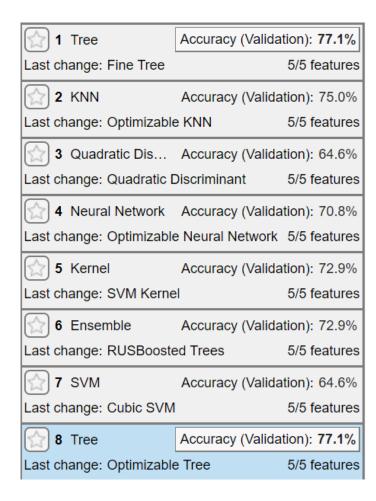
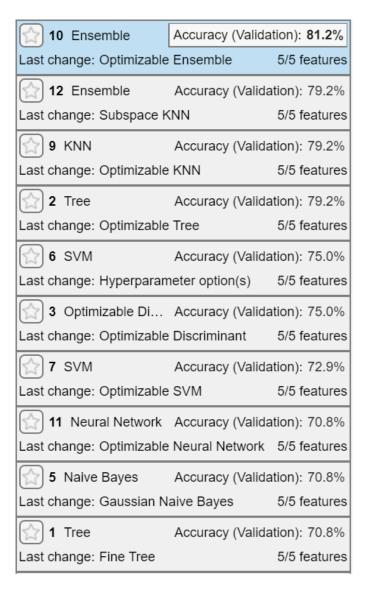

Progress Report on Speech Data: ACF, classification learner

Feng PingYao 9-23-2022

ACF here refers to the autocorrelation function to analyze the fundamental frequency of audio data. This gives a faster and more accurate way(compared to Fast Fourier Analysis) to obtain the period of the audio signal. ACF will not be mentioned again in later slides.


Matlab classification learner


1 Tree	Accuracy (Validation): 35.7%
Last change: Fine Tree	5/5 features
2 SVM	Accuracy (Validation): 17.9%
Last change: Linear SVM	5/5 features
3 KNN	Accuracy (Validation): 28.6%
Last change: Fine KNN	5/5 features
4 KNN	Accuracy (Validation): 46.4%
Last change: Optimizable	KNN 5/5 features
5 Kernel	Accuracy (Validation): 17.9%
Last change: SVM Kerne	5/5 features
6 Ensemble	Accuracy (Validation): 46.4%
Last change: Boosted Tre	ees 5/5 features
7 Neural Network	Accuracy (Validation): 46.4%
Last change: Narrow Neu	ıral Network 5/5 features
8 Neural Network	Accuracy (Validation): 46.4%
Last change: Hyperparan	neter option(s) 5/5 features
9 Ensemble	Accuracy (Validation): 39.3%
Last change: RUSBooste	d Trees 5/5 features
10 SVM	Accuracy (Validation): 28.6%
Last change: Optimizable	SVM 5/5 features

1 (0.7995169 (0.7463960 (0.9539115 (0.9675709 (0.9129815 (0.8566028 (0.8089978 (0.8189097 (0.7171753 (0.7799127 1 (0.0, inf) (0.0, inf) (0.0, inf) (0.0, inf) (0.0, inf) (0.0, inf) 1 (0.4846534 (0.6017108 (0.9354327 (0.6332486 (0.5627378 (0.4895957 (0.4814031 (0.4771880 (0.4377279 (0.3952256 1 (0.6087518 (0.8017980 (0.9211521 (0.9798339 (0.0, inf) (0.0, inf) (0.0, inf) (0.0, inf) 2 (0.0, inf) (0.0, inf) (0.0, inf) (0.0, inf) (0.0, inf) (0.0, inf) (0.2106970 (0.0, inf) 2 (0.9911707 (0.9867417 (0.9985112 (0.9613280 (0.9990256 (0.0, inf) (0.9153238 (0.9663537 (0.9968014 (0.9822997

9-17 Left: Using 43 audio (8 voiced, 8 voiceless, 27vowels), first 5 features (longest barcode of first 5 diag), 1 response. This gives a rather coarse result. More data is needed. Inf number type seems to negatively affect the process. Middle: Using 41 voiced, 43 voiceless, 31 vowels, first 6 features, and 1 response. The consonants have no preprocess. This gives an even coarser result. Right: Glimpse of the data.

9-22: 48 audio, 32 vowels, 16 consonants. Each audio has 5 diag(fractions are linearly spaced throughout sig), features are the number of barcode in each diag.

9-23: same data as 9-22, but use barcode of one dimension only. Even if only the number of diag is used, the result is much better than using the longest barcode as feature.

Struggles & Future work

1. 9-17: Choices of features? How to choose features so that they can capture the shape of data in a maximum way? It is ok to see that classification learner classifies data in such a poor way, since little preprocess is done to the data. How to choose barcodes? How to choose features? How to split consonants? All should be considered in a formal way.