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In this talk, we mirror the question across senses and address instead:
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Periodic phenomena: a motivating example

Let T2 = (R/Z)? be the 2D torus. Consider the dynamical system given by
Dy: T x R — T*
(a,0),t) = (a+1t,b+ ot)

If o is rational, then every orbit is . Otherwise every orbit is dense in T?2.

From time series to topological shapes

Most periodic time series can be realized by a embedded
in a Euclidean space of higher dimension.
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The topological type (more precisely, homotopy type) is robust against
perturbations.
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Ideas of topological data analysis (TDA)

Features of topological shapes, such as the number of holes, can be captured
by algebraic invariants that are

Comparing these invariants effectively the topological types of
shapes.
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Topological time series analysis
Let us make the assumption that sampled signals are distributed over a
. To topologically analyze time series, we then proceed as follows:
Step 1 Embed the data into a of suitable dimension;

Step 2 Compute the algebraic invariants for statistical inference.
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An application: detection of wheeze in medical science (pulmonology)
Wheezes are abnormal lung and usually

imply obstructive airway diseases.

The most important characteristic of wheeze signals
s their patterns.

The accuracy of topological periodicity detection is 98.39% (Emrani et al., IEEE
Signal Processing Letters, 2014), while in two earlier papers with different
methods they are 86.2% and 95.5%.

As a warm-up, our research group (Siheng Yi) has reproduced their results
using the original data and open-source TDA programming package.
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Time series data: x4, X5, X3, X4, ...

Preprocessing ——>

2D Euclidean shape: point cloud (x4, X147), (X2, X247), (X3, X300, -.-

Topological feature extraction —— delay

Algebraic invariants: homology groups, persistence barcodes, ...

Statistical inference ——>

Characteristics conclusions
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Fangyi Chen and the data science group led by Zhen
Zhang, both at SUSTech, we applied topological
methods to the problem of and

detection of mouse scratching behavior, with |
motivations from : B

Scratching by hindlimb

Prior to our group’s involvement,
machine learning via neural networks
was applied with satisfactory accuracy
(https://yifeizhu.github.io/scratch.mp4).
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However, the learning process was , Which is impractical for
time-sensitive purposes and lab efficiency.
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Application I: detection of mouse scratching behavior

We observed that the scratching behavior exhibits periodicity. In the meantime,
however, of a mouse may significantly reduce the pattern.

To resolve this issue, we adopted the following approaches:

Approach 1 all 460x640 pixels to extract a series of 1D data which
ignores differences caused by global movements. Too coarse?

Approach 2 Blur the images by , and feed the topological pipeline
with reduced 100-dimensional data. Still too refined?




Application I: detection of mouse scratching behavior

Approach 1 (1D data, Qingrui Qu), combined with carefully designed
for wave signals + suitably chosen , yielded a close-to-real-
time, decently accurate detection performance.



Application I: detection of mouse scratching behavior

Approach 1 (1D data, Qingrui Qu), combined with carefully designed
for wave signals + suitably chosen , yielded a close-to-real-
time, decently accurate detection performance.

/

A

| v

|

|

|

y
v
30 40 50 60 70 80

2 filtrations: | [ = f* K3
ff=f—-f*K;

—+

w e oW ow
2 2 2 2 o & @
5 & &5 & & B




Application I: detection of mouse scratching behavior

Approach 1 (1D data, Qingrui Qu), combined with carefully designed

for wave signals + suitably chosen
time, decently accurate detection performance.

30 40

2 filtrations:

f

f// — f/ . f/

/

\ N
\ VN |
\ / \ | 1
\ /N | |
W | v | [ \
| | | ]
e N / \
L/ 1 /
\ 2r
V
" . . 25 . . A . ,
! 50 60 70 80 0 7 30 40 50

B *
=

wuuwuu
[=3 =2 -2
2 2 8 2 2 8 3 &

@
&

, yielded a close-to-real-



Application I: detection of mouse scratching behavior

Approach 1 (1D data, Qingrui Qu), combined with carefully designed

for wave signals + suitably chosen

, yielded a close-to-real-

time, decently accurate detection performance.

