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1 Introduction

There are many cases when we need to detect the “shape” of data points. For
example, taking 100 points on the unit circle randomly, one can recongnize the
shape of circle by eyes. In dynamical systems, circular attractors imply peri-
odicity. What if the circle is embedded in R4 or higher dimensional Euclidean
space? Or even worse, what if the data is taken from a non-Euclidean topo-
logical space? This is when topological method being used. Recovering the
underlying space of discrete data points is what persistent homology do.

The theory of persistent homology is well-formulated. Given point clouds,
we track the change of homology classes when changing the scale of observation.

1



Classic persistent homology determine the homotopy type of data by considering
homology group. In this thesis, we take additional structures of the homology
groups into consideration, for example the cup product, the Massey products
and other higher structures. These structures make the homology group a dif-
ferential graded ring, an A∞-algebra and so on. In algebraic topology, these
structures of homology enable us to distinguish between more spaces that can-
not be distinguished when we only consider the group structure. It is the same
case for persistent homology.

Chapter 2 is a brief review of persistent homology. Chapter 3 gives a kind
of distance between persistent homology structures. Chapter 4 introduces the
additional structures on the homology groups and access the stability of the
model based on the distance defined earlier. Chapter 5 states and proves the
stability theorem.

2 A review of Persistent Homology

If we take 100 arbitrary points from a circle, we can recognize the shape of the
circle by our eyes, as in figure 1. If the points are taken from a torus in R3,
we might still be able to recover the shape of the torus in our mind. What
if the points are taken from a Klein bottle or a projective plane embedded in
R4, or Sn that lies in Rn+1? In many cases we have similar problems, having
to recover the original space (for example, an attractor of a dynamical system)
from which a discrete point cloud is taken out. One may think of calculating the
homology to find its homotopy type, but the topology on a finite set is discrete,
giving almost trivial homology. A strategy is to connect close points, fill in the
blank spaces near each point to get a non-discrete space and then calculate the
homology of that space. This might work, but the new question is the definition
of “close”. If the points come from a large circle, we may have to connect points
whenever their distance is less than 100. But if they come from a small torus
with diameter 1, the parameter 100 will connect every two pints and simply yield
a contractible space. Similarly, if we let the threshold of closeness to be 1 for
the large circle, we would get nothing new but the discrete set again. Different
parameters change the homotopy type and homology groups, while it turns out
that there is no systematic method to choose the parameter. The solution of
this problem is to try all parameters from small to large and to calculate the
homology groups for every parameter. After that, compare all the homology
groups and pick the homology classes that persist longer than others, which are
more possible to be the homology class of the original space, and regard them
as the homology classes for the real space. This is what persistent homology
do. In this section, we will talk about persistent homology in detail. The main
reference of this chapter is [3].
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Figure 1: A statistical circle

2.1 Complex Constructions

The method to get a non-discrete space from a point cloud is to construct a
complex by joining certain points together. Here we introduce two kind of
complexes: Vietoris-Rips complex and Čech complex.

Definition 1 (Čech Complex). Let X = {x1, . . . , xn} be a point cloud in a
metric space (M,d). The Čech complex at scale α is the set C̆α(X) := {σ ⊆
X |

⋂
x∈σ

B(x, α) ̸= ∅}, where B(x, α) is the ball centered at x with radius α.

C̆α(X) can be though of as a ∆-complex as follows: let |σ| be the convex
hull spanned by all points of σ = {xk1 , . . . , xkm} with k1 < · · · < km, that is,

|σ| := {
m∑
i=1

aixki
| ai ≥ 0,

∑
ai = 1}. Then identify σ with the only linear map

∆m → |σ| that preserves the order of the vertices.
|C̆α(X)| :=

⋃
σ∈C̆

|σ| ⊆ Rd is called the geometric realization of C̆α(X),

whose ∆-complex structure is given by maps in C̆α(X). In this case, we call
C̆α(X) an abstract ∆-complex.

When no ambiguity is caused, we identify an abstract ∆-complex and its
geometric realization.

Remark. Once regarding C̆α(X) as a ∆-complex, we can talk about its n-cycles,
n-boundary chains and homology groups. It is clear that C̆α(X) ⊆ C̆α′(X) when
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α < α′. So there is a natural inclusion C∆
n (C̆α(X)) ↪→ C∆

n (C̆α′(X)) for every
α < α′ and n ≥ 0.

Definition 2 (Vietoris-Rips Complex). Let X be the same as in 1. The
Vietoris-Rips complex at scale α (or simply Rips complex) is the set Vα(X) :=
{σ ⊆ X | B(xi, α) ∩B(xj , α) ̸=,∀xi, xj ∈ σ}.

Vα(X) can be thought of as a ∆-complex in the same way as C̆α(X). The
homology groups can still be computed and the natural inclusion for every
α < α′ still exists.

Remark. The Rips Complex is a flag complex, or a full complex: That is,
it is the maximal element in all ∆-complexes with the given 1-skeleton. This
is easy to check by the definition. Therefore, the 0-skeleton (vertices) and 1-
skeleton completely determine a Rips complex, making the Rips complex less
expensive than other complexes in computation.

