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Graph pooling

Graph pooling has been used in various applications, which can reduce
the graph size while preserving its structural information.
DiffPool,MinCutPool and DMoNPool methods are examples of dense
pooling due to the space complexity they incur. Despite their
effectiveness, dense pooling methods have been criticized for high
memory cost and complexity. Therefore, various sparse pooling methods
have been proposed, such as Top-K, ASAPool, and SAGPool. These
methods coarsen graphs by selecting a subset of nodes based on a ranking
score. As they drop some nodes in the pooling process, these methods
are criticized for their limited capacity to retain essential information,
with potential effects on the expressiveness of preceding GNN layers.
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Persistent homology in GNNs

PH is a technique to calculate topological features of structured data,
and many approaches have been proposed to use PH in graph machine
learning due to the high expressiveness of topological features on graphs.
This encourages further exploration on equipping GNNs with topological
features. However, existing methods tend to view PH merely as a tool for
providing supplementary information to GNNs, resulting in only marginal
improvements and limited interpretability.
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Graph

Let G = (V,E) be an undirected graph with n nodes and m edges, where
V and E are the node and the edge sets, respectively. Nodes in attributed
graphs are associated with features, and we denote by V = {(v, xv)}v∈1:n
the set of nodes v with d dimensional attribute xv. It is also practical to
represent the graph with an adjacency matrix A ∈ {0, 1}n×n and the node
feature matrix X ∈ Rn×d
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GNN framework

The k-th layer of GNNs can be expressed as:

X(k) = M
(
A,X(k−1); θ(k)

)
(1)

where θ(k) is the trainable parameter, and M is the message propagation
function. Numbers of M have been proposed in previous research (Kipf &
Welling, 2016; Hamilton et al., 2017). A complete GNN is typically
instantiated by stacking multiple layers of 1. Hereafter we denote by
GNN(·) an arbitrary such multi-layer GNN for brevity.
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Dense Graph Pooling

GP in GNNs is a special layer designated to produce a coarsened or
sparsified sub-graph. Formally, GP can be formulated as
G 7→ GP = (VP,EP) such that the number of nodes |VP| ≤ n. GP layers
can be placed into GNNs in a hierarchical fashion to persistently coarsen
the graph. Typical GP approaches (Ying et al., 2018; Bianchi et al.,
2020; Müller, 2023) rely on learning a soft cluster assignment matrix
S(l) ∈ Rnl−1×nl :

S(l) = softmax
(
GNN(l)

(
A(l−1),X(l−1)

))
. (2)
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Dense Graph Pooling

Subsequently, the coarsened adjacency matrix at the l-th pooling layer is
calculated as

A(l) = S(l)⊤A(l−1)S(l) (3)

and the corresponding node representations are calculated as

X(l) = S(l)⊤ GNN(l)
(
A(l−1),X(l−1)

)
. (4)

Dense graph pooling above differ from each other in the way to produce
S.
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Overview Figure

Figure: Overview of the method, where the shaded part corresponds to one
layer of Topology-Invariant Pooling.
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LF

To efficiently integrate PH into GP, the paper proposed using learnable
filtration functions that depend on node features and graph topology.
These functions are designed to be flexible and computationally efficient,
allowing for the dynamic adaptation of filtration criteria as the graph is
coarsened during training. One major limitation of utilizing LF is that the
computation process is unconscious of edge weights, i.e. edges with
non-negative weights will be treated equally, so PH cannot directly
extract meaningful topological features from A(l)
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Resampling

Therefore, The paper resampled the coarsened adjacency A(l) obtained
from a normal GP layer 3 as:

A′(l) = resample

(
A(l) −min

(
A(l))

max
(
A(l)

)
−min

(
A(l)

)) (5)

where A(l) is first normalized in the range of [0, 1], and resample (·) is
performed independently for each matrix entry using the Gumbel-softmax
trick (Jang et al., 2016).
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Persistence Injection

Now A′(l) ∈ {0, 1}nl×nl is a sparse matrix without edge features so we can
easily inject topological information into it. For a resampled graph with
A′(l) and X(l), we formulate the persistence injection as:

D1 = ph
(
A′(l), sigmoid

(
Φ
(
X(l)

)))
A(l) = A′(l) � dense (D1[1]−D1[0])

where � is the Hadamard product, dense() means transforming sparse
representations in terms of edges to dense matrix representations, D1[i] is
the ith value in each tuple of D1. Since the filtration values are within
[0, 1],A(l) after persistence injection is guaranteed to have edge weights
in the range of [0, 1] and is passed to the next pooling layer.
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Topological Loss Function

ht = transform (D1)

µ =
1
m

m∑
t=1

ht, σ =

√√√√ 1
m

m∑
t=1

ht � ht − µ� µ

Ltopo =
1
Ld

L∑
l=1

d∑
i=1

((
µ
(l)
i ‖σ(l)

i

)
−
(
µ
(0)
i ‖σ(0)

i

))2
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