30 40

2 filtrations:

—+

\ M ,
AN \
\ [\ || | [
\, [\ I [ | \N |
‘v,w”‘ [ v | | | || [ \ V |
| | L | | | £
|/ - | | / \
L/ 1 | | /
e 2f |/
v [
. . . s | \ f \ ,
! 50 60 70 80 0 7 30 40 50 60 7\

Sliding window embedding (dim=6, delay=1)

then project }QZD

wuuuuu
[=3 =2 -2
2 2 8 2 2 8 3 &

@
&

f/
f//:f/_f/*<




Application I: detection of mouse scratching behavior

Approach 1 (1D data, Qingrui Qu), combined with carefully designed
for wave signals + suitably chosen

time, decently accurate detection performance.

, yielded a close-to-real-

2 filtrations:

@
&

30 40

f/

f//:f/_f/*K’?

\ N\ N
\ J 1\ |1 \\f
\ /
W[V [ V
1 | |
|/ . | / \
A / 9 | )
\N 2F
V
. . . 25 . . f . .
! 50 60 70 80 0 7 30 40 50

Sliding window embedﬁing (dim=6, delay=1)

wuuwuu
[=3 =2
2 2 8 2 2 8 3 &

\
510
15f

then project }QZD

[
I\
\»‘ ‘\
Wi




Application I: detection of mouse scratching behavior

Approach 1 (1D data, Qingrui Qu), combined with carefully designed
for wave signals + suitably chosen

time, decently accurate detection performance.

30 40

2 filtrations:

=

f

f//:f/_f/*K’?

/

, yielded a close-to-real-

mean /standard deviation of
radii / run-lengths

\ M\
\ /v
A\ AN | /
W [ V
| |
| J - /
L/ ] )
\V' 2r
V
, , . 5 . A f .
! 50 60 70 80 Y 7 30 40

Sliding window embedﬁing (dim=6, delay=1)

wuuwuu
[=3 =2 -2
2 2 8 2 2 8 3 &

@
&

\
510
15f

then project }QZD

mean /standard deviation of
radii / run-lengths



Application I: detection of mouse scratching behavior

Approach 1 (1D data, Qingrui Qu), combined with carefully designed
for wave signals + suitably chosen , yielded a close-to-real-
time, decently accurate detection performance.
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Application I: detection of mouse scratching behavior
Approach 2 (multi-dimensional data, Siheng Yi), combined with persistent

nomology and its representations, yielded recognizable characteristics but
required considerable computational time.
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Joint with Meng Yu of Tencent Al Lab, we applied topological methods to

classify and speech data, with motivations
from industrial applications.

We were inspired by Carlsson et al.’s discovery of the Klein-bottle distribution
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topological approach:
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Using real-world speech data from the MFA

further fed the topological features for
preliminary results for classification.
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Using real-world speech data from the MFA , our research group (Feng)

further fed the topological features for
preliminary results for classification.
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 Sliding window embedding (time-delay embedding)

Euclidean embedding of time series data dates back to Takens’s work on
fluid turbulence in the 1980s.

Theorem (Takens 1981). Let M be a compact manifold of dimension n.
Given pairs (¢, y) with ¢ : M — M a smooth diffeomorphismandy: M —R a

smooth function, it is a generic property that the map ®w.,: M — R2"+1
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Using , Carlsson, Ishkhanov, de Silva, and Zomorodian
qualitatively analyzed approximately 4.5x 10° high-contrast local patches of
natural images obtained by van Hateren and van der Schaaf and previously
studied by Lee, Mumford, and Petersen. In their 2008 article, they discovered
that as vectors of pixels, the image data were unevenly distributed over a Klein
bottle within the 7-dimensional Euclidean sphere!

A decade later, Love, Filippenko, Maroulas, and Carlsson have made the Klein
bottle as a topological input for designing convolutional layers in neural
networks that learn image data. Moreover, they have incorporated the tangent
bundle of a Klein bottle into TCNNSs for learning
video data. Both learnings achieved higher
accuracies with smaller training sets.