Figure 2: Complex construction for the point cloud X = {x, y, z}. Each circle
has radius 1. Then C̆1(X) = {{x}, {y}, {z}, {xy}, {xz}, {yz}} and V1(X) =
{{x}, {y}, {z}, {xy}, {xz}, {yz}, {xyz}}. The shaded triangle is not contained
in C̆1(X) but is in V1(X).

For both Čech and Rips complex, if the parameter α is small enough, C̆α(X)
and Vα(X) contain only discrete points; if α is larger than the diameter of X,
then both C̆α(X) and Vα(X) contain the full complex spanned by points as
vertices in X (that is, all subsets of X are simplices in C̆α(X) and Vα(X). For
certain medium α, C̆α(X) and Vα(X) may very similar to the the space where
X is taken from, topologically.

It is clear that for the same cale α, C̆α(X) ⊆ Vα(X). Fig 2 illustrates a situ-
ation when C̆α(X) contains strictly less simplices than Vα(X). Conversely, the
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Čech complex also contains the Rips complex with smaller radius, as illustrated
in proposition 1.

Proposition 1. For any point cloud X and α > 0, Vα/2(X) ⊆ C̆α(X) ⊆ Vα(X).

Proof. The second inclusion is obvious. For the first inclusion, suppose σ =
{x1, . . . , xm} ∈ Vα/2(X), then B(xi, α) ∩ B(xj , α) ̸=,∀xi, xj ∈ σ. That is,
d(xi, xj) < α, ∀xi, xj ∈ σ. Then the diameter of the set σ is less than α,
so we can find a ball B(y, α) with radius α, centered at some y ∈ Rd, such
that σ ⊆ B(y, α). Then y is in the intersection of all B(xi, α), xi ∈ σ. Thus
σ ∈ Vα(X).

This proposition allows us to compare the homology computed using the two
kind of complexes.

2.2 Persistence

In this section we will deal with the varying scale, and extract important ho-
mology classes from each H∆

n (C̆α(X)) and H∆
n (Vα(X)).

Definition 3. Let K be an abstract ∆-complex with geometric realization |K|.
A filtration of K is a sequence of subcomplexes = K0 ⊆ K1 ⊆ · · · ⊆ Kn = K.

A function f : K → R is called monotonic if f(σ) ≤ f(τ) whenever σ is a
face of τ .

Example 1. (1) A filtration can be generated using a monotonic function. Let
a1 < · · · < an be the distinct function values of f and Ki := f−1(−∞, ai]. By
monotonicity of f , eachKi is a subcomplex ofK andK1 ⊆ K1 ⊆ · · · ⊆ Kn = K.

In particular, one may have Ki−Ki−1 = {σi} for some p-simplex σi. In this
case, the filtration illustrates the construction of K by adding one simplex at a
time. See fig 3.

(2) If we take values 0 < α1 < · · · < αn, then the Vietoris-Rips complex or
Čech complex give a filtration Vα1

(X) ⊆ · · · ⊆ Vαn
or C̆α1

(X) ⊆ · · · ⊆ C̆αn
(X).

Let = K0 ⊆ K1 ⊆ · · · ⊆ Kn = K be a filtration. For every i ≤ j, we have
Ki ↪→ Kj the inclusion. This induces a map between homology groups, which
we denoted by f i,j

p : Hp(Ki) → Hp(Kj) for all dimension p. So we obtain a
sequence of homology groups connected by homomorphisms:

· · · → Hp(Ki−1) → Hp(Ki) → Hp(Ki+1) → · · ·

where f j,k
p ◦f i,j

p = f i,k
p for every i ≤ j ≤ k. We can actually define this structure

more generally, although this formal definition is not so important in this article:

Definition 4. A persistent vector space is a set of vector spaces {Vα}α∈P

indexed by a total ordered set P together with linear maps fα,α′ : Vα → Vα′

for every α < α′ such that fα,α = idVα
, ∀α and fα′,α′′ ◦ fα,α′ = fα,α′′ for every

α ≤ α′ ≤ α′′.

5



Figure 3: A filtration with Ki = {σ1, . . . , σi}. Here σ1, . . . , σ4 are vertices,
σ5, . . . , σ9 are edges and σ10, σ11 are faces.

Figure 4: A homology class γ born at Ki and dies entering Kj .

Easy to see that a filtration induces a persistent vector space indexed by a
finite set {0, 1, . . . , n}.

Definition 5. The p-th persistent homology group of the filtration ∅ = K0 ⊆
K1 ⊆ · · · ⊆ Kn = K (with respect to i, j is Hi,j

p := im(f i,j
p ) ⊆ Hp(Kj). The

corresponding p-th persistence betti number is βi,j
p := rank(Hi,j

p ).

