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In 1966, Mark Kac asked the famous question: 



                                Can you hear the shape of a drum?



To hear the shape of a drum is to infer information about the shape of the 
drumhead from the sound it makes, using mathematical theory.

 

In this talk, we mirror the question across senses and address instead: 



                         Can we see the sound of a human speech?
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Periodic phenomena: a motivating example



Let 𝕋 ² = ( ℝ / ℤ )² be the 2D torus.  Consider the dynamical system given by







If σ is rational, then every orbit is periodic.  Otherwise every orbit is dense in 𝕋 ².

















From time series to topological shapes 


Most periodic time series can be realized by a topological circle S¹ embedded 
in a Euclidean space of higher dimension.
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Ideas of topological data analysis (TDA)



The topological type (more precisely, homotopy type) is robust against 
perturbations.
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Ideas of topological data analysis (TDA)



Features of topological shapes, such as the number of holes, can be captured 
by algebraic invariants that are computable.



Comparing these invariants effectively distinguishes the topological types of 
shapes.
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Topological time series analysis



Let us make the assumption that sampled signals are distributed over a 
manifold.  To topologically analyze time series, we then proceed as follows:




	 Step1  Embed the data into a Euclidean space of suitable dimension;




	 Step 2  Compute the algebraic invariants for statistical inference. 
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An application: detection of wheeze in medical science (pulmonology)



Wheezes are abnormal lung sounds and usually 
imply obstructive airway diseases.





The most important characteristic of wheeze signals 
is their periodic patterns.





The accuracy of topological periodicity detection is 98.39% (Emrani et al., IEEE 
Signal Processing Letters, 2014), while in two earlier papers with different 
methods they are 86.2% and 95.5%.





As a warm-up, our research group has reproduced their results using the 
original data and open-source TDA programming package.
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An application: detection of wheeze in medical science (pulmonology)
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A pipeline for topological time series analysis
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Application I: detection of mouse scratching behavior



Joint with the biomedical engineering group led by 
Fangyi Chen and the data science group led by Zhen 
Zhang, both at SUSTech, we applied topological 
methods to the problem of automated and real-time 
detection of mouse scratching behavior, with 
motivations from pharmacology.





Prior to our group’s involvement, 
machine learning via neural networks 
was applied with satisfactory accuracy 
(https://yifeizhu.github.io/scratch.mp4).





However, the learning process was time consuming, which is impractical for 
time-sensitive purposes and lab efficiency.
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Application I: detection of mouse scratching behavior



We observed that the scratching behavior exhibits periodicity.  In the meantime, 
however, global movements of a mouse may significantly reduce the pattern.












To resolve this issue, we adopted the following approaches:




Approach 1  Sum up all 460 x 640 pixels to extract a series of 1D data which 
ignores differences caused by global movements.  Too coarse?





Approach 2  Blur the images by pooling, and feed the topological pipeline 
with reduced 100-dimensional data.  Still too refined?
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Application I: detection of mouse scratching behavior



Approach 1 (1D data, Qingrui Qu), combined with carefully designed filtration 
for wave signals + suitably chosen geometric statistics, yielded a close-to-real-
time, decently accurate detection performance.
















       2 filtrations:  Sliding window embedding (dim=6, delay=1)

                       then project to 2D

   


                        

           







Tuguegarao

f 0 = f ¤K3

f 00 = f 0 ¡ f 0 ¤K7














Application I: detection of mouse scratching behavior



Approach 1 (1D data, Qingrui Qu), combined with carefully designed filtration 
for wave signals + suitably chosen geometric statistics, yielded a close-to-real-
time, decently accurate detection performance.
















       2 filtrations:  Sliding window embedding (dim=6, delay=1)

                       then project to 2D

   


                        


           











Maximum

Emasi
f 0 = f ¤K3

f 00 = f 0 ¡ f 0 ¤K7














Application I: detection of mouse scratching behavior



Approach 1 (1D data, Qingrui Qu), combined with carefully designed filtration 
for wave signals + suitably chosen geometric statistics, yielded a close-to-real-
time, decently accurate detection performance.
















       2 filtrations:  Sliding window embedding (dim=6, delay=1)

                       then project to 2D

   


                        

           







impounded
f 0 = f ¤K3

f 00 = f 0 ¡ f 0 ¤K7














Application I: detection of mouse scratching behavior



Approach 1 (1D data, Qingrui Qu), combined with carefully designed filtration 
for wave signals + suitably chosen geometric statistics, yielded a close-to-real-
time, decently accurate detection performance.
















       2 filtrations:  Sliding window embedding (dim=6, delay=1)

                       then project to 2D

   


                        

           







I_

Mama

Tm

f 0 = f ¤K3

f 00 = f 0 ¡ f 0 ¤K7














Application I: detection of mouse scratching behavior



Approach 1 (1D data, Qingrui Qu), combined with carefully designed filtration 
for wave signals + suitably chosen geometric statistics, yielded a close-to-real-
time, decently accurate detection performance.
















       2 filtrations:  Sliding window embedding (dim=6, delay=1)

                       then project to 2D

   


                        

           







adf.mnf 0 = f ¤K3

f 00 = f 0 ¡ f 0 ¤K7














Application I: detection of mouse scratching behavior



Approach 1 (1D data, Qingrui Qu), combined with carefully designed filtration 
for wave signals + suitably chosen geometric statistics, yielded a close-to-real-
time, decently accurate detection performance.
