As a second warm-up, our research group
(Zhiwang Yu) have reproduced some of their
results.
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For phonetic data, linguists created a charted “distribution space” of vowels:

The vertical axis of the chart Front Central Back

denotes vowel height. Vowels
pronounced with the tongue Close 1 y 1 H [u * u
1Y O

lowered are at the bottom and
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raised are at the top. The
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Abstract—In artficial-intelligence-aided signal processing, existing
deep learning models often exhibit a black-box structure, and their
valdity and comprehensibilty remain elusive. The integration of topo-
logical methods, despite its relatively nascent application, serves a dual
purpose of making models more interpretable as well as extracting
structural information from time-dependent data. Here, we provide a
transparent and broadly applicable methodology, TopCap, to capture
the most salient topological features inherent in time series for machine
learning. Rooted in high-dimensional ambient spaces, TopCap is capa-
ble of capturing features rarely detected in datasets with low intrinsic di-
mensionality. Applying time-delay embedding and persistent homology,
we obain descriptors which encapsulate information such as the vibra-
tion of a time series, in terms of its variabily of frequency, amplitude,
and average line, demonstrated with simulated data. This information
is then vectorised and fed into multiple machine learning algorithms
such as k-nearest neighbours and support vector machine. Notably,
in classifying voiced and voiceless consonants, TopCap achieves an
accuracy exceeding 96% and is geared towards designing topological
convolutional layers for deep learning of speech and audio signals

1 INTRODUCTION

N 1966, Mark Kac asked the famous question: “Can you

hear the shape of a drum?” To hear the shape of a drum
is to infer information about the shape of the drumhead
from the sound it makes, using mathematical theory. In this
article, we mirror the question across senses and address
instead: “Can we see the sound of a human speech?”

The artificial intelligence (AI) advancements have led to
a widespread adoption of voice recognition technologies,
encompassing applications such as speech-to-text conver-
sion and music generation. The rise of topological data
analysis (TDA) [1] has integrated topological methods into
many areas including AI [2], [3], which make neural net-
works more interpretable and efficient, with a focus on
structural information. In the field of voice recognition [4],
5], more specifically consonant recognition [6]-{10], preva-
lent methodologies frequently revolve around the analy-
sis of energy and spectral information. While topological
approaches are still rare in this area, we combine TDA
and machine leaming to obtain a classification for speech
data, based on geometric patterns hidden within phonetic
segments. The method we propose, TopCap (referring to
capturing topological structures of data), is not only appli-
cable to audio data but also to general-purpose time series
data that require extraction of structural information for

machine learning algorithms. Initially, we endow phonctic

time series with p loud structure in a high
Euclidean space via time-delay embedding (TDF, see [Fig.|
[1a) with appropriate choices of 5 2

I-dimensional persistence diagrams are computed using
persistent homology (see Section 3 of Supplementary Infor-
mation for an explanation of the terminologies). We then
conduct evaluations with nine machine learning algorithms
to demonstrate the significant capabilitics of TopCap in the
desired classification.

Conceptually, TDA is an approach which facilitates the
examination of data structure through the lens of topol-
ogy. This discipline was originally formulated to inves

gate the “shape” of data, particularly point-cloud data in
high

spaces [11]. Cl by a unique
insensitivity to metrics, robustness against noise, invariance
under , and cc d: compu-

tation [1], TDA has been combined with machine learning
algorithms to uncover intricate and concealed information
within datasets [3], [12]-[16]. In these contexts, topological
‘methods have been employed to extract structural informa-
tion from the dataset, thereby enhancing the efficiency of
the original algorithms. Notably, TDA excels in identi
patterns such as clusters, loops, and voids in data, establish
ing it as a burgeoning tool in the realm of data analysis [17].
As a nascent field of study, the majority of theoretical results
pertaining to topological methods have yet found their op!
mal applications and benefited everyday life. Nevertheless,
with its distinetive emphasis on the shape of data, TDA has
led to novel applications in various far-reaching fields, as
evidenced in the literature. These include image recogni-
tion [18]-[20], time series forecasting [21] and classification
2], brain activity monitoring [23], [24], protein structural
analysis [25], [26], speech recognition [27], signal processing
[28], [29], neural networks [2], [30]-{32], among others. It is
anticipated that with the further development of theoretical
foundations and their applications, the promising future of
TDA will pave a new direction to enhance numerous aspects
of daily lives