We say a homology class γ ∈ Hp(Ki) born at Ki if γ /∈ Hi−1,i
p ; say γ

dies entering Kj if f i,j−1
p (γ) /∈ Hi−1,j−1

p but f i,j
p (γ) ∈ Hi−1,j

p . Define the
persistence of γ to be pers(γ) := j − i. If γ is born at Ki and never dies, set
pers(γ) = ∞. See figure 4

From Ki to Kj , new cycles may be born (for example, when the simplex
σ8 is added in figure 3, creating new 1-cycle). Existing cycles may vanish, or
become homologous to older cycles (for example, σ9, σ11 kill 1-cycles in figure 3).
The persistent homology group Hi,j

p contains the homology classes in Ki that

are still alive independently in Kj . The betti number βi,j
p indicates the number

of such classes. The persistent of a homology class γ illustrates how long does
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this class exist. We should of course take the classes who persistent longer into
consideration. To visualize the persistence, we use the following diagram:

Definition 6. The p-th persistent diagram of the filtration ∅ = K0 ⊆ K1 ⊆
· · · ⊆ Kn = K is the multiset of points in the extended real plane R̄2 :=
(R ∪ {±∞})2 such that (i, j) appears µi,j

p times, where µi,j
p is the number of

p-dimensional homology classes born at Ki and dying entering Kj .
If the filtration is given by a monotonic function f : K → R, then we denote

its persistent diagram by Dgmp(f).

Example 2. In figure 3, additions of σ1, σ2, σ3 and σ4 create new 0-cycles,
that is, new connected components. σ5, σ6 and σ8 kill the components created
by σ2, σ3 and σ4 respectively, making them homologous to the 0-class [σ1]. σ7

creates a new 1-cycle (σ5σ6σ8σ7). σ9 further creates another 1-cycle, making
the second hole. σ10 kills the class generated by σ9, making it homologous to the
1-cycle from σ8. Finally, σ11 kills the remaining 1-cycle from σ8. The persistent
diagram of this filtration is shown in fig

Figure 5: The persistence diagram in example 2.

The next lemma tells us that the persistent diagram contains all the infor-
mation about the persistence homology groups, and vise versa:

Theorem 1 (Fundamental Lemma of Persistent Homology). Let = K0 ⊆ K1 ⊆
· · · ⊆ Kn = K be a filtration. Then for every p ≥ 0,

(1) µi,j
p = (βi,j−1

p − βi,j
p )− (βi−1,j−1

p − βi−1,j
p )

(2) βk,l
p =

∑
i≤k

∑
j>l

µi,j
p .

Proof. (1) Indeed, the difference in the first bracket is the number of independent
classes born at or before Ki and dying entering Kj ; the difference in the second
bracket is the number of independent classes born at or before Ki−1 and dying
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entering Kj . By definition, their difference is µi,j
p , which is the number of

independent classes that are born at Ki and dies entering Kj .
(2) βk,l

p is the number of independent classes in Ki that are still alive in Kj ,
which is the number of independent classes that are born before Ki and dies
after Kj . So βk,l

p is the number of points (counted with multiplicity) in the left
upper quadrant with corner point (k, l). This is the summation in the right
hand side.

To calculate the persistent diagram explicitly, we use matrix reduction. The
detailed technique of calculation is omitted here. Interested readers may refer
to

There is an alternative representation of the persistent diagram, called the
barcode. Specifically, the barcode bcd of a persistence diagram D is a mul-
tiset of intervals {[ai, aj ] | (ai, aj) ∈ D}. The two things contain equivalent
information, namely the birth and death of the homology classes. However,
the barcode is more intuitive, since the length of the intervals indicate the per-
sistence of homology classes. We can visualize the persistence homology by
drawing the barcodes. We will see examples of barcodes in the next chapters.

Therefore, given a filtration, we can systematically reduce its boundary ma-
trix and get the persistent diagram or the barcode. We are done with the
technical details of persistence homology. In the next chapters, we will see how
it combine with other techniques and apply to real-world problems.

3 Distances between the results

As discussed in the previous chapter, we can use the method of persistent ho-
mology to distinguish different point cloud data. A natural question is how to
distinguish the results. Will the resulting persistent vector spaces be different if
we change the structural complex from Čech complex to Rips complex? What
if we change the point cloud? If we disturb the point cloud data slightly, will
the resulting persistent object vary a lot, and if so, how to measure it? This
gives us the urge to define a distance on persistent objects. We will first define
persistent objects using the language of category, then define the interleaving
distance on the abstract persistent objects. The relation between the inter-
leaving distance and the Gromov-Hausdorff distance on point clouds and the
stability are discussed in chapter 4.

Definition 7 ((Co)persistent Object). Let C be a category and (R,≥) be the
category of real numbers considered as a totally ordered set. A persistent
object in C is a functor F : R → C. Denote Fr for F (r). For every r ≤ s,
there is a natural morphism Fr → Fs, the image of the structural morphism
r ≤ s.

A copersistent object is a contravariant functor F : Rop → C.

Example 3. (1) Definition 4 is equivalent to definition 7 whenC is the category
of vector spaces.
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(2) Given a point cloud data X, the Čech complex C̆∗(X) : R → ∆Cpx and
Rips complex V∗(X) : R → ∆Cpx are persistent ∆-complexes.

Definition 8 (Shifting). Let F : R → C be a persistent object in the category
C and ϵ ∈ R be a real number. The ϵ-shifting F [ϵ] of F is the persistent object
F [ϵ] : R → C defined by F [ϵ]r := Fr+ϵ for every r ∈ R.

If F : Rop → C is a copersistent object, the ϵ-shifting F [ϵ] is defined
similarly but with F [ϵ]r := F r−ϵ.

