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Introduction

Utility of Topology

▶ Encode the overall shape of data.

▶ Capture multi-scale, global, and intrinsic properties of data
sets.



Methods of TDA

Extrinsic Topological Features

▶ Extract topological features of given data.

▶ Feed downstream machine learning models with these
features.

▶ Achieved by vectorisation of topological features.

▶ Or achieved by layers of neural networks to handle them.

Intrinsic Topological Features

▶ Topological analysis of aspects of the machine learning model.



Methods of TDA

Observational Methods
▶ Analysis the topology of the data or model.

▶ Do not directly influence the model training or architecture.

Interventional Methods
▶ Inform the architectural design and/or model training.

▶ By topological properties of the data and post-hoc analysis of
topological features of machine learning models.



Graphic Conclusion of Methods of TDA

Figure 1: Methods used in TDA and their influences



Extrinsic Topological Features in Machine Learning

Strategies on Vectorising Persistence Diagrams (PDs)

▶ Different representations that ideally give rise to feature
vectors.

▶ Kernel-based methods that permit the integration into certain
classifiers.

General Schemes
▶ Representation: map persistence diagrams into an auxiliary

vector space by discretisation, or mapping into a (Banach- or
Hilbert-) function space.

▶ Kernel-based methods: measure similarity between persistence
diagrams.



Representation Methods of Persistence Diagrams

Summary Statistics of Topological Descriptors of a Persistence
Diagram

▶ Total persistence.

▶ p-norm.

▶ Persistent entropy.

They give rise to hypothesis testing based on topological
information.

Representation techniques

▶ Betti curves.

▶ Directly generates a high-dimensional feature vector.

▶ Persistence landscapes.

▶ Persistence images (PIs).



Betti Curves

Definition
Given a persistence diagram D, and a weight function w : R2 → R,
its Betti curve is the function β : R → R defined by

β :=
∑

(b,d)∈D

w(b, d) · 1[b,d](t)

Strengths and Weaknesses

▶ Permit the calculation of a mean curve, distance and kernel.

▶ The mapping from a diagram to a curve is not injective.

▶ The curve only contains counts of topological features and
does not permit tracking single features.



Betti Curve

Figure 2: Betti curve calculation example



Directly Generate a High-dimensional Feature Vector

▶ For each pair (p, q) of points in persistence diagram D,
compute m(p, q) := min{d∞(p, q), d∞(p,∆), d∞(q,∆)}, here
∆ := {(x , x)|x ∈ R} ⊂ R2 refers to points on the diagonal.

▶ Associate to D the vector of these values, sorted in
descending order.

▶ Obtain a vector representation of D based on the distribution
of pairwise distances of its elements.

▶ Provide a good baseline to furnish any machine learning
classifier with simple topology based feature vectors.



Persistence Landscapes

Definition
Given a persistence diagram D = {(bi, di)}i∈I , for b < d , and an
auxiliary function f(b,d)(t) := max{0,min{t − b, d − t}}, its
persistence landscape is the function λ : N× R → R defined by

λ(k , t) := kmax{f(bi,di)(t)}i∈I

Here, kmax denotes the k-th largest element of the set.

▶ Map persistence diagrams into a (Banach or Hilbert) function
space invertibly.

▶ Do not require any choice of auxiliary parameters.

▶ Afford various summary statistics.

▶ Applications in time series analysis:
PLLay (Persistence Landscape Based Topological Layer)



Persistence Landscapes

Figure 3: Persistence Landscapes Computation



Persistence Images (PIs)

Procedure
▶ Transform PD D from “birth–death”-coordinates into

“birth–persistence”-coordinates:
T : R2 → R2 : (x , y) 7→ (x , y − x).

▶ For each u ∈ R2, choose a differentiable probability density ϕu

on R2, and a weighting function f : R2 → R2
≥0 satisfying

f |{0}×R ≡ 0.

▶ Choose a discretisation of a relevant subdomain of R2 by a
standard grid, each region R of this grid then corresponds to
a pixel in the persistence image with value given by∫
R
∑

u∈T (D) f (u)ϕu(z)dz .



Persistence Images (PIs)

Non-canonical Choices
▶ Choice of the weighting function.

▶ Distribution ϕu, with standard choice being a normalised
symmetric Gaussian with E[ϕu] = u.

▶ The resolution of the discretisation grid.

Strength

▶ Being stable with respect to the 1-Wasserstein distance
between persistence diagrams.

▶ Highly flexible, often employed to make a classifier
“topology-aware”.

Drawbacks
▶ Quadratic storage and computation complexity.

▶ Choice of appropriate parameters.

▶ No guidelines for picking such hyperparameters



Persistence Images (PIs)

Figure 4: Persistence Images Computation



Kernel-based methods

Motivation
▶ The space of persistence diagrams can be endowed with

metrics, but there is no natural Hilbert space structure on it.

▶ Implicitly introduce such a Hilbert space structure to which
persistence diagrams can be mapped via the feature map of
the kernel.

Definition
Given a set X , a function k : X × X → R is called a (positive
definite) kernel if there exists a Hilbert space Hk together with a
feature map ϕ : X → Hk such that k(x1, x2) = ⟨ϕ(x1), ϕ(x2)⟩Hk

for all x1, x2 ∈ X .



Kernel-based methods

Categories

▶ 1-Wasserstein distance kernel.

▶ Sliced Wasserstein kernel.

▶ Persistence weighted Gaussian kernels.

Strength and Weaknesses

▶ Not limited with respect to the input data.

▶ Good performance for shape classification or segmentation
tasks, as well as in orbit classification.

▶ Suffer from computational complexity, which scales
quadratically in the number of points.



Kernels based on topological information

Weisfeiler–Lehman (WL) Procedure

▶ An iterative scheme in which vertex label information is
aggregated over the neighbours of each vertex, resulting in a
label multiset.

▶ Can be repeated until a pre-defined limit has been reached or
until the labels do not change any more.

▶ Useful for assessing the dissimilarity between two graphs in
polynomial time, enjoying popularity for graph learning tasks.

Persistent Weisfeiler–Lehman (P-WL) Kernel for Graphs

▶ Compute topological features during a Weisfeiler–Lehman
(WL) procedure.

▶ Extract topological information of the graph with respect to
the current node labelling for each WL iteration.

▶ Imbues data-based labels into the calculation of persistent
homology.
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