The task of extracting features that pertain to structural
information is both intriguing and formidable. This pro-
cess is integral to a multitude of practical applications, as
cvidenced by various studies [33]-(36]. Scholars strive to
identify the most effective representatives and descriptors
of shape within a given dataset. Despite the fact that TDA
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high spaces [11]. C y a unique
insensitivity to metrics, robustness against noise, invariance
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tion from the dataset, thereby enhancing the efficiency of
the original algorithms. Notably, TDA excels in identi
patterns such as clusters, loops, and voids in data, establish
ing it as a burgeoning tool in the realm of data analysis [17].
Asa nascent field of study, the majority of theoretical results
pertaining to topological methods have yet found their op!
mal applications and benefited everyday life. Nevertheless,
with its distinetive emphasis on the shape of data, TDA has
led to novel applications in various far-reaching fields, as
evidenced in the literature. These include image recogni-
tion [18]-[20], time series forecasting [21] and classification
2], brain activity monitoring [23], [24], protein structural
analysis [25], [26], speech recognition [27], signal processing
[28], [29], neural networks [2], [30]-{32], among others. It is
anticipated that with the further development of theoretical
foundations and their applications, the promising future of
TDA will pave a new direction to enhance numerous aspects
of daily lives

The task of extracting features that pertain to structural
information is both intriguing and formidable. This pro-
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hear the shape of a drum?” To hear the shape of a drum
is to infer information about the shape of the drumhead
from the sound it makes, using mathematical theory. In this
article, we mirror the question across senses and address
instead: “Can we see the sound of a human speech?”

The artificial intelligence (AI) advancements have led to
a widespread adoption of voice recognition technologies,
encompassing applications such as speech-to-text conver-
sion and music generation. The rise of topological data
analysis (TDA) [1] has integrated topological methods into
many areas including Al [2], [3], which make neural net-
works more interpretable and efficient, with a focus on
structural information. In the field of voice recognition [4],
5], more specifically consonant recognition [6]-{10], preva-
lent methodologies frequently revolve around the analy-
sis of energy and spectral information. While topological
approaches are still rare in this area, we combine TDA
and machine learning to obtain a classification for speech
data, based on geometric patterns hidden within phonetic
segments. The method we propose, TopCap (referring to
capturing topological structures of data), is not only appli-
cable to audio data but also to general-purpose time series
data that require extraction of structural information for
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time series with p loud structure in a high
Euclidean space via time-delay embedding (TDE, see [Fig.|
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I-dimensional persistence diagrams are computed using
persistent homology (see Section 3 of Supplementary Infor-
mation for an explanation of the terminologies). We then
conduct evaluations with nine machine learning algorithms
to demonstrate the significant capabilities of TopCap in the
desired classification.

Conceptually, TDA is an approach which facilitates the
examination of data structure through the lens of topol-
ogy. This discipline was originally formulated to inves
gate the “shape” of data, particularly point-cloud data in
high spaces [11]. C y a unique
insensitivity to metrics, robustness against noise, invariance
under , and « d: compu-
tation [1], TDA has been combined with machine learning
algorithms to uncover intricate and concealed information
within datasets [3], [12]-[16]. In these contexts, topological
‘methods have been employed to extract structural informa-
tion from the dataset, thereby enhancing the efficiency of
the original algorithms. Notably, TDA excels in identi
patterns such as clusters, loops, and voids in data, establish
ing it as a burgeoning tool in the realm of data analysis [17].
As a nascent field of study, the majority of theoretical results
pertaining to topological methods have yet found their op!
mal applications and benefited everyday life. Nevertheless,
with its distinetive emphasis on the shape of data, TDA has
led to novel applications in various far-reaching fields, as
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2], brain activity monitoring [23], [24], protein structural
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[28], [29], neural networks [2], [30]-{32], among others. It is
anticipated that with the further development of theoretical
foundations and their applications, the promising future of
TDA will pave a new direction to enhance numerous aspects
of daily lives

The task of extracting features that pertain to structural
information is both intriguing and formidable. This pro-
cess is integral to a multitude of practical applications, as
evidenced by various studies [33]-(36]. Scholars strive to
identify the most effective representatives and descriptors
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N 1966, Mark Kac asked the famous question: “Can you

hear the shape of a drum?” To hear the shape of a drum
is to infer information about the shape of the drumhead
from the sound it makes, using mathematical theory. In this
article, we mirror the question across senses and address
instead: “Can we see the sound of a human speech?”