Remark. There is a canonical natural transformation ιϵ : F → F [ϵ] with (ηϵ)r :
Fr → F [ϵ]r being the structural morphism Fr → Fr+ϵ for each r ∈ R.

Definition 9 (ϵ-morphism). Let F,G : R → C be two (co)persistent objects
in the category C. An ϵ-morphism from F to G is a natural transformation
F → G[ϵ].

Remark. If ϵ = 0, we recover the notion of morphism between functors F,G,
that is a natural transformation F → G.

Definition 10 (The Interleaving Distance). Let F,G be two persistent (co)objects.
F,G are called ϵ-interleaved if there exists two ϵ-morphisms

µ : F → G[ϵ], ν : G → F [ϵ]

such that the following diagram commutes.

F F [2ϵ]

G[ϵ] G[3ϵ]

......................................................................................................................................................................................................................................................................................................................... ............
η2ϵ

.................................................................................................................................................................................................................. ........
....

µ

.................................................................................................................................................................................................................. ........
....

µ[2ϵ]

......................................................................................................................................................................................................................................................................................................................... ............
η2ϵ[ϵ].........

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.....................
............

ν[ϵ]

The interleaving (pseudo-)distance of F,G is defined by

dC(F,G) := inf{ϵ ≥ 0 | F and G are ϵ-interleaved}

Remark. If we have F,G : R → C and a functor H : C → D, then we can define
a distance given by dD(HF,HG).

Intuitively, the interleaving distance measures the smallest shift of two func-
tors so that they can “react” with each other. Applying a third functor H as
in the above remark usually makes the distance smaller, as the following lemma
say.

Lemma 1. ([5], lemma 8) Let F,G : R → C be two persistent objects in C and
H : C → D be a functor. Then dD(HF,HG) ≤ dC(F,G).

Proof. Suppose there is an ϵ-interleaving between F and G, then there is a
diagram as in definition 10. A functor H : C → D can apply on the whole
diagram and translate it to an ϵ-interleaving from HF to HG in the category
D. By definition dD(HF,HG) ≤ dC(F,G).
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The following version of stability is easy to prove under this definition of
distance.

Theorem 2 (Morse-type Stability). ([5], theorem 9) Let X be a topological
space and f, g : X → R be two continuous maps. Then Xf : R → Top,r 7→
f−1(−∞, r] is a persistent topological space and Xg is defined similarly. We
have

dTop(X
f , Xg) ≤ ∥f − g∥∞

where ∥f − g∥∞ := supx∈X |f(x)− g(x)|.

Proof. If ∥f − g∥∞ = ∞ the conclusion is trivial. Otherwise, ∀ϵ ≥ ∥f − g∥∞,
r ∈ R, x ∈ Xf

r , we have f(x) ≤ r =⇒ g(x) ≤ f(x) + ϵ ≤ r + ϵ =⇒ x ∈ Xg
r+ϵ.

Hence Xf
r ⊆ Xg

r+ϵ. Similarly, Xf
r ⊆ Xg

r+ϵ ⊆ Xf
r+2ϵ, X

g
r ⊆ Xf

r+2ϵ ⊆ Xg
r+3ϵ. The

inclusion maps give an ϵ-interleaving from Xf to Xg, thus dTop(X
f , Xg) ≤ ϵ.

Since this is true for any ϵ ≥ ∥f − g∥∞, we obtain the inequality.

By theorem 2, the interleaving distance of the persistent sublevel sets Xf

and Xg is controlled by the infinity norm of f and g. In practice, X is usually
a smooth manifold and f, g are Morse functions on it. This is why it’s called
Morse-type stability.

4 Additional Structures on Cohomology

In this chapter we introduce the additional structures such as the cup product
and the Massey product on homology groups. We will recall the definitions and
basic properties of the structures, and then discuss the corresponding interleav-
ing distance. We will give several examples, including concrete calculations.

4.1 The Singular (Co)chain and Graded Vector Space

Definition 11 (Singular (co)chain functor). Let k be a field. The functor
C∗ : Top → Chk, mapping a topological space to its singular chain complex, is
called the singular chain functor.

C∗ : Topop → Chk given by C∗ = Hom(−, k) ◦ C∗ is called the singular
cochain functor.

Compositing with the (co)homology functor H∗(H
∗) : Chk → grVect, the

resulting homology has the structure of graded k-vector spaces, where the grad-
ing is the natural dimension of homology.

Definition 12. Let X,Y : R → Top be two persistent topological spaces. De-
fine the gr-Vect interleaving distance, or classical interleaving distance
as dgrVect(X,Y ) := dgrVect(H

∗(X), H∗(Y )).

We shall see that the graded vector space is the coarsest structure on coho-
mology, therefore, the gr-Vect interleaving distance is the shortest interleaving
distance among others.
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4.2 Cup Product and Dg-Algebra

On cohomology there is a binary product called the cup product. We give an
explicit definition of it on the level of cochains, and then on cohomology by
lifting.

Definition 13 (Cup product on cochains). Let X be a topological space and
C∗(X) be the singular cochain of X. There is a product − ∪ − : Ci(X) ×
Cj(X) → Ci+j(X) is given by

(f ∪ g)(σ) := f(σ|[v0,...,vi])g(σ|[vi,...,vi+j ])

where σ ∈ Ci+j(X) is any singular simplex on X, i.e., a map σ : ∆i+j → X
from the standard (i+ j)-simplex to X.