       2 filtrations:  Sliding window embedding (dim=6, delay=1)

                       then project to 2D

   


                        

           







To
f 0 = f ¤K3

f 00 = f 0 ¡ f 0 ¤K7














Application I: detection of mouse scratching behavior



Approach 1 (1D data, Qingrui Qu), combined with carefully designed filtration 
for wave signals + suitably chosen geometric statistics, yielded a close-to-real-
time, decently accurate detection performance.
















       2 filtrations:  Sliding window embedding (dim=6, delay=1)

                       then project to 2D

   


                        

           







f 0 = f ¤K3

f 00 = f 0 ¡ f 0 ¤K7














Application I: detection of mouse scratching behavior



Approach 2 (multi-dimensional data, Siheng Yi), combined with persistent 
homology and its representations, yielded recognizable characteristics but 
required considerable computational time.
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Application II: classification of speech signals



Joint with Meng Yu of Tencent AI Lab, we applied topological methods to 
classify voiced/voiceless and vowel/consonant speech data, with motivations 
from industrial applications.  



We were inspired by Carlsson et al.’s discovery of the Klein-bottle distribution 
of local natural images, as well as their subsequent recent work of topological 
convolutional neural networks learning video data.  We would like to 
understand an analogous “moduli space” for speech data and how its input 
may enable smarter learning.





Display of speech signals 


There are speech signal 
processing softwares for 
professional use.
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Application II: classification of speech signals



Here is a flowchart for our 
topological approach:





Topological profiles for vowels and consonants 

 
               Features for vowels                                Features for consonants      

Left: frame size: 15ms, frame shift: 5ms; Right: frame size: 45ms, frame shift: 22.5ms                      Left: pulmonic consonant; Right: non-pulmonic consonant
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Application II: classification of speech signals



Using real-world speech data from the MFA aligner, our research group (Feng) 
further fed the topological features for machine learning, and obtained positive 
preliminary results for classification. 
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A formal recap of the topological methods applied 
Persistent homology
•


















Sliding window embedding (time-delay embedding) •



Euclidean embedding of time series data dates back to Takens’s work on 
fluid turbulence in the 1980s.





Theorem (Takens 1981).  Let M be a compact manifold of dimension n.  
Given pairs (φ, y) with φ : M → M a smooth diffeomorphism and y : M → ℝ a 
smooth function, it is a generic property that the map Φ(φ, y) : M → ℝ²ⁿ ⁺¹ 
defined by




is an embedding.
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Given pairs (φ, y) with φ : M → M a smooth diffeomorphism and y : M → ℝ a 
smooth function, it is a generic property that the map Φ(φ, y) : M → ℝ²ⁿ ⁺¹ 
defined by




is an embedding.
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From topological data analysis to topological deep learning



Using persistent homology, Carlsson, Ishkhanov, de Silva, and Zomorodian 
qualitatively analyzed approximately 4.5 x 10⁶ high-contrast local patches  of 
natural images obtained by van Hateren and van der Schaaf and previously 
studied by Lee, Mumford, and Petersen.  In their 2008 article, they discovered 
that as vectors of pixels, the image data were unevenly distributed over a Klein 
bottle within the 7-dimensional Euclidean sphere!  We may view the Klein bottle 
as a moduli space for local image data.



A decade later, Love, Filippenko, Maroulas, and Carlsson have made the Klein 
bottle as a topological input for designing convolutional layers in neural 
networks that learn image data.  Moreover, they 
have incorporated the tangent bundle of a Klein 
bottle into TCNNs for learning video data.  Both 
learnings achieved higher accuracies with smaller 
training sets.
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We have reproduced some of their results.  
Analogously, a main goal is to use topological 
methods to reveal distribution spaces for speech 
signals and apply them to deep learning.
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As a second warm-up, our research group 
(Zhiwang Yu) have reproduced some of their 
results.  Analogously, a main goal is to use 
topological methods to reveal distribution spaces for speech signals and apply 
them to deep learning.
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From topological data analysis to topological deep learning



Motivated by the works of Carlsson and his collaborators’, in consultation with 
Meng Yu of Tencent AI Lab, we have been investigating analogous questions 
for speech signals, with the additional tool of time-delay embedding for turning 
time series data to point clouds in Euclidean spaces.




For phonetic data, linguists created a charted “distribution space” of vowels:
•



Using speech files from SpeechBox, our •
topological approach achieved an average 
accuracy exceeding 95% in classifying 
voiced and voiceless consonants via 
machine learning.




A main goal remains to use topological •
methods to reveal distribution spaces for 
speech signals and apply them to deep learning.
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approach achieved an average accuracy exceeding 
96% in classifying voiced and voiceless consonants 
via machine learning.  A main goal remains to use 
topological methods to reveal a distribution space 
for speech data, even a digraph on it modeling the 
complex network of speech-signal sequences, and 
apply these topological inputs for smarter learning.
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From topological data analysis to topological deep learning



Reservoir networks and photonic circuits have been applied to vowel 
recognition, too.  



























It will be useful to design and fine-tune them topologically (joint with Huan Li of 
optical science and engineering at Zhejiang University and Xinxiang Niu of 
Huawei).






FLEE













From topological data analysis to topological deep learning



Reservoir networks and photonic circuits have been applied to vowel 
recognition, too.  



























It will be useful to design and fine-tune them topologically (joint with Huan Li of 
optical science and engineering at Zhejiang University and Xinxiang Niu of 
Huawei).






























                                                        Thank you.





