The artificial intelligence (AI) advancements have led to
a widespread adoption of voice recognition technologies,
encompassing applications such as speech-to-text conver-
sion and music generation. The rise of topological data
analysis (TDA) [1] has integrated topological methods into
many areas including AI [2], [3], which make neural net-
works more interpretable and efficient, with a focus on
structural information. In the field of voice recognition [4],
5], more specifically consonant recognition [6]-{10], preva-
lent methodologies frequently revolve around the analy-
sis of energy and spectral information. While topological
approaches are still rare in this area, we combine TDA
and machine learning to obtain a classification for speech
data, based on geometric patterns hidden within phonetic
segments. The method we propose, TopCap (referring to
capturing topological structures of data), is not only appli-
cable to audio data but also to general-purpose time series
data that require extraction of structural information for
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time series with p loud structure in a high
Euclidean space via time-delay embedding (TDE, see [Fig.|
[1a) with appropriate choices of 5 2

I-dimensional persistence diagrams are computed using
persistent homology (see Section 3 of Supplementary Infor-
mation for an explanation of the terminologies). We then
conduct evaluations with nine machine learning algorithms
to demonstrate the significant capabilities of TopCap in the
desired classification.

Conceptually, TDA is an approach which facilitates the
examination of data structure through the lens of topol-
ogy. This discipline was originally formulated to inves
gate the “shape” of data, particularly point-cloud data in
high spaces [11]. C y a unique
insensitivity to metrics, robustness against noise, invariance
under , and « d: compu-
tation [1], TDA has been combined with machine learning
algorithms to uncover intricate and concealed information
within datasets [3], [12]-[16]. In these contexts, topological
‘methods have been employed to extract structural informa-
tion from the dataset, thereby enhancing the efficiency of
the original algorithms. Notably, TDA excels in identi
patterns such as clusters, loops, and voids in data, establish
ing it as a burgeoning tool in the realm of data analysis [17]
Asa nascent field of study, the majority of theoretical results
pertaining to topological methods have yet found their opti-
mal applications and benefited everyday life. Nevertheless,
with its distinetive emphasis on the shape of data, TDA has
led to novel applications in various far-reaching fields, as
evidenced in the literature. These include image recogni-
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[22], brain activity monitoring (23], [24], protein structural
analysis [25], [26], speech recognition [27], signal processing
[28], [29], neural networks [2], [30]-{32], among others. It is
anticipated that with the further development of theoretical
foundations and their applications, the promising future of
TDA will pave a new direction to enhance numerous aspects
of daily lives

The task of extracting features that pertain to structural
information is both intriguing and formidable. This pro-
cess is integral to a multitude of practical applications, as
cvidenced by various studies [33]-[36]. Scholars strive to
identify the most effective representatives and descriptors
of shape within a given dataset. Despite the fact that TDA
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Reservoir networks and photonic circuits have been applied to vowel
recognition, too.
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Artificial neural networks are computational network models inspired by signal processing in the brain. These models have
dramatically improved performance for many machine-learning tasks, including speech and image recognition. However,
today's computing hardware is inefficient at implementing neural networks, in large part because much of it was designed
for von Neumann computing schemes. Significant effort has been made towards developing electronic architectures tuned
to implement artificial neural networks that exhibit improved computational speed and accuracy. Here, we propose a new
architecture for a fully optical neural network that, in principle, could offer an enhancement in computational speed and
power efficiency over state-of-the-art electronics for conventional inference tasks. We experimentally demonstrate the
essential part of the concept using a programmable nanophotonic processor featuring a cascaded array of 56 programmable
Mach-Zehnder interferometers in a silicon photonic integrated circuit and show its utility for vowel recognition.
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It will be useful to design and fine-tune them topologically (joint with Huan Li of
optical science and engineering at Zhejiang University and Xinxiang Niu of
Huawei).
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