For cohomology classes [f ] ∈ Hi(X), [g] ∈ Hj(X), one can lift them to the
level of cochain, do cup product, and then pass back to the cohomology. It
turns out that this process is well-defined.

Proposition 2. (1) For f ∈ Ci(X), g ∈ Cj(X), we have δ(f ∪ g) = δf ∪ g +
(−1)if ∪ δg where δ is the coboundary map. This is the graded Leibniz rule.

(2) The cup product − ∪ − : C∗(X) × C∗(X) → C∗(X) maps a couple
of cocycle to a cocycle, and a cocycle and a coboundary in either order to a
coboundary. Thus there is an induced cup product − ∪ − : H∗(X)×H∗(X) →
H∗(X) on cohomology.

(3) The cup product is associative, (anti-)commutative on the level of coho-
mology.

These properties make the cochain C∗(X) a differential graded assotiative
algebra, as defined below.

Definition 14 (dg-Algebra). A differential graded associative algebra is
a graded algebra A equipped with a differential map d : A → A of degree 1 such
that

(1) d ◦ d = 0
(2) d(a · b) = da · b+ (−1)deg(a)a · db
A differential graded associative algebra is called a dg-algebra for short.

Denote Algdg the category of dg-algebras.

Therefore, we obtain a dg-algebra structure on C∗(X), with the products
being the cup products and the differentials being the coboundary maps. H∗(X)
can also be regarded as a dg-algebra with the trivial differential. Both Chk and
Algdg have natural notion of homotopy, thus we can pass to the homotopy
categories ho(Chk) and ho(Algdg) respectively. The cohomology functor H∗

obviously factors through the homotopy categories.
A dg-algebra is in particular a graded vector space. There are two different

cohomology functors H∗
grVect : Top

op → grVect and H∗
Algdg

: Topop → Algdg,

related by a forgetful functor Algdg → grVect. We have, in conclusion, the
following commutative diagram:
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Topop

Algdg grVect

ho(Algdg) ho(Chk)

.................................................................................................................................................................................................................................................................................................................................................................
.
.......
.....

H∗
Algdg

......................................................................................................................................................................................................................................................................................................................... ............
forget

.................................................................................................................................................................................................................. ........
....

Cho(Algdg)


..

Cho(Chk)

......................................................................................................................................................................................................................................................................................................................... ............
forget

.....................................................................................................................................
.....
.......
.....

H

.....................................................................................................................................
.....
.......
.....

H

Definition 15. Let X,Y : R → Top be two persistent topological spaces. De-
fine the dg-algebra interleaving distance ofX,Y as ddg(X,Y ) := dAlgdg

(H∗(X), H∗(Y ))
where the subscript of H∗ is omitted.

Proposition 3. ([5], proposition 19) For any persistent topological spaces X,Y ,
we have the following inequalities:

dgrVect(X,Y ) ≤ dAlgdg
(X,Y ) ≤ dho(Algdg)

(C∗(X), C∗(Y ))

dgrVect(X,Y ) ≤ dho(Chk)(C
∗(X), C∗(Y )) ≤ dho(Algdg)

(C∗(X), C∗(Y ))

Proof. By lemma 1, this is the two rectangular paths of the above diagram.

Remark. When defining the interleaving distances on the level of cochains, we
passed to the homotopy category. The distance dAlgdg

(C∗(X), C∗(Y )) in the
usual category is of course also well-defined. However, if we consider a simplicial
complex X and its triangulation T , it turns out that there doesn’t exist small
ϵ > 0 such that C∗(X), C∗(T ) are ϵ-interleaved. Hence dAlgdg

(C∗(X), C(T )) ≫
0 although X and T have the same underlying space. This is very unnatural
and leads directly to the disobedience of the stability theorem in chapter 5. The
problem disappears after passing to the homotopy category.

The computation of cup product is usually not easy but there are plenty
of ways to this goal. In the following examples we will use classic results in
algebraic topology without proof. Interested readers may refer to [6]

Example 4. ([5], example 21) In this example we will see the case for which
the dg-algebra distance is strictly greater than the gr-vect distance, so the later
can distinguish the two spaces while the former cannot.

Let X := {(x, y, 0) ∈ R3 | x2 + (y − 2)2 = 1} ∪ {x2 + y2 + z2 = 1} ∪
{(x, y, 0) | x2 + (y + 2)2 = 1} be the union of a sphere and two circles, and
Y := {(x, y, z) ∈ R3 | (x2 + y2 + z2 +3)2 = 16(x2 + y2)} be the torus, see figure
6.

For a given field k, the cohomology ofX is given byH0(X) ∼= k,H1(X) ∼= k2,
H2(X) ∼= k (as graded vector space) and all higher dimensional cohomologies
vanish. Let f, g be a basis of H1(X).
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H∗(Y ) is isomorphic to H∗(X) as graded vector spaces. However, the prod-
uct structure is different. The cup product structure is trivial on H∗(X) while
nontrivial on H∗(Y ). Intuitively, the classes f, g represent the two circles on X
which have no “interaction” with each other. On the contrary, f ′, g′ correspond
to the meridian and parallel of the torus, which entangle with each other and
give a nontrivial cup product.

