstructure”
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Eigenvectors as Fixed Points

(M x M*)v =

AU

T e

I ~@dmmeanwraa | 409070 8W oA H S 0 QLT 6 e R L

03 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHH

G e 000 oom
Dl

~OoFAdMYwnOrEEod || 8.0 U0UT UW DDA XA S0 QTN e 3 E N NG

I~ordom9enuwrod| 00T oW oA EBQBO0RD W@ DR ER






wostion
ICL&,”; Confug

e )

Fx
op

c\ °P : /_;
Cot ™ = (Set )
F*() = hom (£, §l0)
F*(f) (j(() = Jam (20X), 9)
Fx(9)



® bP
— (0et®) D — St
c —> mle, =) od = wm (-,
/ (C,e;tb) p (Ce;tb) op O OMD
|
C —> C,e,:tc’ v e
Vomalm §@e

'{Z*[F)[JJ = Jm (f ,wi=A) 'F&(g)(c)#wmwfcr),j)



( {(mc{'o&w) Y
Y/ 4%;?0 . ‘ 0~ |
X 401 ¥ (@ 1) A=R

R¥(A) = yeY = Rixig)=I for ol meq}

C"CEY N Y /2*032) = <xé;)(: Q(‘Kt‘j): | QDTY 4/[ g%}
iy X & "

Cek Lol 0hj of RRx ond RR" one formal Couept



Formal concept analysis
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Definition 9. Let (M, <) be an ordered set and A a subset of M. A lower
bound of A is an element s of M with s < a for all @ € A. An upper
bound of A is defined dually. If there is a largest element in the set of all
lower bounds of A, it is called the infimum of A and is denoted by inf A or
A A; dually, a least upper bound is called supremum and denoted by sup A
or \VA. If A = {z,y}, we also write z A y for inf A and z V y for sup A.
Infimum and supremum are frequently also called meet and join. &

Definition 10. An ordered set V := (V,<) is a lattice, if for any two
elements z and y in V the supremum 2V y and the infimum z Ay always exist.
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Definition 18. A formal context K := (G, M, I) consists of two sets G
and M and a relation I between G and M. The elements of GG are called the
objects and the elements of M are called the attributes of the context!. In
order to express that an object g is in a relation I with an attribute m, we
write gIm or (g, m) € I and read it as “the object g has the attribute m”.

alb|c|d|e|f|g|h|1
1 | Leech X | X X
2 | Bream X | % X | X
3 | Frog X | X | X X | X
4 | Dog X X X | X | X
5 | Spike — weed || x | X X X
6 | Reed X | x| x| X X
7 | Bean X X | X | X
8 | Maize X X | % X

Figure 1.1 Context of an educational film “Living Beings and Water”. The at-
tributes are: a: needs water to live, b: lives in water, c: lives on land, d: needs
chlorophyll to produce food, e: two seed leaves, f: one seed leaf, g: can move
around, h: has limbs, 1: suckles its offspring.



Definition 19. For a set A C GG of objects we define
A':={me M | gIm for all g € A}

(the set of attributes common to the objects in A). Correspondingly, for a
set B of attributes we define

B' := {9 € G | gIm for all m € B}

(the set of objects which have all attributes in B).? <&

Definition 20. A formal concept of the context (G, M, I) is a pair (A, B)
with ACG,BC M, A’ = B and B’ = A. We call A the extent and B the

intent of the concept (A, B). B(G, M, I) denotes the set of all concepts of
the context (G, M, I). O



Definition 21. If (4;, B1) and (A3, B) are concepts of a context, (A1, B1) is
called a subconcept of (A3, B2), provided that A; C A, (which is equivalent
to Ba C B). In this case, (A2, B2) is a superconcept of (A4, B;), and we
write (A1, B1) < (Ag, B2). The relation < is called the hierarchical order
(or simply order) of the concepts. The set of all concepts of (G, M, I) ordered

in this way is denoted by B(G, M, I) and is called the concept lattice of
the context (G, M, I).




Formal Concepts
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