More precisely, consider the simplicial complex structure of X and Y , shown
in figure 7, where the small letters represent one-dimensional simplices and the
capital letters represent two-dimensional simplices. We abuse the notations
of (co)simplex and (co)homology classes when no confusion is caused. For X,
H1(X) has a basis {u, v}, then f, g are the dual of u, v respectively, i.e., f(u) = 1
and f(x) = 0 for all x ̸= u, and similar for g. By definition (f ∪ g)(A) =
(f ∪ g)(B) = ±u(a)v(c) = 0. Hence f ∪ g = 0 ∈ H2(X). For Y , {a, b} is a
basis of H∗(Y ) and f ′, g′ is the dual basis. On the cochain level, choose the
representative f ′(c) = g′(c) = 1 in order to make it a cocycle. A + B is a
nontrivial 2-cycle. By definition (f ′ ∪ g′)(A+B) = (f ′ ∪ g′)(A) + (f ′ ∪ g′)(B)=
±(f ′(a)g′(c) + f ′(c)g′(b) = ±1 ̸= 0. Therefore f ′ ∪ g′ ̸= 0.

Next, we will discretize the spaces X and Y , generate simplicial complexes
and compute their interleaving distances. For ϵ ≥ 0, define the thickened spaces
Xϵ :=

⋃
x∈X

B(x, ϵ), Yϵ :=
⋃

y∈Y

B(y, ϵ). Since the radii of the circle, sphere and

torus are 1, it is easy to verify that Xϵ
∼= X, Yϵ

∼= Y when ϵ < 1 and Xϵ
∼= Yϵ

∼=
{∗} when ϵ ≥ 1. This process is to imitate the random errors.

Then we choose finitely many points from the thickened spaces. Let 0 <
α ≪ 1

2 be fixed, there exists finitely many points Dα
X := {xi}i∈I ⊆ Xα such

that {B(xi, α)}i∈I covers Xα and similarly for Y , let Dα
Y := {yj}j∈J . Hence

we get finite samples {xi}i∈I , {yj}j∈J of X, Y respectively. From the discrete
spaces we are able to generate complexes.

Consider the Čech complex C̆(Dα
X)∗, C̆(Dα

Y )∗ : R → ∆Cpx. We will com-
pute the interleving distances of these two persistent ∆-complexes. Note that
for α < r < 1 − α, i.e., when the radii of the balls are big enough to cover the
original space but not too big to fill the holes, we have C̆(Dα

X)r ∼= Xα
∼= X and

C̆(Dα
Y )r

∼= Yα
∼= Y . When r > 1 + α, the balls will fill the holes no matter how

the points are sampled, so C̆(Dα
X)r = C̆(Dα

Y )r
∼= {∗}. See figure 8.

Proposition 4. ([5], proposition 22) Keeping the notations of example 4, we
have

dgrVect(C̆(Dα
X)∗, C̆(Dα

Y )∗) ≤ 2α

and
1− 2α

2
≤ dAlgdg

(C̆(Dα
X), C̆(Dα

Y )∗) ≤
1

2

In particular, when α < 1
4 , dgrVect(C̆(Dα

X , C̆(Dα
Y )) < dAlgdg

(C̆(Dα
X), C̆(Dα

Y )).

As α → 0, dgrVect → 0 and dAlgdg
→ 1

2 .
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Figure 6: The spaces X and Y

Figure 7: The Delta complex structure on the space X (left) and Y (right)

Figure 8: Thickening the spaces X and Y
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Proof. As previously mentioned, ∀r ∈ [α, 1 − α) ∪ (1 + α,∞), H∗(C̆(Dα
X)r) ∼=

H∗(C̆(Dα
Y )r) as graded vector spaces. In other words, there is only a finite inter-

val of length 2α in which the homology graded vector spaces of C̆(Dα
X), C̆(Dα

Y )
are not necessarily isomorphic. Thus we have ∀ϵ > 0, there exist a (2α + ϵ)-
interleaving from H∗(C̆(Dα

X)) to H∗(C̆(Dα
Y )). The first inequality follows.

For the second inequality, first note that for every ϵ ∈ R, eitherH∗(C̆(Dα
X))ϵ =

0 or H∗(C̆(Dα
X))ϵ+1 = 0, so the zero map always gives an 1

2 -interleaving from

C̆(Dα
X) to C̆(Dα

Y ), thus dAlgdg
(C̆(Dα

X), C̆(Dα
Y )) ≤ 1

2 .

Now suppose there is ϵ < 1−2α
2 such that there is an ϵ-interleaving from

H∗((̆Dα
X)) to H∗((̆Dα

Y )), then there will be a commutative diagram

H∗(C̆(Dα
X)α+ϵ

H∗(C̆(Dα
Y ))α H∗(C̆(Dα

Y ))α+2ϵ

νµ

∼=

Since ϵ < 1−2α
2 , α + ϵ < α + 2ϵ < 1 − α. By the previous discussions,

C̆(Dα
X)r ≃ X, C̆(Dα

Y )r ≃ Y whenever α < r ≤ 1 − α. Thus the map

H∗(C̆(Dα
Y ))α → H∗(C̆(Dα

Y ))α+2ϵ induced by the inclusion is an isomorphism.
I.e., ν ◦ µ is an isomorphism, hence µ is injective. This gives an injective
graded algebra homomorphism H∗(Y ) → H∗(X). However, we know that
f ′ ∪ g′ ̸= 0 ∈ H∗(Y ) but f ∪ g = 0 ∈ H∗(X), so such injective morphism
does not exist. This is a contradiction. So there is no such ϵ-interleaving, we
have the last inequality.

Remark. The Čech complex in this example can be replaced by Rips or Alpha
complex as one wished.

Example 4 tells us that while the gr-Vect intereleaving distance cannot dis-
tinguish the two data sets Dα

X and Dα
Y , the dg-Alg distance can. This is of

course because of taking the ring structure into consideration.

Example 5. ([5], example 27) We can create similar examples on all spaces that
can be distinguished using cup product but cannot with only the structure of
graded vector space. For example, consider the trivial link T and the Hopf link
L as shown in figure 9. Let X := R3−T , Y := R3−S be the complements in R3.
Then we have H∗(X) ∼= H∗(Y ) as graded vector spaces. H2(X) ∼= H2(Y ) ∼= k2

are two-dimensional, whose generators represent the two loops around the two
circles of the links of X and Y , respectively. However, the cup product of the
dg-Alg H∗(X) is trivial while that of H∗(Y ) is not. In fact, trivial cup product
illustrates the possibility to untangle the links, while the nontrivial one indicates
that the Hopf link cannot be untangled.

If the link includes three or more loops, the cup product may not be enough.
We need higher structures to distinguish them, as discussed in the next section.
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Figure 9: The trivial link T (left) and the Hopf link L (right)

5 Stability Theorem

After a method of prediction is invented (e.g., persistent homology to predict
the shape of data), the stability is essential to measure the reliability of the
method. Intuitively, when the original data is disturbed slightly, the results
should not change a lot. The topology properties of a manifold, for example,
is of course stable under local perturbation. To measure the “slight change” of
data sets, we should define a distance on the data sets.

5.1 Gromov-Hausdorff distance

Definition 16. Let X, Y be two sets. (1) A multi-valued map from X
to Y is a subset C of X × Y such that πX |C : C → X is surjective, where
πX : X × Y → X is the canonical projection. Denote a multi-valued map by
C : X ⇒ Y .

(2) The image of a subset S ⊆ X is defined to be C(S) := πY (π
−1
X (S) ∩C).

(3) A map f : X → Y is called subordinate to C if ∀x ∈ X, (x, f(x)) ∈ C.

Write f : X
C−→ Y .

(4) Given two multi-valued maps C : X ⇒ Y , D : Y ⇒ Z, the composition
D ◦C : X ⇒ Z is the subset {(x, z) ∈ X ×Z | ∃y ∈ Y such that (x, y) ∈ C and
(y, z) ∈ D}.

(5) Given C : X ⇒ Y , if πY |C : C → Y is surjective, then C is called
a correspondence. The transpose CT of a correspondence C is the multi-
valued map from Y to X such that CT := {(y, x) ∈ Y ×X | (x, y) ∈ C}.

Remark. For any correspondence C ⇒ Y , we have idX is subordinate to CT ◦C
and idY is subordinate to C ◦ CT .

Definition 17 (Gromov-Hausdorff Distance). Let (X, dX), (Y, dY ) be metric
spaces and C : X ⇒ Y be a correspondence. The distortion of C is defined to
be

dist(C) := sup
(x,y),(x′,y′)∈C

|dX(x, x′)− dY (y, y
′)|.
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The Gromov-Hausdorff distance between X and Y is defined to be

dGH(X,Y ) :=
1

2
inf

X⇒Y
dist(C)

.

Remark. One should check that this is actually a distance. To understand this
definition, consider, for example C being a isometry, then dist(C) = 0. If C is
a correspondence distorts the metrics a lot, then the distortion will increase.

In fact, we have

dGH(X,Y ) = inf
(η,τ)∈I

min{ϵ ≥ 0 | η(X) ⊆ τ(Y )ϵ and τ(Y ) ⊆ η(X)ϵ}

where I := {(η : X → Z, τ : Y → Z) | (Z, dZ) is a metric space and η, τ
are isometrical embeddings } and η(X)ϵ :=

⋃
x∈η(X)

BZ(x, ϵ). Intuitively, this

distance describes the smallest amount of thickening of X and Y so that they
can be embedded to each other in an arbitrary space.

5.2 The Theorem

Definition 18. Let X, Y be two sets and S, T : R → ∆Cpx be two persistent
delta complexes whose vectex sets are X, Y respectively, for all r ∈ R. A
multivalued map C : X ⇒ Y is called ϵ-simplicial for S and T if ∀r ∈ R,
∀σ ∈ Sr a simplex, every finite subset of C(σ) is a simplex of Tr+ϵ.

Definition 19 (Contiguous simplicial maps). Let K and L be two simplicial
complexes. Two simplicial maps f, g : K → L are called contiguous if for
any simplex [v0, . . . , vn] of K, the points f(v0), . . . , f(vn), g(v0), . . . , g(vn) span
a simplex of L.

We use without proving the following lemma:

Lemma 2. ([7], proposition 10.20) Keep the notions in definition 19. If f, g are
continuous, then their geometric realizations |f |, |g| : |K| → |L| are homotopic
as continuous maps.

Lemma 3. ([4], proposition 3.3) Let S, T : R → ∆Cpx with vertex sets X, Y
respectively be two persistent ∆-complexes. Suppose there exists a ϵ-simplicial

multi-valued map C : X → Y from S to T . Then any two maps f, g : X
C−→ Y

subordinating to C induce contiguous simplicial maps Sr → Tr+ϵ for all r ∈ R.
Moreover, all the geometric realizations |f |, |g| : |Sr| → |Tr+ϵ| are contiguous.

Proof. First suppose that f : X
C−→ Y is a map subordinate to C. Then ∀r ∈

R, σ ∈ Sr, f(σ) is a finite subset of C(σ), hence a simplex of Tr+ϵ since C is
ϵ-simplicial from S to T . Hence f , g induce simplicial maps Sr → Tr+ϵ.

To show that the induced maps are contiguous, note that for any simplex σ,
f(σ) ∪ g(σ) is also a finite subset of C(σ), hence spans a simplex in Tr+ϵ. By
definition, f and g induce contiguous simplicial maps at every point.
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Lemma 4. ([4], lemma 4.3 and 4.4) Let (X, dX) and (Y, dY ) be two metric
spaces. Suppose there is a correspondence C : X ⇒ Y with distortion ϵ. Con-
sider the persistent ∆-complexes C̆(X), V(X) and C̆(Y ), V(Y ). Then we have
the correspondence C is

(1) ϵ-simplicial from V(X) to V(Y )
(2) ϵ-simplicial from C̆(X) to C̆(Y ).

Proof. (1) Let C be such a correspondence. Fix r ∈ R, ∀σ ∈ R(X)r, τ ⊆ C(σ)
finite subset, we want to show that τ is a simplex of R(Y )r+ϵ. ∀y, y′ ∈ τ , there
exists x, x′ ∈ σ such that y ∈ C(x), y′ ∈ C(x′). By the definition of Rips
complex, we have dX(x, x′) ≤ r. By the definition of the distortion, we have
|dX(x, x′) − dY (y, y

′)| ≤ ϵ =⇒ dY (y, y
′) ≤ dX(x, x′) + ϵ ≤ r + ϵ. This is true

for all y, y′ ∈ τ , hence τ is a simplex of R(Y )r+ϵ. Thus C is ϵ-simplicial from
R(X) → R(Y ).

(2) If σ is a simplex of C̆(X, dX)r, let x̄ be an r-center of σ, then ∀x ∈ σ, we
have dX(x, x̄) ≤ r. Then rest of the arguments are exactly similar to (1).

Now we are able to prove the stability theorem for the interleaving distances.
For the original version of stability theorems, see [1].

Theorem 3 (Stability Theorem for the Interleaving Distances). ([5], theorem
66) Let (X, dX), (Y, dY ) be two metric spaces. There are the following inequal-
ities:

(1)
dho(Algdg)

(C∗(R(X)), C∗(R(Y ))) ≤ 2dGH(X,Y )

dho(Algdg)
(C∗(C̆(X)), C∗(C̆(Y ))) ≤ 2dGH(X,Y )

(2)
dAlgdg

(H∗(R(X)), H∗(R(Y ))) ≤ 2dGH(X,Y )

dAlgdg
(H∗(C̆(X)), H∗(C̆(Y ))) ≤ 2dGH(X,Y )

Proof. Let dGH(X,Y ) := d
2 , then ∀ϵ > 0, there is a correspondence C : X ⇒ Y

of distortion at most d + ϵ. Then by lemma 4, C is (d + ϵ)-simplicial from
C∗(R(X)) to C∗(R(Y )). Choose a map f : X → Y subordinating to C, then
by lemma 3, f induces an (d+ ϵ)-morphism from C∗(R(X)) to C∗(R(Y )). By
lemma 3 again, f can be passed to the homotopy category ho(Algdg).

Similarly, CT : Y ⇒ X induces a (d + ϵ)-morphism g : C∗(R(Y )) →
C∗(R(X)). Recall that idX : X

CT ◦C−−−−→ X, idY : X
C◦CT

−−−−→ X, and g ◦ f CT ◦C−−−−→,

f ◦g C◦CT

−−−−→. So the maps g ◦f : C∗(R(X)) → C∗(R(Y )) is a 2(d+ ϵ)-morphism
which is exactly the structural morphism of C∗(R(X)). Similarly for f ◦ g. By
definition f, g define a (d+ϵ)-interleaving from C∗(R(X)) to C∗(R(Y )). Since ϵ
is arbitrary, we have dho(Algdg)

(C∗(C̆(X)), C∗(C̆(Y ))) ≤ d = 2dGH(X,Y ).

Therefore, the dg-Alg and A∞ interleaving distances are controlled by the
Gromov-Hausdorff distance of the data sets. The interleaving distance will not
be large for similar spaces, and will not change a lot as long as the disturbance
of data points is small.
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